Strategies to Improve Water-Use Efficiency in Plant Production
A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Crop Physiology and Crop Production".
Deadline for manuscript submissions: 30 September 2024 | Viewed by 47992
Special Issue Editors
Interests: irrigation management; water-use efficiency; winter wheat; fertigation
Special Issues, Collections and Topics in MDPI journals
Interests: irrigation management; saline water irrigation
Special Issues, Collections and Topics in MDPI journals
Special Issue Information
Dear Colleagues,
With climate change, extreme weather has become a key constraint for agricultural productivity. Securing global food production in a volatile climate for the ever-growing population is and will continue to be one of the greatest challenges facing countries all over the world in the 21st century. Increased frequency and intensity of extreme weather events, such as frequent drought episodes, will have consequences for crops, especially in arid and semiarid regions. Therefore, efficient utilization of water resources is central to the challenge of balancing increasing drought events and crop production.
Various approaches have been conducted to reduce water input and enhance water-use efficiency (WUE) in agriculture, such as water-saving cultivations, efficient irrigation methods (drip and sprinkle irrigation), and precision fertigation. In the context of climate change, the mechanism and simulation of the crop–water physiological response to abiotic stresses and the regulation of agronomic practices on crop yield and WUE are current challenges.
This Special Issue addresses the recent advances in high-efficient water use in agriculture and aims to gather articles on the most recent scientific knowledge on this subject. In this broad context, we invite investigators to submit original research articles and reviews that explore different topics of strategies in relation to crop water physiology, crop water status monitoring, precision fertigation, irrigation efficiency, crop water productivity, water-saving cultivation, etc.
We look forward to receiving your contributions.
Prof. Dr. Aiwang Duan
Prof. Dr. Gao Yang
Guest Editors
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
- water-use efficiency
- crop productivity
- irrigation method
- fertigation
- SPAC
- evapotranspiration
- irrigation decision
- precision agriculture
- crop water physiology
- simulation
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.
Planned Papers
The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.
Title: Physiological Responses of a Grapefruit Orchard to Irrigation with Desalinated Seawater
Authors: Josefa Maria Navarro; Alberto Imbernón-Mulero; Juan Miguel Robles; Francisco Miguel Hernández Ballester; Vera Antolinos; Belen Gallego-Elvira; José F. Maestre-Valero
Affiliation: Agricultural Engineering Center, Technical University of Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain
Abstract: Desalinated seawater (DSW) has emerged as a promising solution for irrigation in regions facing water scarcity. However, adopting DSW may impact the existing cultivation model, given the presence of potentially harmful elements, among other factors. A three-year experiment was carried out to assess the short-term effects of four irrigation waters−freshwater (FW), DSW, a mix 1:1 of FW and DSW (MW), and DSW with low boron (B) concentration (DSW−B) −on a 'Rio Red’ grapefruit orchard. These irrigation waters exhibited varying levels of phytotoxic elements, some potentially harmful to citrus trees. Sodium (Na+) and chloride (Cl) concentrations exceeded citrus thresholds in all treatments, except in DSW−B, whilst B exceeded toxicity levels in DSW and MW treatments. Leaf concentrations of Cl and Na+ remained low in all treatments, whereas B approached toxic levels only in DSW and MW−irrigated trees. The rapid growth of the trees, preventing excessive accumulation through a dilution effect, protected the plants from significant impacts on nutrition and physiology, such as gas exchange and chlorophyll levels, due to phytotoxic elements accumulation. Minor reductions in photosynthesis in DSW−irrigated trees were attributed to high B in leaves, since Cl and Na+ remained below toxic levels. The accelerated tree growth effectively prevented the substantial accumulation of phytotoxic elements, thereby limiting adverse effects on tree development and yield. When the maturation of trees reaches maximal growth, the potential accumulation of phytotoxic elements is expected to increase, potentially influencing tree behavior differently. Further study until the trees reach maturity is imperative for comprehensive understanding of the long-term effects of desalinated seawater irrigation.