Efficient Strategies for the Utilization of Water Resources and Nutrients and Crop Production

A special issue of Agronomy (ISSN 2073-4395). This special issue belongs to the section "Water Use and Irrigation".

Deadline for manuscript submissions: 15 January 2026 | Viewed by 9733

Special Issue Editors


E-Mail Website
Guest Editor
College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
Interests: water-saving irrigation, deficit irrigation, effect of water and fertilizer managements on greenhouse gas emission in farmland; carbon and nitrogen cycling and utilization in farmland

E-Mail Website
Guest Editor
College of Water Conservancy Engineering, Tianjin Agricultural University, Tianjin, China
Interests: water saving irrigation theory and technology; effect of water-fertilizer interaction on the quality of crop

E-Mail Website
Guest Editor
College of Agriculture, Health, and Natural Resources, Kentucky State University, Frankfort, KY 40601, USA
Interests: soils; crop-soils interactions; surface-atmosphere gas flux

E-Mail Website
Guest Editor
Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Bathurst, Australia
Interests: crop water productivity modelling; soil hydrology; water conservation; irrigation water management; soil-water-crop-atmosphere relations; horticulture irrigation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The unscientific use of water and fertilizer resources in agriculture has led to several serious issues, including agricultural non-point source pollution, water eutrophication, and greenhouse gas emissions. These have brought about great challenges to the sustainable development of agricultural production. Water scarcity and the low water and fertilizer utilization efficiency have become primary bottlenecks restricting the high-quality development of modern agriculture. In the context of global climate change and soil quality degradation, the development of green and efficient agriculture requires the efficient utilization of agricultural resources and the enhancement of arable land production capacity. In recent years, various water–fertilizer management strategies have been proposed to achieve the goals of the efficient utilization of farmland resources and emission reduction. These managements include mulched drip irrigation, regulated deficit irrigation, combined application of organic and inorganic fertilizers, application of organic/inorganic soil amendments, application of slow/controlled release fertilizers, and straw returning to the field.

This Special issue will focus on the impact of water and fertilizer managements on fertility improvements, crop yield and quality, water and fertilizer resource utilization, and carbon and nitrogen cycle processes in farmlands. The topics of this Special Issue include, but are not limited to, the following:

1) Spatiotemporal migration simulation of water, fertilizer, and salt in farmlands;

2) Effects of different irrigation and fertilization modes on the farmland ecological environment;

3) The relationship between soil water/fertilizer absorption and crop water and fertilizer absorption;

4) The optimization of crop irrigation and fertilization systems based on crop growth process simulation;

5) Effect of cultivation modes on water and fertilizer utilization regulation of crops;

6) Impacts of climate change on agricultural production and its simulation.

We hope that this collection will provide valuable experience for the scientific management of water and fertilizer and promote the sustainable development of agricultural production. 

Dr. Junlin Zheng
Prof. Dr. Yang Gao
Dr. Xiaojun Shen
Dr. Maheteme Gebremedhin
Dr. Ketema Zeleke
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agronomy is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • water-saving irrigation
  • water and fertilizer coupling
  • water use efficiency
  • climate change
  • solute transport
  • numerical simulation
  • greenhouse gas emissions
  • yield
  • quality

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

20 pages, 4260 KB  
Article
Analysis of Potato Growth, Water Consumption Characteristics and Irrigation Strategies in the Agro-Pastoral Ecotone of Northwest China
by Guoshuai Wang, Xiangyang Miao, Jun Wang, Delong Tian, Jie Ren and Zekun Li
Agronomy 2025, 15(12), 2685; https://doi.org/10.3390/agronomy15122685 - 22 Nov 2025
Viewed by 376
Abstract
The agro-pastoral ecotone in Yinshanbeilu is the main potato-producing region. In recent years, the shift from rainfed to irrigated agriculture has created challenges in understanding potato water consumption patterns, water use efficiency, and irrigation optimization. This study utilized the DSSAT model to simulate [...] Read more.
The agro-pastoral ecotone in Yinshanbeilu is the main potato-producing region. In recent years, the shift from rainfed to irrigated agriculture has created challenges in understanding potato water consumption patterns, water use efficiency, and irrigation optimization. This study utilized the DSSAT model to simulate soil moisture, leaf area index, and potato yield based on a two-year in situ observational experiment. The study showed that simulated values of the soil water moisture, leaf area index, and yield, with Absolute Relative Error (ARE) of 4.18–5.27%, Normalized Root Mean Square Error (nRMSE) of 5.64–8.65%, and Coefficient of Determination (R2) values of 0.86–0.921, exhibited acceptable accuracy. Simulated results pointed out that potato water consumption ranged between 375.2 and 414.2 mm, with 50–52% occurring during tuber formation to bulking stages, and the average water consumption intensity was 2.62~2.81 mm/d. Based on DSSAT model simulation, this study found that water use efficiency (WUE) reached 162.17–166.20 kg/(hm2·mm), while irrigation water use efficiency (IWUE) varied between 86.1 and 108.1 kg/(hm2·mm). With the highest yield as the target, the recommended irrigation amounts for potato in normal year and dry year were 180 mm and 240 mm. With the highest utilization rate of groundwater resources as the target, the recommended irrigation amounts in normal year and dry year were 162 mm and 192 mm. These findings offer valuable insights for promoting sustainable groundwater use and enhancing water conservation practices in the Yinshanbeilu agro-pastoral ecotone. Full article
Show Figures

Figure 1

18 pages, 980 KB  
Article
Canopy-Level Regulation of Within-Boll Cotton Yield and Fiber Quality Under Staged Saline Water Supplemental Irrigation in Xinjiang
by Na Zhang, Yachen Yang, Wenxiu Xu, Penghao Zhong, Liang Wang, Rensong Guo, Tao Lin, Liwen Tian and Jianping Cui
Agronomy 2025, 15(11), 2662; https://doi.org/10.3390/agronomy15112662 - 20 Nov 2025
Viewed by 377
Abstract
Freshwater scarcity severely limits sustainable cotton production in arid regions. This study aimed to establish the optimal salinity threshold for staged saline water supplemental irrigation (SWSI) and elucidate its canopy-level mechanisms in optimizing within-boll yield components and fiber quality. A two-year field trial [...] Read more.
Freshwater scarcity severely limits sustainable cotton production in arid regions. This study aimed to establish the optimal salinity threshold for staged saline water supplemental irrigation (SWSI) and elucidate its canopy-level mechanisms in optimizing within-boll yield components and fiber quality. A two-year field trial (2023–2024) was conducted in Awati County, Xinjiang, using mulched drip irrigation at five SWSI levels (3.5–9.5 g L−1) and a freshwater control (CK). Compared with CK, 3.5 g L−1 treatment significantly increased lint yield by 31.4%, boll number per plant by 22.45%, and fibers per seed by 6.01–10.59%, while fiber length and strength rose by 6.98–10.38% and 2.69–6.00%, respectively. When salinity reached 8.0 g L−1, yield declined by 8.5%, and a salinity of 9.5 g L−1 reduced yield by 24.52%. Spatially, mid-fruiting branches (nodes 4–6) remained stable, maintaining high lint mass per seed even under high salinity, whereas upper branches (≥node 7) were most sensitive; at 9.5 g L−1, the boll number (0.36) was 56.6% lower than at 3.5 g L−1 (0.83), and the Q-score decreased by 6.7%. These results demonstrate that SWSI with ≤5.0 g L−1 salinity (optimum 3.5 g L−1) simultaneously enhances lint yield and fiber quality, providing a practical strategy for efficient saline water use in arid cotton regions. Full article
Show Figures

Figure 1

19 pages, 4328 KB  
Article
Research on Soil Water Leakage and Water Use Efficiency Based on Coupling Biochar and Management Measures
by He Wang, Wei Dong, Dongguo Shao, Luguang Liu, Jie Huang, Jianan Qin, Xiaowei Yang, Rui Zhang, Mei Zhu and Linhua Ma
Agronomy 2025, 15(11), 2614; https://doi.org/10.3390/agronomy15112614 - 14 Nov 2025
Viewed by 432
Abstract
Biochar has recently been widely used as a soil amendment. However, the interaction effects of biochar with irrigation management on soil water leakage and water use efficiency of paddy black soil remain unclear, which seriously restricts the production potential of black soil. Therefore, [...] Read more.
Biochar has recently been widely used as a soil amendment. However, the interaction effects of biochar with irrigation management on soil water leakage and water use efficiency of paddy black soil remain unclear, which seriously restricts the production potential of black soil. Therefore, the purpose of this paper was to explore the response rule of water loss and water use efficiency of black soil under the coupling effects of biochar, irrigation amounts, and irrigation methods through column experiment, field experiment, and HYDRUS-AquaCrop coupling simulation. Biochar application rates, irrigation amounts, and irrigation methods were set at five levels (B = 0, 1.5, 3, 4.5, 6 kg·m−2), seven levels (I = 0, 60, 120, 180, 240, 300, 360 mm), and two levels (M, conventional irrigation and drip irrigation), respectively. The results showed that B and M had a significant coupling effect on water leakage loss (p < 0.05). Single factor B promoted water loss, but B and M inhibited water loss, which helps reduce water waste and environmental pollution. Compared with a single effect, the synergistic effect of B, I, and M on water consumption (ET), yield (Y), and water use efficiency (WUE) was better, increasing Y by 18.2%–57.9% and WUE by 17.1%–34.9%. Additionally, ET, Y, and WUE were also correlated with hydrological years, and this correlation works best in dry years. The maximum of Y and WUE in wet and normal years occurred in the ‘BDI6, 0 mm’ treatment (saving water and high yield), while that in dry years occurred in the ‘BDI6, 360 mm’ treatment (a stable yield). Therefore, the interaction effects of biochar and irrigation management should be comprehensively considered in black soil agricultural production to improve the agricultural potential of black soil and ensure food security. Full article
Show Figures

Figure 1

23 pages, 1540 KB  
Article
Assessment of Evapotranspiration–Yield Relationships in Northern China Tea Plantations: A Basis for Crop Water Productivity Improvement
by Quanru Liu, Zongzhi Wang, Liang Cheng, Kun Wang, Ying Bai, Qi Ding, Ziyue Shao and Yongbing Zhang
Agronomy 2025, 15(8), 1955; https://doi.org/10.3390/agronomy15081955 - 13 Aug 2025
Viewed by 1109
Abstract
Global climate warming and freshwater scarcity are intensifying water stress in agricultural fields, severely constraining sustainable agricultural development. As a typical C3 perennial cash crop, tea (Camellia sinensis) is naturally suited to low-latitude regions with abundant heat and evenly distributed precipitation, [...] Read more.
Global climate warming and freshwater scarcity are intensifying water stress in agricultural fields, severely constraining sustainable agricultural development. As a typical C3 perennial cash crop, tea (Camellia sinensis) is naturally suited to low-latitude regions with abundant heat and evenly distributed precipitation, and it is highly sensitive to environmental factors such as temperature and moisture. In northern hilly tea-producing areas, tea plantations often encounter multiple challenges including uneven rainfall distribution and poor soil water retention, resulting in prominent water supply–demand imbalances that critically limit stable and efficient tea production. To explore efficient water-saving irrigation strategies adapted to such ecological conditions, this study was conducted in the Yushan Tea Plantation, Rizhao City, Shandong Province, China. Based on field monitoring data across three growing seasons (spring, summer, and autumn) from 2021 to 2023, five irrigation treatments were evaluated: conventional sprinkler irrigation (CK), drip irrigation (D), micro-sprinkler irrigation (W), drip irrigation with straw mulching (SD), and micro-sprinkler irrigation with straw mulching (SW). Actual crop evapotranspiration (ETc act) was estimated using the soil water balance method, and actual fresh tea leaf yield (FTLY) and crop water productivity (CWP) were measured. Results showed that the SW treatment significantly improved both FTLY and CWP across all three seasons, with summer FTLY in 2022 increasing by 56.58% compared to CK and maximum CWP in spring and autumn reaching 0.916 kg/m3, demonstrating excellent stability and adaptability. Among all irrigation strategies, the SW treatment also exhibited the best regression fitting and yield prediction accuracy. The regression model validated by leave-one-out cross-validation (LOOCV) for the SW treatment demonstrated strong robustness and reliability (R2 = 0.734; RMSE = 208.12 kg/ha; MAE = 183.31 kg/ha). Notably, the samples with the largest prediction errors across all treatments were nearly all associated with the highest or near-highest ETc act values, indicating that model accuracy tends to decrease under extreme evapotranspiration conditions. The results show the synergistic effect of irrigation–mulching integration on enhancing CWP in northern perennial tea systems, providing empirical evidence and theoretical support for developing efficient irrigation strategies in hilly tea-growing regions of Northern China. Full article
Show Figures

Figure 1

13 pages, 1097 KB  
Article
Efficient Strategy for Water and Nutrient Management to Economically Enhance Mombasa Grass Productivity
by Abdulaziz Alharbi, Saleh Alsunaydi, Mohamed I. Motawei, Ahmed Alzoheiry and Mohamed Ghonimy
Agronomy 2025, 15(6), 1274; https://doi.org/10.3390/agronomy15061274 - 22 May 2025
Cited by 2 | Viewed by 2248
Abstract
This study investigates the optimal water and nitrogen fertilization levels to enhance the productivity and quality of Mombasa grass (Panicum maximum cv. Mombasa) under drought-prone conditions. Four irrigation treatments were applied based on irrigation depth: high irrigation (I1 = 691.2 [...] Read more.
This study investigates the optimal water and nitrogen fertilization levels to enhance the productivity and quality of Mombasa grass (Panicum maximum cv. Mombasa) under drought-prone conditions. Four irrigation treatments were applied based on irrigation depth: high irrigation (I1 = 691.2 mm), control irrigation (I2 = 575.0 mm), moderate stress (I3 = 460.8 mm), and severe stress (I4 = 345.6 mm). Two nitrogen fertilization levels were tested: full fertilization (F1 = 300 kg N·ha−1) and half fertilization (F2 = 150 kg N·ha−1). Severe water stress (I4) significantly reduced growth parameters, with fresh weight (FW) decreasing by 21.9% and dry weight (DW) decreasing by 20.3% compared to the control. In contrast, higher irrigation levels (I1 and I2) notably improved FW and DW. Full nitrogen application (F1) enhanced FW, DW, and plant height, whereas the half dose (F2) resulted in lower growth performance. Water productivity (WP) was highest under moderate stress (I3) combined with F1, and under severe stress (I4) combined with F2, it was the worst. Protein percentage per irrigation water unit (PPW) increased with greater water deficits, while total protein production per irrigation water unit (TPW) peaked under higher irrigation levels. These findings indicate a trade-off between forage quality (PPW) and quantity (TPW), where PPW is more critical for marketing purposes and TPW is better suited for on-farm feeding. Economically, treatment I3F1 proved to be the most efficient option under moderate water availability. It combined reduced irrigation with a high fertilizer rate, resulting in a strong net return and the second-highest benefit-cost ratio among all treatments. This indicates its potential as a cost-effective and resource-efficient strategy in water-limited environments. Full article
Show Figures

Figure 1

14 pages, 2952 KB  
Article
Optimizing Maize Agronomic Performance Through Adaptive Management Systems in the Mid-Atlantic United States
by Unius Arinaitwe, Wade Thomason, William Hunter Frame, Mark S. Reiter and David Langston
Agronomy 2025, 15(5), 1059; https://doi.org/10.3390/agronomy15051059 - 27 Apr 2025
Viewed by 920
Abstract
Maize (corn) (Zea mays L.) yield is influenced by complex factors, including abiotic and biotic stress and inconsistent nutrient use efficiency, which challenge optimal yield. Standard management recommendations often fall short, prompting interest in intensive management strategies within an Adaptive Maize Management [...] Read more.
Maize (corn) (Zea mays L.) yield is influenced by complex factors, including abiotic and biotic stress and inconsistent nutrient use efficiency, which challenge optimal yield. Standard management recommendations often fall short, prompting interest in intensive management strategies within an Adaptive Maize Management System (ACMS). To investigate this, we employed an addition/omission technique within a randomized complete block design (RCBD) to compare standard maize management recommendations with an intensive management protocol aimed at identifying yield-limiting factors. Our intensive management approach combined early-season biostimulant applications with mid-season supplementation of phosphorus (P), potassium (K), and nitrogen (N) at the V7 stage, followed by foliar fungicides and additional foliar N at the R1 stage. Field trials spanned five Virginia locations over 2022 and 2023 under both irrigated and non-irrigated conditions, yielding ten site-years of data. Analysis via ANOVA in JMP® Version 18 with Dunnett’s test revealed that the intensive management approach significantly increased grain yield in 3 of 10 experiments. Under non-irrigated conditions, the intensive management practices averaged 5.9% higher yield than the standard management check. We observed a higher response to irrigation in standard management check (34%) than in intensive management check (8.9%). Site-specific irrigation impacts ranged from 14% to 61%. Results emphasize site-specific input recommendations for yield enhancement. Full article
Show Figures

Figure 1

19 pages, 3099 KB  
Article
Improving the Microenvironmental of Spring Soybean Culture and Increasing the Yield by Optimization of Water and Nitrogen
by Lei Zhang, Hongbo Wang, Yang Gao, Weixiong Huang, Zhenxi Cao, Maosong Tang, Fengnian Zhao, Yuanhang Guo and Xingpeng Wang
Agronomy 2024, 14(12), 2814; https://doi.org/10.3390/agronomy14122814 - 26 Nov 2024
Cited by 1 | Viewed by 1177
Abstract
Optimizing water and nitrogen management is an effective measure to reduce nitrogen fertilizer loss and environmental pollution risks. This study aims to quantify the impacts of different water and nitrogen management strategies on the soil microenvironment and yield of spring soybeans in southern [...] Read more.
Optimizing water and nitrogen management is an effective measure to reduce nitrogen fertilizer loss and environmental pollution risks. This study aims to quantify the impacts of different water and nitrogen management strategies on the soil microenvironment and yield of spring soybeans in southern Xinjiang. In this study, two irrigation quotas were established: W1—36 mm (low water) and W2—45 mm (high water). Three nitrogen application gradients were established: low nitrogen (150 kg·hm−2, N1), medium nitrogen (225 kg·hm−2, N2), and high nitrogen (300 k kg·hm−2, N3). The analysis focused on soil physicochemical properties, enzyme activities, microbial community diversity, soybean yield, and soybean quality changes. The results indicate that the activities of nitrate reductase and urease, as well as total nitrogen content, increased with higher irrigation and nitrogen application rates. The W2N3 treatment significantly increased 0.15 to 4.39, 0.18 to 1.04, and 0.31 to 1.73 times. (p < 0.05). Alkaline protease and sucrase activities increased with higher irrigation amounts, while their response to nitrogen application exhibited an initial increase followed by a decrease. The W2N2 treatment significantly increased by 0.10 to 0.34 and 0.07 to 1.46 times (p < 0.05). Irrigation significantly affected the soil bacterial community structure, while the coupling effects of water and nitrogen notably influenced soil bacterial abundance (p < 0.05). Increases in irrigation and nitrogen application enhanced bacterial diversity and species abundance. Partial least squares path analysis indicated that water–nitrogen coupling directly influenced the soil microenvironment and indirectly produced positive effects on soybean yield and quality. An irrigation quota of 4500 m3 hm−2 and a nitrogen application rate of 300 kg·hm−2 can ensure soybean yield while enhancing soil microbial abundance. The findings provide insights into the response mechanisms of soil microbial communities in spring soybeans to water–nitrogen management, clarify the relationship between soil microenvironments and the yield and quality of spring soybeans, and identify optimal irrigation and fertilization strategies for high quality and yield. This research offers a theoretical basis and technical support for soybean cultivation in southern Xinjiang. Full article
Show Figures

Figure 1

21 pages, 7174 KB  
Article
Forecasting and Comparative Application of PV System Electricity Generation for Sprinkler Irrigation Machines Based on Multiple Models
by Bohan Li, Kenan Liu, Yaohui Cai, Wei Sun and Quan Feng
Agronomy 2024, 14(11), 2696; https://doi.org/10.3390/agronomy14112696 - 15 Nov 2024
Cited by 1 | Viewed by 1057
Abstract
Currently, photovoltaic (PV) resources have been widely applied in the agricultural sector. However, due to the unreasonable configuration of multi-energy collaboration, issues such as unstable power supply and high investment costs still persist. Therefore, this study proposes a solution to reasonably determine the [...] Read more.
Currently, photovoltaic (PV) resources have been widely applied in the agricultural sector. However, due to the unreasonable configuration of multi-energy collaboration, issues such as unstable power supply and high investment costs still persist. Therefore, this study proposes a solution to reasonably determine the area and capacity of PV panels for irrigation machines, addressing the fluctuations in power generation of solar sprinkler PV systems under different regional and meteorological conditions. The aim is to more accurately predict photovoltaic power generation (PVPG) to optimize the configuration of the solar sprinkler power supply system, ensuring reliability while reducing investment costs. This paper first establishes a PVPG prediction model based on four forecasting models and conducts a comparative analysis to identify the optimal model. Next, annual, seasonal, and solar term scale models are developed and further studied in conjunction with the optimal model, using evaluation metrics to assess and compare the models. Finally, a mathematical model is established based on the optimal combination and solved to optimize the configuration of the power supply system in the irrigation machines. The results indicate that among the four PVPG prediction models, the SARIMAX model performs the best, as the R2 index reached 0.948, which was 19.4% higher than the others, while the MAE index was 10% lower than the others. The solar term scale model exhibited the highest accuracy among the three time scale models, the RMSE index was 4.8% lower than the others, and the MAE index was 1.1% lower than the others. After optimizing the configuration of the power supply system for the irrigation machine using the SARIMAX model based on the solar term scale, it is verified that the model can ensure both power supply reliability and manage energy overflow effectively. Full article
Show Figures

Figure 1

Review

Jump to: Research

17 pages, 2700 KB  
Review
Research Progress on the Regulation of Plant Rhizosphere Oxygen Environment by Micro-Nano Bubbles and Their Application Prospects in Alleviating Hypoxic Stress
by Kexin Zheng, Honghao Zeng, Renyuan Liu, Lang Wu, Yu Pan, Jinhua Li and Chunyu Shang
Agronomy 2025, 15(11), 2620; https://doi.org/10.3390/agronomy15112620 - 14 Nov 2025
Viewed by 741
Abstract
Rhizosphere hypoxia, caused by soil compaction and waterlogging, is a major constraint on agricultural productivity. It severely impairs crop growth and yield by inhibiting root aerobic respiration, disrupting energy metabolism, and altering the rhizosphere microecology. Micro-nano bubbles (MNBs) show significant potential for alleviating [...] Read more.
Rhizosphere hypoxia, caused by soil compaction and waterlogging, is a major constraint on agricultural productivity. It severely impairs crop growth and yield by inhibiting root aerobic respiration, disrupting energy metabolism, and altering the rhizosphere microecology. Micro-nano bubbles (MNBs) show significant potential for alleviating rhizosphere hypoxia due to their unique physicochemical properties, including large specific surface area, high oxygen dissolution efficiency, prolonged retention time, and negative surface charge. This paper systematically reviews the key characteristics of MNBs, particularly their enhanced mass transfer capacity and system stability, and outlines mainstream preparation methods such as cavitation, electrolysis, and membrane dispersion. And the multiple alleviation mechanisms of MNBs—including continuous oxygen release, improvement of soil pore structure, and regulation of rhizosphere microbial communities—are clarified. The combination of MNBs aeration and subsurface drip irrigation can increase soil aeration by 5%. When applied in soilless cultivation and conventional irrigation systems, MNBs enhance crop yield and nutrient use efficiency. For example, tomato yield can be increased by 12–44%. Furthermore, the integration of MNBs with water–fertilizer integration technology enables the synchronized supply of oxygen and nutrients, thereby optimizing the rhizosphere environment efficiently. This paper sorts out the empirical effects of MNBs in soilless cultivation and conventional irrigation, and provides directions for solving problems such as “insufficient oxygen supply to deep roots” and “reactive oxygen species (ROS) stress in sensitive crops”. Despite these significant advantages, the industrialization of MNBs still needs to overcome challenges including high equipment costs and insufficient precision in parameter control, so as to promote large-scale agricultural application and provide an innovative strategy for the management of rhizosphere hypoxia. Full article
Show Figures

Figure 1

Back to TopTop