Effect of Long-Term Semiarid Pasture Management on Soil Hydraulic and Thermal Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experiment Design and Pasture Management
2.3. Sample Collection and Preparation
2.4. Determination of Soil Properties
2.4.1. Basic Soil Properties
2.4.2. Soil Hydraulic Conductivity and Soil Water Retention Characteristics
2.4.3. Soil Thermal Properties
2.5. Statistical Analysis
3. Results and Discussion
3.1. Basic Soil Properties
3.2. Soil Hydraulic Properties and Water Retention Characteristics
3.3. Soil Thermal Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bodner, G.; Nakhforoosh, A.; Kaul, H.-P. Management of crop water under drought: A review. Agron. Sustain. Dev. 2015, 35, 401–442. [Google Scholar] [CrossRef]
- Deb, S.K.; Shukla, M.K. Variability of hydraulic conductivity due to multiple factors. Am. J. Environ. Sci. 2012, 8, 489–502. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, N.J.; Koestel, J.; Messing, I.; Moeys, J.; Lindahl, A. Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrol. Earth Syst. Sci. 2013, 17, 5185–5195. [Google Scholar] [CrossRef] [Green Version]
- Çerçioğlu, M.; Anderson, S.H.; Udawatta, R.P.; Alagele, S. Effect of cover crop management on soil hydraulic properties. Geoderma 2019, 343, 247–253. [Google Scholar] [CrossRef]
- Schwartz, R.C.; Evett, S.R.; Unger, P.W. Soil hydraulic properties of cropland compared with reestablished and native grassland. Geoderma 2003, 116, 47–60. [Google Scholar] [CrossRef]
- Fashi, F.H.; Gorji, M.; Shorafa, M. Estimation of soil hydraulic parameters for different land-uses. Model. Earth Syst. Environ. 2016, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Meek, B.D.; Rechel, E.R.; Carter, L.M.; DeTar, W.R.; Urie, A.L. Infiltration Rate of a Sandy Loam Soil: Effects of Traffic, Tillage, and Plant Roots. Soil Sci. Soc. Am. J. 1992, 56, 908–913. [Google Scholar] [CrossRef]
- Fischer, C.; Roscher, C.; Jensen, B.; Eisenhauer, N.; Baade, J.; Attinger, S.; Scheu, S.; Weisser, W.W.; Schumacher, J.; Hildebrandt, A. How do earthworms, soil texture and plant composition affect infiltration along an experimental plant diversity gradient in grassland? PLoS ONE 2014, 9, e98987. [Google Scholar] [CrossRef]
- Widomski, M.K.; Stepniewski, W.; Horn, R.; Bieganowski, A.; Gazda, L.; Franus, M.; Pawlowska, M. Shrink-swell potential, hydraulic conductivity and geotechnical properties of clay materials for landfill liner construction. Int. Agrophysics 2015, 29, 365–375. [Google Scholar] [CrossRef]
- Sterpi, D. Effect of freeze–thaw cycles on the hydraulic conductivity of a compacted clayey silt and influence of the compaction energy. Soils Found. 2015, 55, 1326–1332. [Google Scholar] [CrossRef] [Green Version]
- Hirose, G.; Ito, Y. Experimental estimation of permeability of freeze-thawed soils in artificial ground freezing. Procedia Eng. 2017, 189, 332–337. [Google Scholar] [CrossRef]
- Ahuja, L.R.; Fiedler, F.; Dunn, G.H.; Benjamin, J.G.; Garrison, A. Changes in soil water retention curves due to tillage and natural reconsolidation. Soil Sci. Soc. Am. J. 1998, 62, 1228–1233. [Google Scholar] [CrossRef]
- Alaoui, A.; Diserens, E. Changes in soil structure following passage of a tracked heavy machine. Geoderma 2011, 163, 283–290. [Google Scholar] [CrossRef]
- Krümmelbein, J.; Peth, S.; Zhao, Y.; Horn, R. Grazing-induced alterations of soil hydraulic properties and functions in Inner Mongolia, PR China. J. Plant Nutr. Soil Sci. 2009, 172, 769–776. [Google Scholar] [CrossRef]
- Philip, J.R.; De Vries, D.A. Moisture movement in porous materials under temperature gradients. Eos. Trans. Am. Geophys. Union 1957, 38, 222–232. [Google Scholar] [CrossRef]
- Ochsner, T.E.; Horton, R.; Ren, T. A New Perspective on Soil Thermal Properties. Soil Sci. Soc. Am. J. 2001, 65, 1641–1647. [Google Scholar] [CrossRef]
- Deb, S.K.; Shukla, M.K.; Sharma, P.; Mexal, J.G. Coupled liquid water, water vapor, and heat transport simulations in an unsaturated zone of a sandy loam field. Soil Sci. 2011, 176, 387–398. [Google Scholar] [CrossRef]
- Wierenga, P.J.; Nielsen, D.R.; Hagan, R.M. Thermal properties of a soil based upon field and laboratory measurements. Soil Sci. Soc. Am. J. 1969, 33, 354–360. [Google Scholar] [CrossRef]
- Farouki, O.T. Thermal Properties of Soils, CRREL Monograph 81-1; U.S. Army Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1981; pp. 1–137. [Google Scholar]
- Ghuman, B.S.; Lal, R. Thermal conductivity, thermal diffusivity, and thermal capacity of some Nigerian soils. Soil Sci. 1985, 139, 74–80. [Google Scholar] [CrossRef]
- Hopmans, J.W.; Dane, J.H. Temperature dependence of soil hydraulic properties. Soil Sci. Soc. Am. J. 1986, 50, 4–9. [Google Scholar] [CrossRef]
- Allen, V.G.; Brown, C.P.; Kellison, R.; Green, P.; Zilverberg, C.J.; Johnson, P.; Weinheimer, J.; Wheeler, T.; Segarra, E.; Acosta-Martinez, V.; et al. Integrating cotton and beef production in the Texas Southern High Plains: I. Water use and measures of productivity. Agron. J. 2012, 104, 1625–1642. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Anderson, S.H.; Gantzer, C.J.; Garrett, H.E. Influence of prairie restoration on CT-measured soil pore characteristics. J. Environ. Qual. 2008, 37, 219–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuentes, J.P.; Flury, M.; Bezdicek, D.F. Hydraulic properties in a silt loam soil under natural prairie, conventional till, and no-till. Soil Sci. Soc. Am. J. 2004, 68, 1679–1688. [Google Scholar] [CrossRef] [Green Version]
- Dhakal, D.; Islam, M.A. Grass-legume mixtures for improved soil health in cultivated agroecosystem. Sustainability 2018, 10, 2718. [Google Scholar] [CrossRef] [Green Version]
- Gao, D.; Wang, X.; Fu, S.; Zhao, J.; Coleman, D. Legume Plants Enhance the Resistance of Soil to Ecosystem Disturbance Site Description and Experimental. Front. Plant Sci. 2017, 8, 1295. [Google Scholar] [CrossRef] [Green Version]
- Dhakal, M.; West, C.P.; Villalobos, C.; Brown, P.; Green, P.E. Interseeding alfalfa into native grassland for enhanced yield and water use efficiency. Agron. J. 2020, 112, 1931–1942. [Google Scholar] [CrossRef]
- Porazinska, D.L.; Bardgett, R.D.; Blaauw, M.B.; Hunt, H.W.; Parsons, A.N.; Seastedt, T.R.; Wall, D.H. Relationships at the aboveground–belowground interface: Plants, soil biota, and soil processes. Ecol. Monogr. 2003, 73, 377–395. [Google Scholar] [CrossRef]
- Wardle, D.A.; Yeates, G.W.; Williamson, W.M.; Bonner, K.I.; Barker, G.M. Linking aboveground and belowground communities: The indirect influence of aphid species identity and diversity on a three trophic level soil food web. Oikos 2004, 107, 283–294. [Google Scholar] [CrossRef]
- Ankenbauer, K.J.; Loheide, S.P. The effects of soil organic matter on soil water retention and plant water use in a meadow of the Sierra Nevada, CA. Hydrol. Process. 2017, 31, 891–901. [Google Scholar] [CrossRef]
- Pirastru, M.; Castellini, M.; Giadrossich, F.; Niedda, M. Comparing the hydraulic properties of forested and grassed soils on an experimental hillslope in a Mediterranean environment. Procedia Environ. Sci. 2014, 19, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Staff, S.S. Keys to Soil Taxanomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014; pp. 1–372.
- Texas A&M AgriLife Extension: Texas ET Network. Available online: http://texaset.tamu.edu/ (accessed on 30 August 2020).
- Baxter, L.L.; West, C.P.; Brown, C.P.; Green, P.E. Stocker beef production on low-water-input systems in response to legume inclusion: I. Forage and animal responses. Crop Sci. 2017, 57, 2294–2302. [Google Scholar] [CrossRef]
- Bhandari, K.B.; West, C.P.; Acosta-Martinez, V.; Cotton, J.; Cano, A. Soil health indicators as affected by diverse forage species and mixtures in semi-arid pastures. Appl. Soil Ecol. 2018, 132, 179–186. [Google Scholar] [CrossRef]
- Dhakal, M.; West, C.P.; Deb, S.K.; Kharel, G.; Ritchie, G.L. Field calibration of PR2 capacitance probe in Pullman clay-loam soil of Southern High Plains. Agrosystems Geosci. Environ. 2019, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Method, 2nd ed.; Klute, A., Ed.; ASA. Inc., and SSSA, Inc.: Madison, WI, USA, 1986; Agronomy Series 9; pp. 383–411. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk Density. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Method, 2nd ed.; Klute, A., Ed.; ASA. Inc., and SSSA, Inc.: Madison, WI, USA, 1986; pp. 336–375. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis: Part 3 Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnson, C.T., Summer, M.E., Eds.; ASA. Inc., and SSSA, Inc.: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Klute, A.; Dirksen, C. Hydraulic conductivity and diffusivity. Laboratory methods. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Method, 2nd ed.; Klute, A., Ed.; ASA. Inc., and SSSA, Inc.: Madison, WI, USA, 1986; pp. 687–734. [Google Scholar]
- Klute, A. Water Retention: Laboratory Methods. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Method, 2nd ed.; Klute, A., Ed.; ASA. Inc., and SSSA, Inc.: Madison, WI, USA, 1986; pp. 635–660. [Google Scholar]
- van Genuchten, M.T. A Closed-form Equation for the Hydraulic conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- van Genuchten, M.T.; Leij, F.J.; Yates, S.R. The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils, EPA/600/2-91/065 (NTIS 92-119668); U.S. Environmental Protection Agency: Washington, DC, USA, 1991; pp. 1–93.
- Pan, T.; Hou, S.; Liu, Y.; Tan, Q. Comparison of three models fitting the soil water retention curves in a degraded alpine meadow region. Sci. Rep. 2019, 9, 18407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kluitenberg, G.J.; Ham, J.M.; Bristow, K.L. Error analysis of heat pulse method for measuring soil volumetric heat capacity. Soil Sci. Soc. Am. 1993, 57, 444–1451. [Google Scholar] [CrossRef]
- Bristow, K.L.; Kluitenberg, G.J.; Horton, R. Measurement of Soil Thermal Properties with a Dual-Probe Heat-Pulse Technique. Soil Sci. Soc. Am. J. 1994, 58, 1288–1294. [Google Scholar] [CrossRef]
- Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Indust. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables; Dover Publications, Inc.: New York, NY, USA, 1972; pp. 1–1046. [Google Scholar]
- O’Rourke, N.; Psych, R.; Hatcher, L. SAS® for Factor Analysis and Structural Equation Modeling; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Stroup, W.W. Rethinking the analysis of non-normal data in plant and soil science. Agron. J. 2015, 107, 811–827. [Google Scholar] [CrossRef]
- Littell, R.C.; Milliken, G.A.; Stroup, W.W.; Wolfinger, R.D.; Oliver, S. SAS for Mixed Models; SAS Publishing: Cary, NC, USA, 2006. [Google Scholar]
- Kenward, M.G.; Roger, J.H. An improved approximation to the precision of fixed effects from restricted maximum likelihood. Comput. Stat. Data Anal. 2009, 53, 2583–2595. [Google Scholar] [CrossRef]
- Systat Software. SigmaPlot 10.1 User’s Manual; Systat Software: Point Richmond, CA, USA, 2006. [Google Scholar]
- Zobeck, T.M.; Allen, V.G.; Cox, J.J.; Philipp, D. Variation of soil and plant characteristics among old world bluestem species. Agric. Sci. 2011, 2, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Philipp, D.; Allen, V.G.; Mitchell, R.B.; Brown, C.P.; Wester, D.B. Forage nutritive value and morphology of three old world bluestems under a range of irrigation levels. Crop Sci. 2005, 45, 2258–2268. [Google Scholar] [CrossRef] [Green Version]
- Zobeck, T.M.; Crownover, J.; Dollar, M.; Van Pelt, R.S.; Acosta-Martinez, V.; Bronson, K.F.; Upchurch, D.R. Investigation of soil conditioning index values for southern high plains agroecosystems. J. Soil Water Conserv. 2007, 62, 433–442. [Google Scholar]
- Acosta-Martínez, V.; Bell, C.W.; Morris, B.E.L.; Zak, J.; Allen, V.G. Long-term soil microbial community and enzyme activity responses to an integrated cropping-livestock system in a semi-arid region. Agric. Ecosyst. Environ. 2010, 137, 231–240. [Google Scholar] [CrossRef]
- Fultz, L.M.; Moore-Kucera, J.; Zobeck, T.M.; Acosta-Martínez, V.; Allen, V.G. Aggregate carbon pools after 13 years of integrated crop-livestock management in semiarid soils. Soil Sci. Soc. Am. J. 2013, 77, 1659–1666. [Google Scholar] [CrossRef]
- Tracy, B.F.; Frank, D.A. Herbivore influence on soil microbial biomass and nitrogen mineralization in a northern grassland ecosystem: Yellowstone National Park. Oecologia 1998, 114, 556–562. [Google Scholar] [CrossRef]
- Ingram, L.J.; Stahl, P.D.; Schuman, G.E.; Buyer, J.S.; Vance, G.F.; Ganjegunte, G.K.; Welker, J.M.; Derner, J.D. Grazing impacts on soil carbon and microbial communities in a mixed-grass ecosystem. Soil Sci. Soc. Am. J. 2008, 72, 939–948. [Google Scholar] [CrossRef]
- Wang, K.-H.; Mcsorley, R.; Bohlen, P.; Gathumbi, S.M. Cattle grazing increases microbial biomass and alters soil nematode communities in subtropical pastures. Soil Biol. Biochem. 2009, 38, 1956–1965. [Google Scholar] [CrossRef]
- Hao, M.; Zhang, J.; Meng, M.; Chen, H.Y.H.; Guo, X.; Liu, S.; Ye, L. Impacts of changes in vegetation on saturated hydraulic conductivity of soil in subtropical forests. Sci. Rep. 2019, 9, 8372. [Google Scholar] [CrossRef] [Green Version]
- Rasse, D.P.; Smucker, A.J.M.; Santos, D. Alfalfa root and shoot mulching effects on soil hydraulic properties and aggregation. Soil Sci. Soc. Am. J. 2000, 64, 725–731. [Google Scholar] [CrossRef]
- Lado, M.; Paz, A.; Ben-Hur, M. Organic matter and aggregate size interactions in infiltration, seal formation, and soil loss. Soil Sci. Soc. Am. J. 2004, 68, 935–942. [Google Scholar] [CrossRef]
- Bodner, G.; Loiskandl, W.; Buchan, G.; Kaul, H.P. Natural and management-induced dynamics of hydraulic conductivity along a cover-cropped field slope. Geoderma 2008, 146, 317–325. [Google Scholar] [CrossRef]
- Nsabimana, D.; Haynes, R.J.; Wallis, F.M. Size, activity and catabolic diversity of the soil microbial biomass as affected by land use. Appl. Soil Ecol. 2004, 26, 81–92. [Google Scholar] [CrossRef]
- Branham, J.E.; Strack, M. Saturated hydraulic conductivity in Sphagnum-dominated peatlands: Do microforms matter? Hydrol. Process. 2014, 28, 4352–4362. [Google Scholar] [CrossRef]
- Rachman, A.; Anderson, S.H.; Gantzer, C.J. Computed-tomographic measurement of soil macroporosity parameters as affected by stiff-stemmed grass hedges. Soil Sci. Soc. Am. J. 2005, 69, 1609–1616. [Google Scholar] [CrossRef]
- Seobi, T.; Anderson, S.H.; Udawatta, R.P.; Gantzer, C.J. Influence of grass and agroforestry buffer strips on soil hydraulic properties for an Albaqualf. Soil Sci. Soc. Am. J. 2005, 69, 893–901. [Google Scholar] [CrossRef] [Green Version]
- Ndiaye, B.; Molénat, J.; Hallaire, V.; Gascuel, C.; Hamon, Y. Effects of agricultural practices on hydraulic properties and water movement in soils in Brittany (France). Soil Till. Res. 2007, 93, 251–263. [Google Scholar] [CrossRef]
- Heister, K. How accessible is the specific surface area of minerals? A comparative study with Al-containing minerals as model substances. Geoderma 2016, 263, 8–15. [Google Scholar] [CrossRef]
- Leung, A.K.; Garg, A.; Ng, C.W.W. Effects of plant roots on soil-water retention and induced suction in vegetated soil. Eng. Geol. 2015, 193, 183–197. [Google Scholar] [CrossRef] [Green Version]
- Gaiser, T.; Graef, F.; Cordeiro, J.C. Water retention characteristics of soils with contrasting clay mineral composition in semi-arid tropical regions. Soil Res. 2000, 38, 523–536. [Google Scholar] [CrossRef]
- Al Majou, H.; Bruand, A.; Duval, O.; Le Bas, C.; Vautier, A. Prediction of soil water retention properties after stratification by combining texture, bulk density and the type of horizon. Soil Use Manag. 2008, 24, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Abu-Hamdeh, N.H.; Reeder, R.C. Soil thermal conductivity: Effects of density, moisture, salt concentration, and organic matter. Soil Sci. Soc. Am. J. 2000, 64, 1285–1290. [Google Scholar] [CrossRef]
- Kaune, A.; Turk, T.; Horn, R. Alteration of soil thermal properties by structure formation. J. Soil Sci. 1993, 44, 231–248. [Google Scholar] [CrossRef]
- Alrtimi, A.; Rouainia, M.; Haigh, S. Thermal conductivity of a sandy soil. Appl. Therm. Eng. 2016, 106, 551–560. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, A.; Udawatta, R.P.; Anderson, S.H. Soil thermal properties under prairies, conservation buffers, and corn–soybean land use systems. Soil Sci. Soc. Am. J. 2014, 78, 1977–1986. [Google Scholar] [CrossRef]
- Usowicz, B.; Lipiec, L.; Łukowski, M.; Marczewski, W.; Usowicz, J. The effect of biochar application on thermal properties and albedo of loess soil under grassland and fallow. Soil Tillage Res. 2016, 164, 45–51. [Google Scholar] [CrossRef]
- Nkongolo, N.V.; Johnson, S.; Schmidt, K.; Eivazi, F. Greenhouse gases fluxes and soil thermal properties in a pasture in central Missouri. J. Environ. Sci. 2010, 22, 1029–1039. [Google Scholar] [CrossRef]
- Horton, R.; Ochsner, T.E. Soil thermal regime. In Handbook of Soil Sciences, 2nd ed.; Huang, P.M., Li, Y., Summer, M.E., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 9–23. [Google Scholar]
- De Vries, D.A. Thermal properties of soils. In Physics of Plant Environment; Van Wijk, W.R., Ed.; North Holland Publishing Company: Amsterdam, The Netherlands, 1963; pp. 210–235. [Google Scholar]
- Al Nakshabandi, G.; Kohnke, H. Thermal conductivity and diffusivity of soils as related to moisture tension and other physical properties. Agric. Meteorol. 1965, 2, 271–279. [Google Scholar] [CrossRef]
- Lu, Y.; Lu, S.; Horton, R.; Ren, T. An Empirical Model for Estimating Soil Thermal Conductivity from Texture, Water Content, and Bulk Density. Soil Sci. Soc. Am. J. 2014, 78, 1859–1868. [Google Scholar] [CrossRef]
- Campbell, G.S.; Norman, J.M. Radiation basics. In An Introduction to Environmental Biophysics, 2nd ed.; Campbell, G.S., Norman, J.M., Eds.; Springer: New York, NY, USA, 1998; pp. 147–165. [Google Scholar]
- Kimpe, D.; Bernier-Cardou, M.; Jolicoeur, P. Compaction and setting of Quebec soils in relation to their soil-water properties. Can. J. Soil Sci. 1982, 62, 165–175. [Google Scholar] [CrossRef]
- Usowicz, B.; Lipiec, J. The effect of exogenous organic matter on the thermal properties of tilled soils in Poland and the Czech Republic. J. Soils Sediments 2020, 20, 365–379. [Google Scholar] [CrossRef] [Green Version]
- Ekwue, E.I.; Stone, R.J.; Maharaj, V.V.; Bhagwat, D. Thermal conductivity and diffusivity of four Trinidadian soils as affected by peat content. Trans. ASAE 2005, 48, 1803–1815. [Google Scholar] [CrossRef]
East | West | |||||||
---|---|---|---|---|---|---|---|---|
OWB-Legume | Alfalfa-TW | Native | Annual | Native | OWB-Grazed | OWB-Ungrazed | Teff | |
Particle | Particle size distribution (%) | |||||||
Sand | 40 (2.1) † | 37 (3.0) | 39 (4.2) | 39 (3.7) | 52 (9.2) | 46 (7.6) | 48 (4.1) | 51 (6.0) |
Silt | 25 (5.5) | 28 (6.9) | 25 (5.1) | 27 (6.4) | 20 (5.4) | 23 (6.3) | 23 (5.1) | 22 (3.5) |
Clay | 35 (3.8) | 35 (5.3) | 36 (3.8) | 34 (4.4) | 28 (4.2) | 30 (2.8) | 29 (1.0) | 27 (2.5) |
Year | SOM (g kg−1) | |||||||
2016 | 31 a§ | 19 b | 27 ab | 13 c | 15 ab | 18 a | 18 a | 12 b |
2017 | 31 a | 20 b | 30 a | 15 b | 16 | 19 | 17 | 14 |
Trt. × Yr (P value) | 0.0002 | 0.932 | ||||||
Depth, cm | ρb (g cm−3) | |||||||
0–5 | 1.30 b | 1.48 a | 1.40 ab | 1.44 a | 1.48 | 1.45 | 1.38 | 1.44 |
5–10 | 1.50 | 1.43 | 1.46 | 1.54 | 1.52 ab | 1.61 a | 1.46 b | 1.58 a |
10–15 | 1.46 | 1.44 | 1.42 | 1.50 | 1.50 ab | 1.54 a | 1.41 b | 1.55 a |
15–20 | 1.45 | 1.38 | 1.41 | 1.45 | 1.50 | 1.54 | 1.47 | 1.52 |
Year | θg during sampling (%) | |||||||
2016 | 12.2 ab | 9.4 b | 15.1 a | 9.8 b | 7.8 c | 14.3 ab | 16.1 a | 9.7 bc |
2017 | 11.0 a | 7.8 b | 8.2 b | 6.5 b | 8.1 | 11.1 | 13.5 | 7.7 |
Trt. × Yr (P value) | 0.0370 | 0.823 |
Soil Depth | Fitted Parameter § | East | West | ||||||
---|---|---|---|---|---|---|---|---|---|
OWB-Legume | Native | Annual | Alfalfa-TW | Native | Teff | OWB-Ungrazed | OWB-Grazed | ||
0–5 cm | θr | 0.07 | 0.08 | 0.09 | 0.09 | 0.08 | 0.06 | 0.10 | 0.09 |
θs | 0.54 | 0.48 | 0.48 | 0.44 | 0.46 | 0.42 | 0.47 | 0.46 | |
αv | 0.06 | 0.08 | 0.11 | 0.12 | 0.01 | 0.01 | 0.01 | 0.03 | |
n | 2.96 | 1.19 | 1.09 | 1.09 | 2.23 | 1.65 | 1.14 | 1.80 | |
5–10 cm | θr | 0.06 | 0.06 | 0.09 | 0.09 | 0.08 | 0.07 | 0.06 | 0.09 |
θs | 0.52 | 0.46 | 0.46 | 0.44 | 0.44 | 0.39 | 0.42 | 0.40 | |
αv | 0.01 | 0.02 | 0.01 | 0.08 | 0.07 | 0.09 | 0.01 | 0.03 | |
n | 1.26 | 1.13 | 1.14 | 2.21 | 1.08 | 1.16 | 1.17 | 1.14 | |
10–15 cm | θr | 0.06 | 0.08 | 0.06 | 0.08 | 0.09 | 0.08 | 0.08 | 0.10 |
θs | 0.51 | 0.45 | 0.48 | 0.47 | 0.44 | 0.42 | 0.47 | 0.41 | |
αv | 0.03 | 0.01 | 0.01 | 0.04 | 0.05 | 0.01 | 0.01 | 0.06 | |
n | 1.23 | 2.11 | 2.25 | 1.62 | 1.97 | 1.72 | 1.52 | 1.15 | |
15–20 cm | θr | 0.05 | 0.06 | 0.07 | 0.06 | 0.06 | 0.07 | 0.07 | 0.08 |
θs | 0.52 | 0.47 | 0.48 | 0.49 | 0.48 | 0.41 | 0.46 | 0.41 | |
αv | 0.01 | 0.01 | 0.03 | 0.03 | 0.01 | 0.03 | 0.02 | 0.04 | |
n | 1.56 | 1.42 | 1.15 | 1.15 | 2.14 | 2.42 | 1.54 | 1.12 |
Soil Depth | East | West | ||||||
---|---|---|---|---|---|---|---|---|
OWB-Legume | Native | Annual | Alfalfa-TW | Native | Teff | OWB-Ungrazed | OWB-Grazed | |
cm | θv at saturation (cm3 cm−3) | |||||||
0–5 | 0.532 a§ | 0.489 ab | 0.481 bc | 0.441 c | 0.460 ab | 0.422 b | 0.473 a | 0.457 ab |
5–10 | 0.520 a | 0.463 ab | 0.466 ab | 0.436 b | 0.437 | 0.388 | 0.424 | 0.396 |
10–15 | 0.513 | 0.452 | 0.480 | 0.471 | 0.437 | 0.423 | 0.468 | 0.408 |
15–20 | 0.522 | 0.474 | 0.484 | 0.487 | 0.479 a | 0.409 b | 0.458 a | 0.405 b |
Trt. × depth | 0.999 † | 0.814 | ||||||
θv at FC (cm3 cm−3) | ||||||||
0–5 | 0.440 a | 0.412 ab | 0.384 bc | 0.368 c | 0.392 | 0.368 | 0.392 | 0.357 |
5–10 | 0.386 ab | 0.430 a | 0.382 ab | 0.350 b | 0.361 | 0.344 | 0.379 | 0.330 |
10–15 | 0.425 a | 0.377 ab | 0.379 ab | 0.355 b | 0.354 ab | 0.364 ab | 0.395 a | 0.334 b |
15–20 | 0.418 a | 0.372 ab | 0.388 ab | 0.353 b | 0.387 a | 0.355 ab | 0.380 a | 0.341 b |
Trt. × depth | 0.874 | 0.906 | ||||||
θv at PWP (cm3 cm−3) | ||||||||
0–5 | 0.223 | 0.219 | 0.207 | 0.238 | 0.201 b | 0.224 ab | 0.220 ab | 0.256 a |
5–10 | 0.196 b | 0.197 b | 0.214 ab | 0.232 a | 0.204 | 0.207 | 0.227 | 0.243 |
10–15 | 0.216 | 0.215 | 0.207 | 0.230 | 0.185 b | 0.229 ab | 0.242 a | 0.252 a |
15–20 | 0.238 | 0.215 | 0.216 | 0.224 | 0.217 | 0.217 | 0.221 | 0.261 |
Trt. × depth | 0.104 | 0.768 | ||||||
PAW (cm3 cm−3) | ||||||||
0–5 | 0.217 a | 0.193 ab | 0.177 b | 0.130 c | 0.191 a | 0.144 bc | 0.172 ab | 0.101 c |
5–10 | 0.190 b | 0.233 a | 0.168 bc | 0.118 c | 0.157 a | 0.137 ab | 0.152 a | 0.087 b |
10–15 | 0.209 a | 0.162 b | 0.172 ab | 0.125 c | 0.169 a | 0.135 ab | 0.153 a | 0.092 b |
15–20 | 0.180 a | 0.157 ab | 0.172 a | 0.129 b | 0.169 a | 0.138 ab | 0.159 a | 0.080 b |
Trt. × depth | 0.811 | 0.956 |
Soil Depth | East | West | ||||||
---|---|---|---|---|---|---|---|---|
OWB-Legume | Native | Annual | Alfalfa-TW | Native | Teff | OWB-Ungrazed | OWB-Grazed | |
cm | λ (W m−1 K−1) at saturation | |||||||
0–5 | 1.16 b§ | 1.45 a | 1.38 ab | 1.41 a | 1.64 a | 1.57 ab | 1.43 b | 1.45 b |
5–10 | 1.50 | 1.35 | 1.53 | 1.45 | 1.63 b | 1.76 a | 1.68 ab | 1.76 a |
10–15 | 1.50 | 1.41 | 1.52 | 1.41 | 1.64 | 1.74 | 1.73 | 1.71 |
15–20 | 1.31 | 1.43 | 1.43 | 1.38 | 1.50 | 1.73 | 1.69 | 1.67 |
Trt × depth | 0.149 | 0.877 | ||||||
λ (W m−1 K−1) at PWP | ||||||||
0–5 | 0.78 b | 1.06 a | 1.00 ab | 1.02 a | 1.26 | 1.18 | 1.05 | 1.06 |
5–10 | 1.12 | 0.96 | 1.15 | 1.07 | 1.25 | 1.38 | 1.32 | 1.38 |
10–15 | 1.12 | 1.03 | 1.14 | 1.02 | 1.25 | 1.36 | 1.34 | 1.33 |
15–20 | 0.93 | 1.05 | 1.04 | 1.00 | 1.12 | 1.34 | 1.30 | 1.29 |
Trt × depth | 0.150 | 0.875 | ||||||
Dt (mm2 s−1) at saturation | ||||||||
0–5 | 0.42 b | 0.58 a | 0.51 ab | 0.55 a | 0.67 | 0.65 | 0.56 | 0.61 |
5–10 | 0.58 | 0.53 | 0.61 | 0.56 | 0.65 | 0.78 | 0.69 | 0.76 |
10–15 | 0.57 | 0.52 | 0.58 | 0.54 | 0.64 | 0.66 | 0.71 | 0.68 |
15–20 | 0.51 | 0.55 | 0.55 | 0.53 | 0.61 | 0.69 | 0.70 | 0.69 |
Trt × depth | 0.039 | 0.734 | ||||||
Dt (mm2 s−1) at PWP | ||||||||
0–5 | 0.42 b | 0.65 a | 0.55 ab | 0.47 b | 0.70 a | 0.57 ab | 0.48 b | 0.62 ab |
5–10 | 0.62 a | 0.59 ab | 0.62 a | 0.52 b | 0.69 | 0.67 | 0.71 | 0.69 |
10–15 | 0.57 | 0.52 | 0.56 | 0.56 | 0.65 | 0.60 | 0.71 | 0.66 |
15–20 | 0.54 | 0.55 | 0.57 | 0.52 | 0.66 | 0.58 | 0.70 | 0.65 |
Trt × depth | 0.052 | 0.401 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharel, G.; Dhakal, M.; Deb, S.K.; Slaughter, L.C.; Simpson, C.; West, C.P. Effect of Long-Term Semiarid Pasture Management on Soil Hydraulic and Thermal Properties. Plants 2023, 12, 1491. https://doi.org/10.3390/plants12071491
Kharel G, Dhakal M, Deb SK, Slaughter LC, Simpson C, West CP. Effect of Long-Term Semiarid Pasture Management on Soil Hydraulic and Thermal Properties. Plants. 2023; 12(7):1491. https://doi.org/10.3390/plants12071491
Chicago/Turabian StyleKharel, Geeta, Madhav Dhakal, Sanjit K. Deb, Lindsey C. Slaughter, Catherine Simpson, and Charles P. West. 2023. "Effect of Long-Term Semiarid Pasture Management on Soil Hydraulic and Thermal Properties" Plants 12, no. 7: 1491. https://doi.org/10.3390/plants12071491