Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

19 pages, 3801 KiB  
Article
Isolation of the Novel Strain Bacillus amyloliquefaciens F9 and Identification of Lipopeptide Extract Components Responsible for Activity against Xanthomonas citri subsp. citri
by Xin Wang, Liqiong Liang, Hang Shao, Xiaoxin Ye, Xiaobei Yang, Xiaoyun Chen, Yu Shi, Lianhui Zhang, Linghui Xu and Junxia Wang
Plants 2022, 11(3), 457; https://doi.org/10.3390/plants11030457 - 7 Feb 2022
Cited by 23 | Viewed by 4929
Abstract
Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is a quarantine disease that seriously affects citrus production worldwide. The use of microorganisms and their products for biological control has been proven to be effective in controlling Xanthomonas disease. In this [...] Read more.
Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is a quarantine disease that seriously affects citrus production worldwide. The use of microorganisms and their products for biological control has been proven to be effective in controlling Xanthomonas disease. In this study, a novel Xcc antagonistic strain was isolated and identified as Bacillus amyloliquefaciens F9 by morphological and molecular analysis. The lipopeptide extract of B. amyloliquefaciens F9 (F9LE) effectively inhibited the growth of Xcc in an agar diffusion assay and restrained the occurrence of canker lesions in a pathogenicity test under greenhouse conditions. Consistent with these findings, F9LE treatment significantly inhibited the production of extracellular enzymes in Xcc cells and induced cell wall damage, with leakage of bacterial contents revealed by scanning electron microscopy and transmission electron microscopy analyses. In addition, F9LE also showed strong antagonistic activity against a wide spectrum of plant pathogenic bacteria and fungi. Furthermore, using electrospray ionization mass spectrometry analysis, the main antimicrobial compounds of strain F9 were identified as three kinds of lipopeptides, including homologues of surfactin, fengycin, and iturin. Taken together, our results show that B. amyloliquefaciens F9 and its lipopeptide components have the potential to be used as biocontrol agents against Xcc, and other plant pathogenic bacteria and fungi. Full article
Show Figures

Figure 1

22 pages, 18232 KiB  
Article
The Photosynthetic Efficiency and Carbohydrates Responses of Six Edamame (Glycine max. L. Merrill) Cultivars under Drought Stress
by Jeremiah M. Hlahla, Mpho S. Mafa, Rouxléne van der Merwe, Orbett Alexander, Mart-Mari Duvenhage, Gabre Kemp and Makoena J. Moloi
Plants 2022, 11(3), 394; https://doi.org/10.3390/plants11030394 - 31 Jan 2022
Cited by 30 | Viewed by 5564
Abstract
Vegetable-type soybean, also known as edamame, was recently introduced to South Africa. However, there is lack of information on its responses to drought. The aim of this study was to investigate the photosynthetic efficiency and carbohydrates responses of six edamame cultivars under drought [...] Read more.
Vegetable-type soybean, also known as edamame, was recently introduced to South Africa. However, there is lack of information on its responses to drought. The aim of this study was to investigate the photosynthetic efficiency and carbohydrates responses of six edamame cultivars under drought stress. Photosynthetic efficiency parameters, including chlorophyll fluorescence and stomatal conductance, were determined using non-invasive methods, while pigments were quantified spectrophotometrically. Non-structural carbohydrates were quantified using Megazyme kits. Structural carbohydrates were determined using Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Drought stress significantly increased the Fv/Fm and PIabs of AGS429 and UVE17 at pod filling stage. Chlorophyll-a, which was most sensitive to drought, was significantly reduced in AGS429 and UVE17, but chlorophyll-b was relatively stable in all cultivars, except UVE17, which showed a significant decline at flowering stage. AGS354 and AGS429 also showed reduced chlorophyll-b at pod filling. UVE17 showed a significant reduction in carotenoid content and a substantial reduction in stomatal conductance during pod filling. Drought stress during pod filling resulted in a significant increase in the contents of trehalose, sucrose and starch, but glucose was decreased. Chlorophyll-a positively correlated with starch. The FTIR and XRD results suggest that the cell wall of UVE14, followed by UVE8 and AGS429, was the most intact during drought stress. It was concluded that carotenoids, stomatal conductance, starch and hemicellulose could be used as physiological/biochemical indicators of drought tolerance in edamame. This information expands our knowledge of the drought defense responses in edamame, and it is essential for the physiological and biochemical screening of drought tolerance. Full article
(This article belongs to the Special Issue Responses of Plants to Environmental Stresses Volume II)
Show Figures

Figure 1

18 pages, 3288 KiB  
Article
QTL Identification for Stem Fiber, Strength and Rot Resistance in a DH Population from an Alien Introgression of Brassica napus
by Yujiao Shao, Yusen Shen, Feifei He and Zaiyun Li
Plants 2022, 11(3), 373; https://doi.org/10.3390/plants11030373 - 29 Jan 2022
Cited by 17 | Viewed by 2899
Abstract
Stem fiber, stem strength and stem-rot resistance are important agronomic traits in Brassica napus. To understand the molecular mechanism that controls the stem-related traits, we investigated the stem lignin (ADL), cellulose (Cel), hemicellulose (Hem) content, S/G monolignol ratio (SG), stem breaking force [...] Read more.
Stem fiber, stem strength and stem-rot resistance are important agronomic traits in Brassica napus. To understand the molecular mechanism that controls the stem-related traits, we investigated the stem lignin (ADL), cellulose (Cel), hemicellulose (Hem) content, S/G monolignol ratio (SG), stem breaking force (BF), breaking strength (F) and Sclerotinia sclerotiorum resistance (SSR). Each trait was significantly positively or negatively correlated with more than three of the other six traits. QTL mapping for ADL, Cel, Hem, SG, BF, F and SSR were performed using a doubled haploid population derived from an intertribal B. napus introgression line ‘Y689′ crossed with B. napus cv. ‘Westar’. A total of 67 additive QTL were identified and integrated into 55 consensus QTL by meta-analysis. Among the 55 consensus QTL, 23 (41.8%) QTL were co-located and were integrated into 11 unique QTL. The QTL by environment (Q × E) interactions were analyzed and 22 combined QTL were identified. In addition, candidate genes within the QTL intervals were proposed based on the known function of Arabidopsis orthologs. These results provided valuable information for improving lodging resistance, S. sclerotiorum resistance and mechanized harvesting of B. napus. Full article
(This article belongs to the Collection Exploration and Application of Useful Agricultural Genes)
Show Figures

Figure 1

13 pages, 1971 KiB  
Article
SNORKEL Genes Relating to Flood Tolerance Were Pseudogenized in Normal Cultivated Rice
by Keisuke Nagai, Yusuke Kurokawa, Yoshinao Mori, Anzu Minami, Stefan Reuscher, Jianzhong Wu, Takashi Matsumoto and Motoyuki Ashikari
Plants 2022, 11(3), 376; https://doi.org/10.3390/plants11030376 - 29 Jan 2022
Cited by 18 | Viewed by 4748
Abstract
SNORKEL1 (SK1) and SNORKEL2 (SK2) are ethylene responsive factors that regulate the internode elongation of deepwater rice in response to submergence. We previously reported that normal cultivated rice lacks SK genes because the Chromosome 12 region containing SK genes [...] Read more.
SNORKEL1 (SK1) and SNORKEL2 (SK2) are ethylene responsive factors that regulate the internode elongation of deepwater rice in response to submergence. We previously reported that normal cultivated rice lacks SK genes because the Chromosome 12 region containing SK genes was deleted from its genome. However, no study has analyzed how the genome defect occurred in that region by comparing normal cultivated rice and deepwater rice. In this study, comparison of the sequence of the end of Chromosome 12, which contains SK genes, between normal and deepwater rice showed that complicated genome changes such as insertions, deletions, inversions, substitutions, and translocation occurred frequently in this region. In addition to SK1 and SK2 of deepwater rice, gene prediction analysis identified four genes containing AP2/ERF domains in normal cultivated rice and six in deepwater rice; we called these genes SK-LIKE (SKL) genes. SKs and SKLs were present in close proximity to each other, and the SKLs in normal cultivated rice were in tandem. These predicted genes belong to the same AP2/ERF subfamily and were separated into four types: SK1, SK2, SKL3, and SKL4. Sequence comparison indicated that normal cultivated rice possesses a gene with high homology to SK2, which we named SKL1. However, none of the predicted SKLs except for SKL3s were expressed during submergence. Although SKL3s were expressed in both normal and deepwater rice, normal rice does not undergo internode elongation, suggesting that its expression does not contribute to internode elongation. Plants overexpressing SKL1, which showed the most homology to SK2, underwent internode elongation similar to plants overexpressing SK1 and SK2 under normal growth conditions. A yeast one-hybrid assay showed that the C-end of SKL1 has transcription activity, as do the C-ends of SK1 and SK2. Our results suggested that SKLs were derived via gene duplication, but were not expressed and pseudogenized in normal cultivated rice during sequence evolution. Full article
(This article belongs to the Special Issue Molecular and Physiological Basis of Abiotic Stress Tolerance)
Show Figures

Figure 1

20 pages, 36605 KiB  
Article
Chemical Composition, Antioxidant, In Vitro and In Situ Antimicrobial, Antibiofilm, and Anti-Insect Activity of Cedar atlantica Essential Oil
by Miroslava Kačániová, Lucia Galovičová, Veronika Valková, Hana Ďuranová, Jana Štefániková, Natália Čmiková, Milena Vukic, Nenad L. Vukovic and Przemysław Łukasz Kowalczewski
Plants 2022, 11(3), 358; https://doi.org/10.3390/plants11030358 - 28 Jan 2022
Cited by 19 | Viewed by 5402
Abstract
The present study was designed to evaluate commercial cedar essential oil (CEO), obtained by hydrodistillation from cedar wood, in relationship to its chemical composition and antioxidant, in vitro and in situ antimicrobial, antibiofilm, and anti-insect activity. For these purposes, gas chromatography–mass spectrometry, DPPH [...] Read more.
The present study was designed to evaluate commercial cedar essential oil (CEO), obtained by hydrodistillation from cedar wood, in relationship to its chemical composition and antioxidant, in vitro and in situ antimicrobial, antibiofilm, and anti-insect activity. For these purposes, gas chromatography–mass spectrometry, DPPH radical-scavenging assay, agar and disc diffusion, and vapor phase methods were used. The results from the volatile profile determination showed that δ-cadinene (36.3%), (Z)-β-farnesene (13.8%), viridiflorol (7.3%), and himachala-2,4-diene (5.4%) were the major components of the EO chemical constitution. Based on the obtained results, a strong antioxidant effect (81.1%) of the CEO was found. CEO is characterized by diversified antimicrobial activity, and the zones of inhibition ranged from 7.33 to 21.36 mm in gram-positive and gram-negative bacteria, and from 5.44 to 13.67 mm in yeasts and fungi. The lowest values of minimal inhibition concentration (MIC) were noted against gram-positive Micrococcus luteus (7.46 µL/mL) and against yeast Candida krusei (9.46 µL/mL). It seems that the vapor phase of CEO can inhibit the growth of the microscopic filamentous fungi of the genus Penicillium according to in situ antifungal analysis on bread, carrots, and celery. This finding confirms the impact of CEO on the change in the protein structure of older biofilms of Pseudomonas fluorescens and Salmonella enterica subsp. enterica. Insecticidal activity of a vapor phase has also been demonstrated against Pyrrhocoris apterus. CEO showed various advantages on antimicrobial activity, and it is an ideal substitute for food safety. Full article
Show Figures

Figure 1

17 pages, 2361 KiB  
Article
Esmeralda Peach (Prunus persica) Fruit Yield and Quality Response to Nitrogen Fertilization
by Gilberto Nava, Carlos Reisser Júnior, Léon-Étienne Parent, Gustavo Brunetto, Jean Michel Moura-Bueno, Renan Navroski, Jorge Atílio Benati and Caroline Farias Barreto
Plants 2022, 11(3), 352; https://doi.org/10.3390/plants11030352 - 27 Jan 2022
Cited by 13 | Viewed by 4250
Abstract
‘Esmeralda’ is an orange fleshed peach cultivar primarily used for juice extraction and secondarily used for the fresh fruit market. Fruit yield and quality depend on several local environmental and managerial factors, mainly on nitrogen, which must be balanced with other nutrients. Similar [...] Read more.
‘Esmeralda’ is an orange fleshed peach cultivar primarily used for juice extraction and secondarily used for the fresh fruit market. Fruit yield and quality depend on several local environmental and managerial factors, mainly on nitrogen, which must be balanced with other nutrients. Similar to other perennial crops, peach trees show carryover effects of carbohydrates and nutrients and of nutrients stored in their tissues. The aims of the present study are (i) to identify the major sources of seasonal variability in fruit yield and qu Fruit Tree Department of Federal University of Pelotas (UFPEL), Pelotas 96010610ality; and (ii) to establish the N dose and the internal nutrient balance to reach high fruit yield and quality. The experiment was conducted from 2014 to 2017 in Southern Brazil and it followed five N treatments (0, 40, 80, 120 and 160 kg N ha−1 year−1). Foliar compositions were centered log-ratio (clr) transformed in order to account for multiple nutrient interactions and allow computing distances between compositions. Based on the feature ranking, chilling hours, degree-days and rainfall were the most influential features. Machine learning models k-nearest neighbors (KNN) and stochastic gradient decent (SGD) performed well on yield and quality indices, and reached accuracy from 0.75 to 1.00. In 2014, fruit production did not respond to added N, and it indicated the carryover effects of previously stored carbohydrates and nutrients. The plant had a quadratic response (p < 0.05) to N addition in 2015 and 2016, which reached maximum yield of 80 kg N ha−1. In 2017, harvest was a failure due to the chilling hours (198 h) and the relatively small number of fruits per tree. Fruit yield and antioxidant content increased abruptly when foliar clrCu was >−5.410. The higher foliar P linearly decreased total titratable acidity and increased pulp firmness when clrP > 0.556. Foliar N concentration range was narrow at high fruit yield and quality. The present results have emphasized the need of accounting for carryover effects, nutrient interactions and local factors in order to predict peach yield and nutrient dosage. Full article
Show Figures

Figure 1

19 pages, 2938 KiB  
Article
Branch Numbers and Crop Load Combination Effects on Production and Fruit Quality of Flat Peach Cultivars (Prunus persica (L.) Batsch) Trained as Catalonian Vase
by Luca Mazzoni, Irene Medori, Francesca Balducci, Micol Marcellini, Paolo Acciarri, Bruno Mezzetti and Franco Capocasa
Plants 2022, 11(3), 308; https://doi.org/10.3390/plants11030308 - 24 Jan 2022
Cited by 11 | Viewed by 3487
Abstract
Thinning and pruning are expensive cultural practices in peach cultivation, but essential to obtain adequate production. This study evaluated the effects of combining two pruning (four and six scaffold branches) and three thinning (low, medium, and high crop load) levels on yield and [...] Read more.
Thinning and pruning are expensive cultural practices in peach cultivation, but essential to obtain adequate production. This study evaluated the effects of combining two pruning (four and six scaffold branches) and three thinning (low, medium, and high crop load) levels on yield and fruit quality of four different flat peach cultivars, trained as Catalonian vase in 2017–2018 in Italy. Productive (average fruit weight, plant total production, and fruit circumference), qualitative (fruit firmness and overcolor, Soluble Solids Content, and Titratable Acidity), and nutritional (Total Antioxidant Capacity, and Total Phenol Content) parameters were evaluated. For productive parameters, a high crop load level led to a decrease in fruit weight and circumference, while a high crop load resulted in higher plant yield. Regarding the qualitative parameters, fruit SSC significantly increased with the diminution of the crop load level in both years of study, while TA was not influenced by crop load and number of branches. Both the total antioxidant capacity and the polyphenol content decreased with an increase in branches number. The findings derived from this study will help growers to select the most suitable combination among genotypes and plant management, to obtain the desired productive or qualitative goals. Full article
(This article belongs to the Special Issue Fruit Quality and Ripening in Prunus)
Show Figures

Figure 1

20 pages, 3592 KiB  
Article
Deciphering Molecular Mechanisms Involved in Salinity Tolerance in Guar (Cyamopsis tetragonoloba (L.) Taub.) Using Transcriptome Analyses
by Biswa R. Acharya, Devinder Sandhu, Christian Dueñas, Jorge F. S. Ferreira and Kulbhushan K. Grover
Plants 2022, 11(3), 291; https://doi.org/10.3390/plants11030291 - 22 Jan 2022
Cited by 16 | Viewed by 4302
Abstract
Guar is a commercially important legume crop known for guar gum. Guar is tolerant to various abiotic stresses, but the mechanisms involved in its salinity tolerance are not well established. This study aimed to understand molecular mechanisms of salinity tolerance in guar. RNA [...] Read more.
Guar is a commercially important legume crop known for guar gum. Guar is tolerant to various abiotic stresses, but the mechanisms involved in its salinity tolerance are not well established. This study aimed to understand molecular mechanisms of salinity tolerance in guar. RNA sequencing (RNA-Seq) was employed to study the leaf and root transcriptomes of salt-tolerant (Matador) and salt-sensitive (PI 340261) guar genotypes under control and salinity. Our analyses identified a total of 296,114 unigenes assembled from 527 million clean reads. Transcriptome analysis revealed that the gene expression differences were more pronounced between salinity treatments than between genotypes. Differentially expressed genes associated with stress-signaling pathways, transporters, chromatin remodeling, microRNA biogenesis, and translational machinery play critical roles in guar salinity tolerance. Genes associated with several transporter families that were differentially expressed during salinity included ABC, MFS, GPH, and P-ATPase. Furthermore, genes encoding transcription factors/regulators belonging to several families, including SNF2, C2H2, bHLH, C3H, and MYB were differentially expressed in response to salinity. This study revealed the importance of various biological pathways during salinity stress and identified several candidate genes that may be used to develop salt-tolerant guar genotypes that might be suitable for cultivation in marginal soils with moderate to high salinity or using degraded water. Full article
(This article belongs to the Special Issue 10th Anniversary of Plants—Recent Advances and Perspectives)
Show Figures

Figure 1

29 pages, 4379 KiB  
Article
Early Citizen Science Action in Ethnobotany: The Case of the Folk Medicine Collection of Dr. Mihkel Ostrov in the Territory of Present-Day Estonia, 1891–1893
by Raivo Kalle, Andrea Pieroni, Ingvar Svanberg and Renata Sõukand
Plants 2022, 11(3), 274; https://doi.org/10.3390/plants11030274 - 20 Jan 2022
Cited by 15 | Viewed by 4443
Abstract
Presently, collecting data through citizen science (CS) is increasingly being used in botanical, zoological and other studies. However, until now, ethnobotanical studies have underused CS data collection methods. This study analyses the results of the appeal organized by the physician Dr. Mihkel Ostrov [...] Read more.
Presently, collecting data through citizen science (CS) is increasingly being used in botanical, zoological and other studies. However, until now, ethnobotanical studies have underused CS data collection methods. This study analyses the results of the appeal organized by the physician Dr. Mihkel Ostrov (1863–1940), which can be considered the first-ever internationally known systematic example of ethnopharmacological data collection involving citizens. We aim to understand what factors enhanced or diminished the success of the collaboration between Ostrov and the citizens of that time. The reliability of Ostrov’s collection was enhanced by the herbarium specimens (now missing) used in the identification of vernacular names. The collection describes the use of 65 species from 27 genera. The timing of its collection coincided with not only a national awakening and recently obtained high level of literacy but also the activation of civil society, people’s awareness of the need to collect folklore, the voluntary willingness of newspapers to provide publishing space and later to collect data, and the use of a survey method focusing on a narrow topic. While Ostrov’s only means of communication with the public was through newspapers, today, with electronic options, social media can also be used. Full article
(This article belongs to the Special Issue Historical Ethnobotany: Interpreting the Old Records)
Show Figures

Figure 1

27 pages, 1329 KiB  
Article
Genome Editing in Crop Plant Research—Alignment of Expectations and Current Developments
by Meike Hüdig, Natalie Laibach and Anke-Christiane Hein
Plants 2022, 11(2), 212; https://doi.org/10.3390/plants11020212 - 14 Jan 2022
Cited by 8 | Viewed by 6285
Abstract
The rapid development of genome editing and other new genomic techniques (NGT) has evoked manifold expectations on purposes of the application of these techniques to crop plants. In this study, we identify and align these expectations with current scientific development. We apply a [...] Read more.
The rapid development of genome editing and other new genomic techniques (NGT) has evoked manifold expectations on purposes of the application of these techniques to crop plants. In this study, we identify and align these expectations with current scientific development. We apply a semi-quantitative text analysis approach on political, economic, and scientific opinion papers to disentangle and extract expectations towards the application of NGT-based plants. Using the sustainable development goals (SDG) of the 2030 agenda as categories, we identify contributions to food security or adaptation to climatic changes as the most frequently mentioned expectations, accompanied by the notion of sustainable agriculture and food systems. We then link SDG with relevant plant traits and review existing research and commercial field trials for genome-edited crop plants. For a detailed analysis we pick as representative traits drought tolerance and resistance against fungal pathogens. Diverse genetic setscrews for both traits have been identified, modified, and tested under laboratory conditions, although there are only a few in the field. All in all, NGT-plants that can withstand more than one stressor or different environments are not documented in advanced development states. We further conclude that developing new plants with modified traits will not be sufficient to reach food security or adaption to climatic changes in a short time frame. Further scientific development of sustainable agricultural systems will need to play an important role to tackle SDG challenges, as well. Full article
Show Figures

Figure 1

14 pages, 3149 KiB  
Article
Metabolic and Physiological Regulation of Aspartic Acid-Mediated Enhancement of Heat Stress Tolerance in Perennial Ryegrass
by Shuhan Lei, Stephanie Rossi and Bingru Huang
Plants 2022, 11(2), 199; https://doi.org/10.3390/plants11020199 - 13 Jan 2022
Cited by 52 | Viewed by 6800
Abstract
Aspartate is the most critical amino acid in the aspartate metabolic pathway, which is associated with multiple metabolic pathways, such as protein synthesis, nucleotide metabolism, TCA cycle, glycolysis, and hormone biosynthesis. Aspartate also plays an important role in plant resistance to abiotic stress, [...] Read more.
Aspartate is the most critical amino acid in the aspartate metabolic pathway, which is associated with multiple metabolic pathways, such as protein synthesis, nucleotide metabolism, TCA cycle, glycolysis, and hormone biosynthesis. Aspartate also plays an important role in plant resistance to abiotic stress, such as cold stress, drought stress, salt stress or heavy metal stress. This study found that the chlorophyll content and antioxidant active enzyme content (SOD, CAT, POD and APX) of perennial ryegrass treated with 2 mM aspartate were significantly higher than those treated with water under heat stress. The electrolyte leakage rate, MDA content and peroxide levels (O2− and H2O2) of perennial ryegrass treated with aspartate were significantly lower than those of perennial ryegrass treated with water, indicating that exogenous aspartate increases the content of chlorophyll, maintain the integrity of cell membrane system, and enhances SOD-CAT antioxidant pathway to eliminate the oxidative damage caused by ROS in perennial ryegrass under heat stress. Furthermore, exogenous aspartate could enhance the TCA cycle, the metabolism of the amino acids related to the TCA cycle, and pyrimidine metabolism to enhance the heat tolerance of perennial ryegrass. Full article
Show Figures

Figure 1

31 pages, 4986 KiB  
Article
DNA Methylation Changes and Its Associated Genes in Mulberry (Morus alba L.) Yu-711 Response to Drought Stress Using MethylRAD Sequencing
by Michael Ackah, Liangliang Guo, Shaocong Li, Xin Jin, Charles Asakiya, Evans Tawiah Aboagye, Feng Yuan, Mengmeng Wu, Lionnelle Gyllye Essoh, Daniel Adjibolosoo, Thomas Attaribo, Qiaonan Zhang, Changyu Qiu, Qiang Lin and Weiguo Zhao
Plants 2022, 11(2), 190; https://doi.org/10.3390/plants11020190 - 12 Jan 2022
Cited by 24 | Viewed by 4116
Abstract
Drought stress remains one of the most detrimental environmental cues affecting plant growth and survival. In this work, the DNA methylome changes in mulberry leaves under drought stress (EG) and control (CK) and their impact on gene regulation were investigated by MethylRAD sequencing. [...] Read more.
Drought stress remains one of the most detrimental environmental cues affecting plant growth and survival. In this work, the DNA methylome changes in mulberry leaves under drought stress (EG) and control (CK) and their impact on gene regulation were investigated by MethylRAD sequencing. The results show 138,464 (37.37%) and 56,241 (28.81%) methylation at the CG and CWG sites (W = A or T), respectively, in the mulberry genome between drought stress and control. The distribution of the methylome was prevalent in the intergenic, exonic, intronic and downstream regions of the mulberry plant genome. In addition, we discovered 170 DMGs (129 in CG sites and 41 in CWG sites) and 581 DMS (413 in CG sites and 168 in CWG sites). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicates that phenylpropanoid biosynthesis, spliceosome, amino acid biosynthesis, carbon metabolism, RNA transport, plant hormone, signal transduction pathways, and quorum sensing play a crucial role in mulberry response to drought stress. Furthermore, the qRT-PCR analysis indicates that the selected 23 genes enriched in the KEGG pathways are differentially expressed, and 86.96% of the genes share downregulated methylation and 13.04% share upregulation methylation status, indicating the complex link between DNA methylation and gene regulation. This study serves as fundamentals in discovering the epigenomic status and the pathways that will significantly enhance mulberry breeding for adaptation to a wide range of environments. Full article
(This article belongs to the Special Issue Chromatin Integration and Dynamics of Environmental Cues)
Show Figures

Graphical abstract

12 pages, 12585 KiB  
Article
Effects of Elevated Temperature on Root System Development of Two Lupine Species
by Virgilija Gavelienė, Sigita Jurkonienė, Elžbieta Jankovska-Bortkevič and Danguolė Švegždienė
Plants 2022, 11(2), 192; https://doi.org/10.3390/plants11020192 - 12 Jan 2022
Cited by 17 | Viewed by 3028
Abstract
The aim of this study was to assess the effect of elevated temperature on the growth, morphology and spatial orientation of lupine roots at the initial stages of development and on the formation of lupine root architecture at later stages. Two lupine species [...] Read more.
The aim of this study was to assess the effect of elevated temperature on the growth, morphology and spatial orientation of lupine roots at the initial stages of development and on the formation of lupine root architecture at later stages. Two lupine species were studied—the invasive Lupinus polyphyllus Lindl. and the non-invasive L. luteus L. The plants were grown in climate chambers under 25 °C and simulated warming at 30 °C conditions. The angle of root curvature towards the vector of gravity was measured at the 48th hour of growth, and during a 4-h period after 90° reorientation. Root biometrical, histological measurements were carried out on 7-day-old and 30-day-old plants. The elevation of 5 °C affected root formation of the two lupine species differently. The initial roots of L. polyphyllus were characterized by worse spatial orientation, reduced growth and reduced mitotic index of root apical meristem at 30 °C compared with 25 °C. The length of primary roots of 30-day-old lupines and the number of lateral roots decreased by 14% and 16%, respectively. More intense root development and formation were observed in non-invasive L. luteus at 30 °C. Our results provide important information on the effect of elevated temperature on the formation of root architecture in two lupine species and suggest that global warming may impact the invasiveness of these species. Full article
(This article belongs to the Special Issue Crop Adaptation to Elevated CO2 and Temperature)
Show Figures

Figure 1

16 pages, 779 KiB  
Article
Apple Fruit Growth and Quality Depend on the Position in Tree Canopy
by Darius Kviklys, Jonas Viškelis, Mindaugas Liaudanskas, Valdimaras Janulis, Kristina Laužikė, Giedrė Samuolienė, Nobertas Uselis and Juozas Lanauskas
Plants 2022, 11(2), 196; https://doi.org/10.3390/plants11020196 - 12 Jan 2022
Cited by 40 | Viewed by 6354
Abstract
Modern apple orchard systems should guarantee homogeneity of fruit internal and external qualities and fruit maturity parameters. However, when orchards reach productive age, a variation of these parameters takes place and mostly it is related to uneven light distribution within the tree canopy. [...] Read more.
Modern apple orchard systems should guarantee homogeneity of fruit internal and external qualities and fruit maturity parameters. However, when orchards reach productive age, a variation of these parameters takes place and mostly it is related to uneven light distribution within the tree canopy. The aim of the study was to evaluate the canopy position’s effect on fruit internal and external quality parameters. This is the first study where all the main fruit quality and maturation parameters were evaluated on the same trees and were related to the light conditions and photosynthetic parameters. Four fruit positions were tested: top of the apple tree, lower inside part of the canopy, and east and west sides of the apple tree. Fruit quality variability was significant for fruit size, blush, colour indices, total sugar content, dry matter concentration, accumulation of secondary metabolites and radical scavenging activity. Fruit position in the canopy did not affect flesh firmness and fruit maturity parameters such as the starch index, Streif index and respiration rate. At the Lithuanian geographical location (55°60′ N), significantly, the highest fruit quality was achieved at the top of the apple tree. The tendency was established that apple fruits from the west side of the canopy have better fruit quality than from the east side and it could be related to better light conditions at the west side of the tree. Inside the canopy, fruits were distinguished only by the higher accumulation of triterpenic compounds and higher content of malic acid. Light is a main factor of fruit quality variation, thus all orchard management practices, including narrow two-dimensional tree canopies and reflecting ground covers which improve light penetration through the tree canopy, should be applied. Full article
(This article belongs to the Special Issue Selected Papers from Conference of CYSENI 2021)
Show Figures

Figure 1

15 pages, 1905 KiB  
Article
Trichoderma-Induced Resistance to Botrytis cinerea in Solanum Species: A Meta-Analysis
by Samuele Risoli, Lorenzo Cotrozzi, Sabrina Sarrocco, Maria Nuzzaci, Elisa Pellegrini and Antonella Vitti
Plants 2022, 11(2), 180; https://doi.org/10.3390/plants11020180 - 11 Jan 2022
Cited by 30 | Viewed by 3986
Abstract
With the idea of summarizing the outcomes of studies focusing on the resistance induced by Trichoderma spp. against Botrytis cinerea in tomato, the present paper shows, for the first time, results of a meta-analysis performed on studies published from 2010 to 2021 concerning [...] Read more.
With the idea of summarizing the outcomes of studies focusing on the resistance induced by Trichoderma spp. against Botrytis cinerea in tomato, the present paper shows, for the first time, results of a meta-analysis performed on studies published from 2010 to 2021 concerning the cross-talk occurring in the tomato–Trichoderma-B. cinerea system. Starting from an initial set of 40 papers, the analysis was performed on 15 works and included nine parameters, as a result of a stringent selection mainly based on the availability of more than one article including the same indicator. The resulting work not only emphasizes the beneficial effects of Trichoderma in the control of grey mold in tomato leaves (reduction in disease intensity, severity and incidence and modulation of resistance genes in the host), but carefully drives the readers to reply to two questions: (i) What are the overall effects of Trichoderma on B. cinerea infection in tomato? (ii) Do the main effects of Trichoderma differ based on the tomato species, Trichoderma species, amount, type and duration of treatment? At the same time, this meta-analysis highlights some weak points of the available literature and should be seen as an invitation to improve future works to better the conceptualization and measure. Full article
(This article belongs to the Special Issue Biological Control of Plant Diseases)
Show Figures

Figure 1

55 pages, 19977 KiB  
Article
Ethnomedicinal and Ethnobotanical Survey in the Aosta Valley Side of the Gran Paradiso National Park (Western Alps, Italy)
by Cristina Danna, Laura Poggio, Antonella Smeriglio, Mauro Mariotti and Laura Cornara
Plants 2022, 11(2), 170; https://doi.org/10.3390/plants11020170 - 9 Jan 2022
Cited by 21 | Viewed by 4950
Abstract
Most of traditional knowledge about plants and their uses is fast disappearing because of socio-economic and land use changes. This trend is also occurring in bio-cultural refugia, such as mountain areas. New data on Traditional Ethnobotanical Knowledge (TEK) of Italian alpine regions were [...] Read more.
Most of traditional knowledge about plants and their uses is fast disappearing because of socio-economic and land use changes. This trend is also occurring in bio-cultural refugia, such as mountain areas. New data on Traditional Ethnobotanical Knowledge (TEK) of Italian alpine regions were collected relating to three valleys (Cogne, Valsavarenche, Rhêmes) of the Gran Paradiso National Park. Extensive dialogues and semi-structured interviews with 68 native informants (30 men, 38 women; mean age 70) were carried out between 2017 and 2019. A total of 3918 reports were collected, concerning 217 taxa (including 10 mushrooms, 1 lichen) mainly used for medicinal (42%) and food (33%) purposes. Minor uses were related to liquor making (7%), domestic (7%), veterinary (5%), forage (4%), cosmetic (1%) and other (2%). Medicinal plants were used to treat 14 ailment categories, of which the most important were respiratory (22%), digestive (19%), skin (13%), musculoskeletal (10%) and genitourinary (10%) diseases. Data were also evaluated by quantitative ethnobotanical indexes. The results show a rich and alive traditional knowledge concerning plants uses in the Gran Paradiso National Park. Plants resources may provide new opportunities from the scientific point of view, for the valorization of local products for health community and for sustainable land management. Full article
(This article belongs to the Collection Bioactive Compounds in Plants)
Show Figures

Graphical abstract

16 pages, 2339 KiB  
Article
HS-SPME-GC–MS Volatile Profile Characterization of Peach (Prunus persica L. Batsch) Varieties Grown in the Eastern Balkan Peninsula
by Dasha Mihaylova, Aneta Popova, Radka Vrancheva and Ivayla Dincheva
Plants 2022, 11(2), 166; https://doi.org/10.3390/plants11020166 - 8 Jan 2022
Cited by 23 | Viewed by 3708
Abstract
The volatile compounds of eight peach varieties (Prunus persica L.)—“Filina”, “Gergana”, “Ufo-4”, “July lady”, “Laskava”, “Flat Queen”, “Evmolpiya”, and “Morsiani 90”—growing in Bulgaria were analyzed for the first time. Gas chromatography–mass spectrometry (GC–MS) analysis and the HS-SPME technique revealed the presence of [...] Read more.
The volatile compounds of eight peach varieties (Prunus persica L.)—“Filina”, “Gergana”, “Ufo-4”, “July lady”, “Laskava”, “Flat Queen”, “Evmolpiya”, and “Morsiani 90”—growing in Bulgaria were analyzed for the first time. Gas chromatography–mass spectrometry (GC–MS) analysis and the HS-SPME technique revealed the presence of 65 volatile compounds; the main identified components were aldehydes, esters, and fatty acids. According to the provided principal component analysis (PCA) and hierarchical cluster analysis (HCA), the relative quantities of the identified volatile compounds depended on the studied peach variety. The results obtained could be successfully applied for the metabolic chemotaxonomy of peaches. Full article
Show Figures

Figure 1

19 pages, 3136 KiB  
Article
Down-Regulation of Cytokinin Receptor Gene SlHK2 Improves Plant Tolerance to Drought, Heat, and Combined Stresses in Tomato
by Naveed Mushtaq, Yong Wang, Junmiao Fan, Yi Li and Jing Ding
Plants 2022, 11(2), 154; https://doi.org/10.3390/plants11020154 - 7 Jan 2022
Cited by 31 | Viewed by 3790
Abstract
Environmental stresses negatively affect the growth and development of plants. Several previous studies have elucidated the response mechanisms of plants to drought and heat applied separately; however, these two abiotic stresses often coincide in environmental conditions. The global climate change pattern has projected [...] Read more.
Environmental stresses negatively affect the growth and development of plants. Several previous studies have elucidated the response mechanisms of plants to drought and heat applied separately; however, these two abiotic stresses often coincide in environmental conditions. The global climate change pattern has projected that combined drought and heat stresses will tend to increase in the near future. In this study, we down-regulated the expression of a cytokinin receptor gene SlHK2 using RNAi and investigated the role of this gene in regulating plant responses to individual drought, heat, and combined stresses (drought + heat) in tomato. Compared to the wild-type (WT), SlHK2 RNAi plants exhibited fewer stress symptoms in response to individual and combined stress treatments. The enhanced abiotic stress tolerance of SlHK2 RNAi plants can be associated with increased membrane stability, osmoprotectant accumulation, and antioxidant enzyme activities. Furthermore, photosynthesis machinery was also protected in SlHK2 RNAi plants. Collectively, our results show that down-regulation of the cytokinin receptor gene SlHK2, and consequently cytokinin signaling, can improve plant tolerance to drought, heat, and combined stress. Full article
Show Figures

Figure 1

15 pages, 4275 KiB  
Article
Study on the Role of Phytohormones in Resistance to Watermelon Fusarium Wilt
by Feiying Zhu, Zhiwei Wang, Yong Fang, Jianhua Tong, Jing Xiang, Kankan Yang and Ruozhong Wang
Plants 2022, 11(2), 156; https://doi.org/10.3390/plants11020156 - 7 Jan 2022
Cited by 12 | Viewed by 4364
Abstract
Fusarium wilt disease is one of the major diseases causing a decline in watermelon yield and quality. Researches have informed that phytohormones play essential roles in regulating plants growth, development, and stress defendants. However, the molecular mechanism of salicylic acid (SA), jasmonic acid [...] Read more.
Fusarium wilt disease is one of the major diseases causing a decline in watermelon yield and quality. Researches have informed that phytohormones play essential roles in regulating plants growth, development, and stress defendants. However, the molecular mechanism of salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA) in resistance to watermelon Fusarium wilt remains unknown. In this experiment, we established the SA, JA, and ABA determination system in watermelon roots, and analyzed their roles in against watermelon Fusarium wilt compared to the resistant and susceptible varieties using transcriptome sequencing and RT-qPCR. Our results revealed that the up-regulated expression of Cla97C09G174770, Cla97C05G089520, Cla97C05G081210, Cla97C04G071000, and Cla97C10G198890 genes in resistant variety were key factors against (Fusarium oxysporum f. sp. Niveum) FON infection at 7 dpi. Additionally, there might be crosstalk between SA, JA, and ABA, caused by those differentially expressed (non-pathogen-related) NPRs, (Jasmonate-resistant) JAR, and (Pyrabactin resistance 1-like) PYLs genes, to trigger the plant immune system against FON infection. Overall, our results provide a theoretical basis for watermelon resistance breeding, in which phytohormones participate. Full article
(This article belongs to the Special Issue Ecological Processes of Root–Soil Interface)
Show Figures

Figure 1

16 pages, 1448 KiB  
Article
Impact of Harvest Time and Pruning Technique on Total CBD Concentration and Yield of Medicinal Cannabis
by Danilo Crispim Massuela, Jens Hartung, Sebastian Munz, Federico Erpenbach and Simone Graeff-Hönninger
Plants 2022, 11(1), 140; https://doi.org/10.3390/plants11010140 - 5 Jan 2022
Cited by 33 | Viewed by 20811
Abstract
The definition of optimum harvest and pruning interventions are important factors varying inflorescence yield and cannabinoid composition. This study investigated the impact of (i) harvest time (HT) and (ii) pruning techniques (PT) on plant biomass accumulation, CBD and CBDA-concentrations and total CBD yield [...] Read more.
The definition of optimum harvest and pruning interventions are important factors varying inflorescence yield and cannabinoid composition. This study investigated the impact of (i) harvest time (HT) and (ii) pruning techniques (PT) on plant biomass accumulation, CBD and CBDA-concentrations and total CBD yield of a chemotype III medical cannabis genotype under indoor cultivation. The experiment consisted of four HTs between 5 and 11 weeks of flowering and three PTs-apical cut (T); removal of side shoots (L) and control (C), not pruned plants. Results showed that inflorescence dry weight increased continuously, while the total CBD concentration did not differ significantly over time. For the studied genotype, optimum harvest time defined by highest total CBD yield was found at 9 weeks of flowering. Total CBD-concentration of inflorescences in different fractions of the plant’s height was significantly higher in the top (9.9%) in comparison with mid (8.2%) and low (7.7%) fractions. The T plants produced significantly higher dry weight of inflorescences and leaves than L and C. Total CBD yield of inflorescences for PTs were significantly different among pruned groups, but do not differ from the control group. However, a trend for higher yields was observed (T > C > L). Full article
(This article belongs to the Special Issue Studies on Cannabis sativa and Cannabinoids)
Show Figures

Graphical abstract

16 pages, 4636 KiB  
Article
Polyploidization Increases the Lipid Content and Improves the Nutritional Quality of Rice
by Wei Wang, Qiang Tu, Rongrong Chen, Pincang Lv, Yanqing Xu, Qian Xie, Zhaojian Song, Yuchi He, Detian Cai and Xianhua Zhang
Plants 2022, 11(1), 132; https://doi.org/10.3390/plants11010132 - 4 Jan 2022
Cited by 11 | Viewed by 2661
Abstract
Plant polyploidization is frequently associated with changes in nutrient contents. However, the possible contribution of metabolites to this change has not been investigated by characterizing the metabolite contents of diploid and tetraploid forms of rice (Oryza sativa L.). We compared the metabolites [...] Read more.
Plant polyploidization is frequently associated with changes in nutrient contents. However, the possible contribution of metabolites to this change has not been investigated by characterizing the metabolite contents of diploid and tetraploid forms of rice (Oryza sativa L.). We compared the metabolites of a group of diploid–tetraploid japonica brown rice and a group of diploid–tetraploid indica brown rice based on liquid chromatography–tandem mass spectrometry. In total, 401 metabolites were identified; of these, between the two diploid–tetraploid groups, 180 showed opposite expression trends, but 221 showed the same trends (147 higher abundance vs. 74 lower abundance). Hierarchical cluster analysis of differential metabolites between diploid and tetraploid species showed a clear grouping pattern, in which the expression abundance of lipids, amino acids and derivatives, and phenolic acids increased in tetraploids. Further analysis revealed that the lipids in tetraploid rice increased significantly, especially unsaturated fatty acids and phospholipids. This study provides further basis for understanding the changes in rice nutritional quality following polyploidization and may serve as a new theoretical reference for breeding eutrophic or functional rice varieties via polyploidization. Full article
Show Figures

Figure 1

16 pages, 2053 KiB  
Article
CottonGen: The Community Database for Cotton Genomics, Genetics, and Breeding Research
by Jing Yu, Sook Jung, Chun-Huai Cheng, Taein Lee, Ping Zheng, Katheryn Buble, James Crabb, Jodi Humann, Heidi Hough, Don Jones, J. Todd Campbell, Josh Udall and Dorrie Main
Plants 2021, 10(12), 2805; https://doi.org/10.3390/plants10122805 - 18 Dec 2021
Cited by 88 | Viewed by 9133
Abstract
Over the last eight years, the volume of whole genome, gene expression, SNP genotyping, and phenotype data generated by the cotton research community has exponentially increased. The efficient utilization/re-utilization of these complex and large datasets for knowledge discovery, translation, and application in crop [...] Read more.
Over the last eight years, the volume of whole genome, gene expression, SNP genotyping, and phenotype data generated by the cotton research community has exponentially increased. The efficient utilization/re-utilization of these complex and large datasets for knowledge discovery, translation, and application in crop improvement requires them to be curated, integrated with other types of data, and made available for access and analysis through efficient online search tools. Initiated in 2012, CottonGen is an online community database providing access to integrated peer-reviewed cotton genomic, genetic, and breeding data, and analysis tools. Used by cotton researchers worldwide, and managed by experts with crop-specific knowledge, it continuous to be the logical choice to integrate new data and provide necessary interfaces for information retrieval. The repository in CottonGen contains colleague, gene, genome, genotype, germplasm, map, marker, metabolite, phenotype, publication, QTL, species, transcriptome, and trait data curated by the CottonGen team. The number of data entries housed in CottonGen has increased dramatically, for example, since 2014 there has been an 18-fold increase in genes/mRNAs, a 23-fold increase in whole genomes, and a 372-fold increase in genotype data. New tools include a genetic map viewer, a genome browser, a synteny viewer, a metabolite pathways browser, sequence retrieval, BLAST, and a breeding information management system (BIMS), as well as various search pages for new data types. CottonGen serves as the home to the International Cotton Genome Initiative, managing its elections and serving as a communication and coordination hub for the community. With its extensive curation and integration of data and online tools, CottonGen will continue to facilitate utilization of its critical resources to empower research for cotton crop improvement. Full article
(This article belongs to the Special Issue Plant Genetic Resources and Their Use in Cotton Improvement)
Show Figures

Figure 1

23 pages, 4960 KiB  
Article
Characterization of Root System Architecture Traits in Diverse Soybean Genotypes Using a Semi-Hydroponic System
by Shuo Liu, Naheeda Begum, Tingting An, Tuanjie Zhao, Bingcheng Xu, Suiqi Zhang, Xiping Deng, Hon-Ming Lam, Henry T. Nguyen, Kadambot H. M. Siddique and Yinglong Chen
Plants 2021, 10(12), 2781; https://doi.org/10.3390/plants10122781 - 16 Dec 2021
Cited by 36 | Viewed by 6635
Abstract
Phenotypic variation and correlations among root traits form the basis for selecting and breeding soybean varieties with efficient access to water and nutrients and better adaptation to abiotic stresses. Therefore, it is important to develop a simple and consistent system to study root [...] Read more.
Phenotypic variation and correlations among root traits form the basis for selecting and breeding soybean varieties with efficient access to water and nutrients and better adaptation to abiotic stresses. Therefore, it is important to develop a simple and consistent system to study root traits in soybean. In this study, we adopted the semi-hydroponic system to investigate the variability in root morphological traits of 171 soybean genotypes popularized in the Yangtze and Huaihe River regions, eastern China. Highly diverse phenotypes were observed: shoot height (18.7–86.7 cm per plant with a median of 52.3 cm); total root length (208–1663 cm per plant with a median of 885 cm); and root mass (dry weight) (19.4–251 mg per plant with a median of 124 mg). Both total root length and root mass exhibited significant positive correlation with shoot mass (p ≤ 0.05), indicating their relationship with plant growth and adaptation strategies. The nine selected traits contributed to one of the two principal components (eigenvalues > 1), accounting for 78.9% of the total genotypic variation. Agglomerative hierarchical clustering analysis separated the 171 genotypes into five major groups based on these root traits. Three selected genotypes with contrasting root systems were validated in soil-filled rhizoboxes (1.5 m deep) until maturity. Consistent ranking of the genotypes in some important root traits at various growth stages between the two experiments indicates the reliability of the semi-hydroponic system in phenotyping root trait variability at the early growth stage in soybean germplasms. Full article
(This article belongs to the Special Issue Structure and Function of Roots)
Show Figures

Graphical abstract

19 pages, 743 KiB  
Article
Enough to Feed Ourselves!—Food Plants in Bulgarian Rural Home Gardens
by Teodora Ivanova, Yulia Bosseva, Mihail Chervenkov and Dessislava Dimitrova
Plants 2021, 10(11), 2520; https://doi.org/10.3390/plants10112520 - 19 Nov 2021
Cited by 26 | Viewed by 4277
Abstract
The home garden is a unique human-nature interspace that accommodates a diverse spectrum of plant species and provides multiple services to households. One of the most important roles of home gardens is to shelter the agricultural plant diversity that provides for diverse and [...] Read more.
The home garden is a unique human-nature interspace that accommodates a diverse spectrum of plant species and provides multiple services to households. One of the most important roles of home gardens is to shelter the agricultural plant diversity that provides for diverse and healthy nutrition, especially in rural communities. While tropical home gardens have received wide recognition due to their provisional function for the local communities, temperate and especially European home gardens have been discussed less frequently as a source of subsistence. The main objectives of the current study were to document plant species grown in Bulgarian rural home gardens and to explore related local knowledge and cultural practices that influence food plant diversity, its selection and preservation. Field work was focused on settlements situated in eight provinces in South and North-West Bulgaria. Participants representing 65 home gardens were approached through semi-structured interviews. Home gardens were found to harbor 145 cultivated and semi-cultivated plant taxa, used as food, medicinal and aromatic plants and as animal fodder. Members of the Rosaceae family were most numerous. The largest part of the garden area was occupied by vegetable crops of Solanaceae and Cucurbitaceae. In 63.1% of the studied households, the food growing area comprised more than 2/3 of the total size of the garden. Most preferred crops reflected the social and cultural importance of food self-provisioning, especially in the rural areas. The provisional role of the home gardens in regard to preparation of traditional foods and the driving forces for seed saving are discussed. Full article
(This article belongs to the Collection Botany of Food Plants)
Show Figures

Graphical abstract

22 pages, 1479 KiB  
Article
Nutritional Characteristics Assessment of Sunflower Seeds, Oil and Cake. Perspective of Using Sunflower Oilcakes as a Functional Ingredient
by Ancuţa Petraru, Florin Ursachi and Sonia Amariei
Plants 2021, 10(11), 2487; https://doi.org/10.3390/plants10112487 - 17 Nov 2021
Cited by 123 | Viewed by 19078
Abstract
Ample amounts of by-products are generated from the oil industry. Among them, sunflower oilcakes have the potential to be used for human consumption, thus achieving the concept of sustainability and circular economy. The study assessed the nutritional composition of sunflower seeds, cold-pressed oil [...] Read more.
Ample amounts of by-products are generated from the oil industry. Among them, sunflower oilcakes have the potential to be used for human consumption, thus achieving the concept of sustainability and circular economy. The study assessed the nutritional composition of sunflower seeds, cold-pressed oil and the remaining press-cakes with the aim of its valorization as a food ingredient. Sunflower oil contains principally oleic (19.81%) and linoleic (64.35%) acids, which cannot be synthetized by humans and need to be assimilated through a diet. Sunflower seeds are very nutritive (33.85% proteins and 65.42% lipids and 18 mineral elements). Due to the rich content of lipids, they are principally used as a source of vegetable oil. Compared to seeds, sunflower oilcakes are richer in fibers (31.88% and 12.64% for samples in form of pellets and cake, respectively) and proteins (20.15% and 21.60%), with a balanced amino acids profile. The remaining oil (15.77% and 14.16%) is abundant in unsaturated fatty acids (95.59% and 92.12%). The comparison between the three products showed the presence of valuable components that makes them suitable for healthy diets with an adequate intake of nutrients and other bioactive compounds with benefic effects. Full article
(This article belongs to the Special Issue Quality Evaluation of Plant-Derived Foods Ⅱ)
Show Figures

Graphical abstract

27 pages, 7177 KiB  
Article
Physico-Chemical, Nutritional, and Sensory Evaluation of Two New Commercial Tomato Hybrids and Their Parental Lines
by Zoltán Felföldi, Floricuta Ranga, Sonia Ancuta Socaci, Anca Farcas, Mariola Plazas, Adriana F. Sestras, Dan Cristian Vodnar, Jaime Prohens and Radu E. Sestras
Plants 2021, 10(11), 2480; https://doi.org/10.3390/plants10112480 - 16 Nov 2021
Cited by 21 | Viewed by 4495
Abstract
Tomato (Solanum lycopersicum) is the globally most consumed vegetable. The objective of this research was to analyze physico-chemical, nutritional and sensorial components (taste and flavor) in two new commercial hybrids (AS 300 F1 and AS 400 F1) and their four F7 [...] Read more.
Tomato (Solanum lycopersicum) is the globally most consumed vegetable. The objective of this research was to analyze physico-chemical, nutritional and sensorial components (taste and flavor) in two new commercial hybrids (AS 300 F1 and AS 400 F1) and their four F7 parental lines. Two widely grown F1 hybrids (Precos F1 and Addalyn F1) were used as controls. The results obtained for carbohydrates (HPLC-RID) indicated that the highest values (27.82 mg/g) were recorded in the paternal line AS 10 of the new hybrid AS 400 F1. The highest values of total organic acids (HPLC-VWD) were recorded in Addalyn F1 (5.06 m/g), while the highest value of phenolic compounds (HPLC-DAD-ESI⁺) were identified in the maternal line AS 09 of the hybrid AS 400 F1 (96.3 µg/g). Intrinsic sensory values were analyzed by male and female tasters of different ages using a hedonic scale. The tasters’ perception revealed obvious taste differences between tomato genotypes. The study allowed determining genetic parameters of interest (heterosis and heterobeltosis) for the new hybrids, as well as a detailed characterization of the chemical composition and organoleptic quality of the parental breeding lines and their hybrids, which is useful in tomato breeding. Full article
(This article belongs to the Collection Advances in Plant Breeding)
Show Figures

Graphical abstract

16 pages, 2152 KiB  
Article
Genotype by Trait Interaction (GT) in Maize Hybrids on Complete Fertilizer
by Seyed Mohammad Nasir Mousavi, Csaba Bojtor, Árpád Illés and János Nagy
Plants 2021, 10(11), 2388; https://doi.org/10.3390/plants10112388 - 5 Nov 2021
Cited by 19 | Viewed by 2925
Abstract
We investigated the interaction between genotype by trait, and an experiment was conducted at the University of Debrecen. Two maize cultivars, FAO340 and FAO410, were studied in a randomized complete block design with four replications. This experiment was applied to the six fertilization [...] Read more.
We investigated the interaction between genotype by trait, and an experiment was conducted at the University of Debrecen. Two maize cultivars, FAO340 and FAO410, were studied in a randomized complete block design with four replications. This experiment was applied to the six fertilization treatments. Fertilizer levels were NPK0 (control) (N:0, P2O5:0, K2O:0), NPK1 (N:30, P2O5:23, K2O:27), NPK2 (N:60, P2O5:46, K2O:54), NPK3 (N:90, P2O5:69, K2O:81), NPK4 (N:120, P2O5:92, K2O:108), and NPK5 (N:150, P2O5:115, K2O:135). The first principal component showed 54.24%, and the second principal component showed 20.75%, which explained the total squares interaction using the AMMI model in the case of the FAO410 hybrid. As regards the FAO340 hybrid, the first principal component showed 58.18%, and the second principal component showed 18.04%, explaining the total squares interaction using the AMMI model in the FAO410 hybrid. In the GGE biplot on FAO410, the first and the second principal components covered 91.20% of the total data in this analysis. Accordingly, the desirable treatment was NPK5, followed by NPK4, NPK2, NPK3, NPK1, and NPK0. NPK4 and NPK5 had the most desirable treatments for the number of seeds per row, chlorophyll, weight of 1000 seeds, and stem diameter in the case of the FAO410 hybrid. Full article
Show Figures

Figure 1

19 pages, 1767 KiB  
Article
Transient Waterlogging Events Impair Shoot and Root Physiology and Reduce Grain Yield of Durum Wheat Cultivars
by Lorenzo Cotrozzi, Giacomo Lorenzini, Cristina Nali, Claudia Pisuttu, Silvia Pampana and Elisa Pellegrini
Plants 2021, 10(11), 2357; https://doi.org/10.3390/plants10112357 - 1 Nov 2021
Cited by 31 | Viewed by 3731
Abstract
Durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husn) is a staple crop of the Mediterranean countries, where more frequent waterlogging events are predicted due to climate change. However, few investigations have been conducted on the physiological and agronomic responses of this [...] Read more.
Durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husn) is a staple crop of the Mediterranean countries, where more frequent waterlogging events are predicted due to climate change. However, few investigations have been conducted on the physiological and agronomic responses of this crop to waterlogging. The present study provides a comprehensive evaluation of the effects of two waterlogging durations (i.e., 14 and 35 days) on two durum wheat cultivars (i.e., Svevo and Emilio Lepido). An integrated analysis of an array of physiological, biochemical, biometric, and yield parameters was performed at the end of the waterlogging events, during recovery, and at physiological maturity. Results established that effects on durum wheat varied depending on waterlogging duration. This stress imposed at tillering impaired photosynthetic activity of leaves and determined oxidative injury of the roots. The physiological damages could not be fully recovered, subsequently slowing down tiller formation and crop growth, and depressing the final grain yield. Furthermore, differences in waterlogging tolerance between cultivars were discovered. Our results demonstrate that in durum wheat, the energy maintenance, the cytosolic ion homeostasis, and the ROS control and detoxification can be useful physiological and biochemical parameters to consider for the waterlogging tolerance of genotypes, with regard to sustaining biomass production and grain yield. Full article
(This article belongs to the Special Issue Responses of Durum Wheat to Abiotic Stress)
Show Figures

Figure 1

20 pages, 2889 KiB  
Article
Ferulic Acid and Salicylic Acid Foliar Treatments Reduce Short-Term Salt Stress in Chinese Cabbage by Increasing Phenolic Compounds Accumulation and Photosynthetic Performance
by Ida Linić, Selma Mlinarić, Lidija Brkljačić, Iva Pavlović, Ana Smolko and Branka Salopek-Sondi
Plants 2021, 10(11), 2346; https://doi.org/10.3390/plants10112346 - 29 Oct 2021
Cited by 56 | Viewed by 5364
Abstract
Salinity stress is one of the most damaging abiotic stresses to plants, causing disturbances in physiological, biochemical, and metabolic processes. The exogenous application of natural metabolites is a useful strategy to reduce the adverse effects of stress on crops. We investigated the effect [...] Read more.
Salinity stress is one of the most damaging abiotic stresses to plants, causing disturbances in physiological, biochemical, and metabolic processes. The exogenous application of natural metabolites is a useful strategy to reduce the adverse effects of stress on crops. We investigated the effect of foliar application of salicylic acid (SA) and ferulic acid (FA) (10–100 μM) on short-term salt-stressed (150 mM NaCl, 72 h) Chinese cabbage plants. Subsequently, proline level, photosynthetic performance, phenolic metabolites with special focus on selected phenolic acids (sinapic acid (SiA), FA, SA), flavonoids (quercetin (QUE), kaempferol (KAE)), and antioxidant activity were investigated in salt-stressed and phenolic acid-treated plants compared with the corresponding controls. Salt stress caused a significant increase in SA and proline contents, a decrease in phenolic compounds, antioxidant activity, and photosynthetic performance, especially due to the impairment of PSI function. SA and FA treatments, with a concentration of 10 μM, had attenuated effects on salt-stressed plants, causing a decrease in proline and SA level, and indicating that the plants suffered less metabolic disturbance. Polyphenolic compounds, especially FA, SiA, KAE, and QUE, were increased in FA and SA treatments in salt-stressed plants. Consequently, antioxidant activities were increased, and photosynthetic performances were improved. FA resulted in a better ameliorative effect on salt stress compared to SA. Full article
(This article belongs to the Special Issue Plant Polyphenols - from Plants to Human Health Volume II)
Show Figures

Figure 1

19 pages, 2278 KiB  
Article
Arsenic Toxicity-Induced Physiological and Metabolic Changes in the Shoots of Pteris cretica and Spinacia oleracea
by Veronika Zemanová, Daniela Pavlíková, František Hnilička and Milan Pavlík
Plants 2021, 10(10), 2009; https://doi.org/10.3390/plants10102009 - 25 Sep 2021
Cited by 48 | Viewed by 4654
Abstract
Arsenic is a ubiquitous toxic element that can be accumulated into plant parts. The present study investigated the response of Pteris cretica and Spinacia oleracea to As treatment through the analysis of selected physiological and metabolic parameters. Plants were grown in pots in [...] Read more.
Arsenic is a ubiquitous toxic element that can be accumulated into plant parts. The present study investigated the response of Pteris cretica and Spinacia oleracea to As treatment through the analysis of selected physiological and metabolic parameters. Plants were grown in pots in As(V) spiked soil (20 and 100 mg/kg). Plants’ physiological condition was estimated through the determination of elements, gas-exchange parameters, chlorophyll fluorescence, water potential, photosynthetic pigments, and free amino acid content. The results confirmed differing As accumulation in plants, as well as in shoots and roots, which indicated that P. cretica is an As-hyperaccumulator and that S. oleracea is an As-root excluder. Variations in physiological and metabolic parameters were observed among As treatments. Overall, the results revealed a significant effect of 100 mg/kg As treatment on the analysed parameters. In both plants, this treatment affected growth, N, Mg, S, Mn, and Zn content, as well as net photosynthetic rate, chlorophyll fluorescence, and total free amino acid content. In conclusion, the results reflect the similarity between P. cretica and S. oleracea in some aspects of plants’ response to As treatment, while physiological and metabolic parameter changes related to As treatments indicate the higher sensitivity of S. oleracea. Full article
(This article belongs to the Special Issue Metal (Loid)s Tolerance in Plants)
Show Figures

Figure 1

17 pages, 4168 KiB  
Article
Thymus vulgaris Essential Oil and Its Biological Activity
by Lucia Galovičová, Petra Borotová, Veronika Valková, Nenad L. Vukovic, Milena Vukic, Jana Štefániková, Hana Ďúranová, Przemysław Łukasz Kowalczewski, Natália Čmiková and Miroslava Kačániová
Plants 2021, 10(9), 1959; https://doi.org/10.3390/plants10091959 - 19 Sep 2021
Cited by 78 | Viewed by 10796
Abstract
Thymus vulgaris essential oil has potential good biological activity. The aim of the research was to evaluate the biological activity of the T. vulgaris essential oil from the Slovak company. The main components of T. vulgaris essential oil were thymol (48.1%), p-cymene [...] Read more.
Thymus vulgaris essential oil has potential good biological activity. The aim of the research was to evaluate the biological activity of the T. vulgaris essential oil from the Slovak company. The main components of T. vulgaris essential oil were thymol (48.1%), p-cymene (11.7%), 1,8-cineole (6.7), γ-terpinene (6.1%), and carvacrol (5.5%). The antioxidant activity was 85.2 ± 0.2%, which corresponds to 479.34 ± 1.1 TEAC. The antimicrobial activity was moderate or very strong with inhibition zones from 9.89 to 22.44 mm. The lowest values of MIC were determined against B. subtilis, E. faecalis, and S. aureus. In situ antifungal analysis on bread shows that the vapor phase of T. vulgaris essential oil can inhibit the growth of the microscopic filamentous fungi of the genus Penicillium. The antimicrobial activity against S. marcescens showed 46.78–87.80% inhibition at concentrations 62.5–500 µL/mL. The MALDI TOF MS analyses suggest changes in the protein profile of biofilm forming bacteria P. fluorescens and S. enteritidis after the fifth and the ninth day, respectively. Due to the properties of the T. vulgaris essential oil, it can be used in the food industry as a natural supplement to extend the shelf life of the foods. Full article
Show Figures

Figure 1

19 pages, 3748 KiB  
Article
The Effect of Water Deficit on Two Greek Vitis vinifera L. Cultivars: Physiology, Grape Composition and Gene Expression during Berry Development
by Anastasios Alatzas, Serafeim Theocharis, Dimitrios-Evangelos Miliordos, Konstantina Leontaridou, Angelos K. Kanellis, Yorgos Kotseridis, Polydefkis Hatzopoulos and Stefanos Koundouras
Plants 2021, 10(9), 1947; https://doi.org/10.3390/plants10091947 - 18 Sep 2021
Cited by 29 | Viewed by 4417
Abstract
Plants are exposed to numerous abiotic stresses. Drought is probably the most important of them and determines crop distribution around the world. Grapevine is considered to be a drought-resilient species, traditionally covering semiarid areas. Moreover, in the case of grapevine, moderate water deficit [...] Read more.
Plants are exposed to numerous abiotic stresses. Drought is probably the most important of them and determines crop distribution around the world. Grapevine is considered to be a drought-resilient species, traditionally covering semiarid areas. Moreover, in the case of grapevine, moderate water deficit is known to improve the quality traits of grape berries and subsequently wine composition. However, against the backdrop of climate change, vines are expected to experience sustained water deficits which could be detrimental to both grape quality and yield. The influence of water deficit on two Greek Vitis vinifera L. cultivars, ‘Agiorgitiko’ and ‘Assyrtiko’, was investigated during the 2019 and 2020 vintages. Vine physiology measurements in irrigated and non-irrigated plants were performed at three time-points throughout berry development (green berry, veraison and harvest). Berry growth and composition were examined during ripening. According to the results, water deficit resulted in reduced berry size and increased levels of soluble sugars, total phenols and anthocyanins. The expression profile of specific genes, known to control grape color, aroma and flavor was altered by water availability during maturation in a cultivar-specific manner. In agreement with the increased concentration of phenolic compounds due to water deficit, genes of the phenylpropanoid pathway in the red-skinned Agiorgitiko exhibited higher expression levels and earlier up-regulation than in the white Assyrtiko. The expression profile of the other genes during maturation or in response to water deficit was depended on the vintage. Full article
Show Figures

Figure 1

22 pages, 2813 KiB  
Article
Ecological and Biological Properties of Satureja cuneifolia Ten. and Thymus spinulosus Ten.: Two Wild Officinal Species of Conservation Concern in Apulia (Italy). A Preliminary Survey
by Enrico V. Perrino, Francesca Valerio, Shaima Jallali, Antonio Trani and Giuseppe N. Mezzapesa
Plants 2021, 10(9), 1952; https://doi.org/10.3390/plants10091952 - 18 Sep 2021
Cited by 55 | Viewed by 4155
Abstract
This study evaluated the effects of ecology (plant community, topography and pedology), as well as of climate, on the composition of essential oils (EOs) from two officinal wild plant species (Lamiales) from Apulia, namely Satureja cuneifolia Ten. and Thymus spinulosus Ten. Few scientific [...] Read more.
This study evaluated the effects of ecology (plant community, topography and pedology), as well as of climate, on the composition of essential oils (EOs) from two officinal wild plant species (Lamiales) from Apulia, namely Satureja cuneifolia Ten. and Thymus spinulosus Ten. Few scientific data on their chemical composition are available, due to the fact that the first has a limited distribution range and the second is endemic of southern Italy. Results for both species, never officially used in traditional medicine and/or as spices, showed that the ecological context (from a phytosociological and ecological point of view) may influence their EO composition, and hence, yield chemotypes different from those reported in the literature. S. cuneifolia and Th. spinulosus can be considered good sources of phytochemicals as natural agents in organic agriculture due to the presence of thymol and α-pinene. Overall, the obtained trend for EOs suggests a potential use of both species as food, pharmacy, cosmetics and perfumery. Hence, their cultivation and use represent a positive step to reduce the use of synthetic chemicals and to meet the increasing demand for natural and healthier products. Full article
Show Figures

Graphical abstract

24 pages, 5527 KiB  
Article
Impact of Three Different Light Spectra on the Yield, Morphology and Growth Trajectory of Three Different Cannabis sativa L. Strains
by Philipp Reichel, Sebastian Munz, Jens Hartung, Achim Präger, Stiina Kotiranta, Lisa Burgel, Torsten Schober and Simone Graeff-Hönninger
Plants 2021, 10(9), 1866; https://doi.org/10.3390/plants10091866 - 9 Sep 2021
Cited by 20 | Viewed by 6722
Abstract
Cannabis is one of the oldest cultivated plants, but plant breeding and cultivation are restricted by country specific regulations. Plant growth, morphology and metabolism can be manipulated by changing light quality and intensity. Three morphologically different strains were grown under three different light [...] Read more.
Cannabis is one of the oldest cultivated plants, but plant breeding and cultivation are restricted by country specific regulations. Plant growth, morphology and metabolism can be manipulated by changing light quality and intensity. Three morphologically different strains were grown under three different light spectra with three real light repetitions. Light dispersion was included into the statistical evaluation. The light spectra considered had an influence on the morphology of the plant, especially the height. Here, the shade avoidance induced by the lower R:FR ratio under the ceramic metal halide lamp (CHD) was of particular interest. The sugar leaves seemed to be of elementary importance in the last growth phase for yield composition. Furthermore, the last four weeks of flowering were crucial to influence the yield composition of Cannabis sativa L. through light spectra. The dry flower yield was significantly higher under both LED treatments compared to the conventional CHD light source. Our results indicate that the plant morphology can be artificially manipulated by the choice of light treatment to create shorter plants with more lateral branches which seem to be beneficial for yield development. Furthermore, the choice of cultivar has to be taken into account when interpreting results of light studies, as Cannabis sativa L. subspecies and thus bred strains highly differ in their phenotypic characteristics. Full article
(This article belongs to the Special Issue Studies on Cannabis sativa and Cannabinoids)
Show Figures

Figure 1

13 pages, 1096 KiB  
Article
Extreme Precipitation and Flooding Contribute to Sudden Vegetation Dieback in a Coastal Salt Marsh
by Camille LaFosse Stagg, Michael J. Osland, Jena A. Moon, Laura C. Feher, Claudia Laurenzano, Tiffany C. Lane, William R. Jones and Stephen B. Hartley
Plants 2021, 10(9), 1841; https://doi.org/10.3390/plants10091841 - 5 Sep 2021
Cited by 33 | Viewed by 5843
Abstract
Climate extremes are becoming more frequent with global climate change and have the potential to cause major ecological regime shifts. Along the northern Gulf of Mexico, a coastal wetland in Texas suffered sudden vegetation dieback following an extreme precipitation and flooding event associated [...] Read more.
Climate extremes are becoming more frequent with global climate change and have the potential to cause major ecological regime shifts. Along the northern Gulf of Mexico, a coastal wetland in Texas suffered sudden vegetation dieback following an extreme precipitation and flooding event associated with Hurricane Harvey in 2017. Historical salt marsh dieback events have been linked to climate extremes, such as extreme drought. However, to our knowledge, this is the first example of extreme precipitation and flooding leading to mass mortality of the salt marsh foundation species, Spartina alterniflora. Here, we investigated the relationships between baseline climate conditions, extreme climate conditions, and large-scale plant mortality to provide an indicator of ecosystem vulnerability to extreme precipitation events. We identified plant zonal boundaries along an elevation gradient with plant species tolerant of hypersaline conditions, including succulents and graminoids, at higher elevations, and flood-tolerant species, including S. alterniflora, at lower elevations. We quantified a flooding threshold for wetland collapse under baseline conditions characterized by incremental increases in flooding (i.e., sea level rise). We proposed that the sudden widespread dieback of S. alterniflora following Hurricane Harvey was the result of extreme precipitation and flooding that exceeded this threshold for S. alterniflora survival. Indeed, S. alterniflora dieback occurred at elevations above the wetland collapse threshold, illustrating a heightened vulnerability to flooding that could not be predicted from baseline climate conditions. Moreover, the spatial pattern of vegetation dieback indicated that underlying stressors may have also increased susceptibility to dieback in some S. alterniflora marshes.Collectively, our results highlight a new mechanism of sudden vegetation dieback in S. alterniflora marshes that is triggered by extreme precipitation and flooding. Furthermore, this work emphasizes the importance of considering interactions between multiple abiotic and biotic stressors that can lead to shifts in tolerance thresholds and incorporating climate extremes into climate vulnerability assessments to accurately characterize future climate threats. Full article
(This article belongs to the Special Issue Plant–Soil Interactions in Wetlands and Flooded Environments)
Show Figures

Graphical abstract

12 pages, 1590 KiB  
Article
Effect of Nutrient Solution Flow Rate on Hydroponic Plant Growth and Root Morphology
by Bateer Baiyin, Kotaro Tagawa, Mina Yamada, Xinyan Wang, Satoshi Yamada, Yang Shao, Ping An, Sadahiro Yamamoto and Yasuomi Ibaraki
Plants 2021, 10(9), 1840; https://doi.org/10.3390/plants10091840 - 5 Sep 2021
Cited by 35 | Viewed by 9483
Abstract
Crop production under hydroponic environments has many advantages, yet the effects of solution flow rate on plant growth remain unclear. We conducted a hydroponic cultivation study using different flow rates under light-emitting diode lighting to investigate plant growth, nutrient uptake, and root morphology [...] Read more.
Crop production under hydroponic environments has many advantages, yet the effects of solution flow rate on plant growth remain unclear. We conducted a hydroponic cultivation study using different flow rates under light-emitting diode lighting to investigate plant growth, nutrient uptake, and root morphology under different flow rates. Swiss chard plants were grown hydroponically under four nutrient solution flow rates (2 L/min, 4 L/min, 6 L/min, and 8 L/min). After 21 days, harvested plants were analyzed for root and shoot fresh weight, root and shoot dry weight, root morphology, and root cellulose and hemicellulose content. We found that suitable flow rates, acting as a eustress, gave the roots appropriate mechanical stimulation to promote root growth, absorb more nutrients, and increase overall plant growth. Conversely, excess flow rates acted as a distress that caused the roots to become compact and inhibited root surface area and root growth. Excess flow rate thereby resulted in a lower root surface area that translated to reduced nutrient ion absorption and poorer plant growth compared with plans cultured under a suitable flow rate. Our results indicate that regulating flow rate can regulate plant thigmomorphogenesis and nutrient uptake, ultimately affecting hydroponic crop quality. Full article
Show Figures

Figure 1

18 pages, 3185 KiB  
Article
Shape Matters: Plant Architecture Affects Chemical Uniformity in Large-Size Medical Cannabis Plants
by Nadav Danziger and Nirit Bernstein
Plants 2021, 10(9), 1834; https://doi.org/10.3390/plants10091834 - 3 Sep 2021
Cited by 42 | Viewed by 19646
Abstract
Since plant organs sense their environment locally, gradients of micro-climates in the plant shoot may induce spatial variability in the physiological state of the plant tissue and hence secondary metabolism. Therefore, plant architecture, which affects micro-climate in the shoot, may considerably affect the [...] Read more.
Since plant organs sense their environment locally, gradients of micro-climates in the plant shoot may induce spatial variability in the physiological state of the plant tissue and hence secondary metabolism. Therefore, plant architecture, which affects micro-climate in the shoot, may considerably affect the uniformity of cannabinoids in the Cannabis sativa plant, which has significant pharmaceutical and economic importance. Variability of micro-climates in plant shoots intensifies with the increase in plant size, largely due to an increase in inter-shoot shading. In this study, we therefore focused on the interplay between shoot architecture and the cannabinoid profile in large cannabis plants, ~2.5 m in height, with the goal to harness architecture modulation for the standardization of cannabinoid concentrations in large plants. We hypothesized that (i) a gradient of light intensity along the plants is accompanied by changes to the cannabinoid profile, and (ii) manipulations of plant architecture that increase light penetration to the plant increase cannabinoid uniformity and yield biomass. To test these hypotheses, we investigated effects of eight plant architecture manipulation treatments involving branch removals, defoliation, and pruning on plant morpho-physiology, inflorescence yield, cannabinoid profile, and uniformity. The results revealed that low cannabinoid concentrations in inflorescences at the bottom of the plants correlate with low light penetration, and that increasing light penetration by defoliation or removal of bottom branches and leaves increases cannabinoid concentrations locally and thereby through spatial uniformity, thus supporting the hypotheses. Taken together, the results reveal that shoot architectural modulation can be utilized to increase cannabinoid standardization in large cannabis plants, and that the cannabinoid profile in an inflorescence is an outcome of exogenous and endogenous factors. Full article
(This article belongs to the Special Issue Plant Biotechnology Applications in Secondary Metabolite Production)
Show Figures

Figure 1

32 pages, 6017 KiB  
Article
Arabidopsis thaliana Response to Extracellular DNA: Self Versus Nonself Exposure
by Maria Luisa Chiusano, Guido Incerti, Chiara Colantuono, Pasquale Termolino, Emanuela Palomba, Francesco Monticolo, Giovanna Benvenuto, Alessandro Foscari, Alfonso Esposito, Lucia Marti, Giulia de Lorenzo, Isaac Vega-Muñoz, Martin Heil, Fabrizio Carteni, Giuliano Bonanomi and Stefano Mazzoleni
Plants 2021, 10(8), 1744; https://doi.org/10.3390/plants10081744 - 23 Aug 2021
Cited by 40 | Viewed by 8009
Abstract
The inhibitory effect of extracellular DNA (exDNA) on the growth of conspecific individuals was demonstrated in different kingdoms. In plants, the inhibition has been observed on root growth and seed germination, demonstrating its role in plant–soil negative feedback. Several hypotheses have been proposed [...] Read more.
The inhibitory effect of extracellular DNA (exDNA) on the growth of conspecific individuals was demonstrated in different kingdoms. In plants, the inhibition has been observed on root growth and seed germination, demonstrating its role in plant–soil negative feedback. Several hypotheses have been proposed to explain the early response to exDNA and the inhibitory effect of conspecific exDNA. We here contribute with a whole-plant transcriptome profiling in the model species Arabidopsis thaliana exposed to extracellular self- (conspecific) and nonself- (heterologous) DNA. The results highlight that cells distinguish self- from nonself-DNA. Moreover, confocal microscopy analyses reveal that nonself-DNA enters root tissues and cells, while self-DNA remains outside. Specifically, exposure to self-DNA limits cell permeability, affecting chloroplast functioning and reactive oxygen species (ROS) production, eventually causing cell cycle arrest, consistently with macroscopic observations of root apex necrosis, increased root hair density and leaf chlorosis. In contrast, nonself-DNA enters the cells triggering the activation of a hypersensitive response and evolving into systemic acquired resistance. Complex and different cascades of events emerge from exposure to extracellular self- or nonself-DNA and are discussed in the context of Damage- and Pathogen-Associated Molecular Patterns (DAMP and PAMP, respectively) responses. Full article
(This article belongs to the Special Issue 10th Anniversary of Plants—Recent Advances and Perspectives)
Show Figures

Graphical abstract

18 pages, 4264 KiB  
Article
Genomic Analysis and Secondary Metabolites Production of the Endophytic Bacillus velezensis Bvel1: A Biocontrol Agent against Botrytis cinerea Causing Bunch Rot in Post-Harvest Table Grapes
by Kallimachos Nifakos, Polina C. Tsalgatidou, Eirini-Evangelia Thomloudi, Aggeliki Skagia, Dimitrios Kotopoulis, Eirini Baira, Costas Delis, Konstantinos Papadimitriou, Emilia Markellou, Anastasia Venieraki and Panagiotis Katinakis
Plants 2021, 10(8), 1716; https://doi.org/10.3390/plants10081716 - 20 Aug 2021
Cited by 55 | Viewed by 7747
Abstract
Botrytis bunch rot caused by Botrytis cinerea is one of the most economically significant post-harvest diseases of grapes. In the present study, we showed that the bacterial strain Bvel1 is phylogenetically affiliated to Bacillus velezensis species. The strain Bvel1 and its secreted metabolites [...] Read more.
Botrytis bunch rot caused by Botrytis cinerea is one of the most economically significant post-harvest diseases of grapes. In the present study, we showed that the bacterial strain Bvel1 is phylogenetically affiliated to Bacillus velezensis species. The strain Bvel1 and its secreted metabolites exerted an antifungal activity, under in vitro conditions, against B. cinerea. UHPLC–HRMS chemical analysis revealed that iturin A2, surfactin-C13 and -C15, oxydifficidin, bacillibactin, L-dihydroanticapsin, and azelaic acid were among the metabolites secreted by Bvel1. Treatment of wounded grape berries with Bacillus sp. Bvel1 cell culture was effective for controlling grey mold ingress and expansion in vivo. The effectiveness of this biological control agent was a function of the cell culture concentration of the antagonist applied, while preventive treatment proved to be more effective compared to curative. The strain Bvel1 exhibited an adequate colonization efficiency in wounded grapes. The whole-genome phylogeny, combined with ANI and dDDH analyses, provided compelling evidence that the strain Bvel1 should be taxonomically classified as Bacillus velezensis. Genome mining approaches showed that the strain Bvel1 harbors 13 antimicrobial biosynthetic gene clusters, including iturin A, fengycin, surfactin, bacilysin, difficidin, bacillaene, and bacillibactin. The results provide new insights into the understanding of the endophytic Bacillus velezensis Bvel1 biocontrol mechanism against post-harvest fungal pathogens, including bunch rot disease in grape berries. Full article
Show Figures

Figure 1

30 pages, 6049 KiB  
Article
Role of Synthetic Plant Extracts on the Production of Silver-Derived Nanoparticles
by Sabah Al-Zahrani, Sergio Astudillo-Calderón, Beatriz Pintos, Elena Pérez-Urria, José Antonio Manzanera, Luisa Martín and Arancha Gomez-Garay
Plants 2021, 10(8), 1671; https://doi.org/10.3390/plants10081671 - 13 Aug 2021
Cited by 47 | Viewed by 6225
Abstract
The main antioxidants present in plant extracts—quercetin, β-carotene, gallic acid, ascorbic acid, hydroxybenzoic acid, caffeic acid, catechin and scopoletin—are able to synthesize silver nanoparticles when reacting with a Ag NO3 solution. The UV-visible absorption spectrum recorded with most of the antioxidants shows [...] Read more.
The main antioxidants present in plant extracts—quercetin, β-carotene, gallic acid, ascorbic acid, hydroxybenzoic acid, caffeic acid, catechin and scopoletin—are able to synthesize silver nanoparticles when reacting with a Ag NO3 solution. The UV-visible absorption spectrum recorded with most of the antioxidants shows the characteristic surface plasmon resonance band of silver nanoparticles. Nanoparticles synthesised with ascorbic, hydroxybenzoic, caffeic, and gallic acids and scopoletin are spherical. Nanoparticles synthesised with quercetin are grouped together to form micellar structures. Nanoparticles synthesised by β-carotene, were triangular and polyhedral forms with truncated corners. Pentagonal nanoparticles were synthesized with catechin. We used Fourier-transform infrared spectroscopy to check that the biomolecules coat the synthesised silver nanoparticles. X-ray powder diffractograms showed the presence of silver, AgO, Ag2O, Ag3O4 and Ag2O3. Rod-like structures were obtained with quercetin and gallic acid and cookie-like structures in the nanoparticles obtained with scopoletin, as a consequence of their reactivity with cyanide. This analysis explained the role played by the various agents responsible for the bio-reduction triggered by nanoparticle synthesis in their shape, size and activity. This will facilitate targeted synthesis and the application of biotechnological techniques to optimise the green synthesis of nanoparticles. Full article
(This article belongs to the Special Issue Nanotechnology Advances in Plant Science and Biotechnology)
Show Figures

Figure 1

15 pages, 3219 KiB  
Article
Effective Pollination Period and Parentage Effect on Pollen Tube Growth in Apple
by Stefan Roeder, Sara Serra and Stefano Musacchi
Plants 2021, 10(8), 1618; https://doi.org/10.3390/plants10081618 - 6 Aug 2021
Cited by 10 | Viewed by 7563
Abstract
Flower receptivity is a limiting factor for the fertilization of several tree fruit. The effective pollination period (EPP) can be used to determine flower longevity and identify limiting factors by assessing stigmatic receptivity, pollen tube growth rate, and ovule longevity. EPPs were determined [...] Read more.
Flower receptivity is a limiting factor for the fertilization of several tree fruit. The effective pollination period (EPP) can be used to determine flower longevity and identify limiting factors by assessing stigmatic receptivity, pollen tube growth rate, and ovule longevity. EPPs were determined for three apple cultivars under natural field conditions in Washington State in 2019 and 2020. In addition, a greenhouse study, performed under semi-controlled conditions, evaluated the influence of six maternal parents on the pollen tube growth performance of six pollen sources. The duration of the stigmatic receptivity ranged from 6.3 to 8.1 days, depending on the cultivar and year—pollen tubes required between 5.5 and 7.0 days from the stigma to reach the ovules. Ovule longevity of non-pollinated flowers varied between 8.2 and 11.3 days. Combinations of these factors resulted in EPPs ranging from 3.0 days for ‘Rubinstar’ to 5.6 days for ‘Olsentwo Gala’ in the present experimental conditions. The greenhouse study revealed that parentage affected pollen tube growth performance. Importantly, a significant interaction between maternal and paternal factors indicated that the performance of different pollen sources depended on the maternal parent and that general recommendations on pollination need to account for the maternal parent. Full article
(This article belongs to the Special Issue Floral Biology)
Show Figures

Graphical abstract

20 pages, 4506 KiB  
Article
Predicting Impacts of Climate Change on Northward Range Expansion of Invasive Weeds in South Korea
by Sun Hee Hong, Yong Ho Lee, Gaeun Lee, Do-Hun Lee and Pradeep Adhikari
Plants 2021, 10(8), 1604; https://doi.org/10.3390/plants10081604 - 5 Aug 2021
Cited by 33 | Viewed by 5354
Abstract
Predicting the distribution of invasive weeds under climate change is important for the early identification of areas that are susceptible to invasion and for the adoption of the best preventive measures. Here, we predicted the habitat suitability of 16 invasive weeds in response [...] Read more.
Predicting the distribution of invasive weeds under climate change is important for the early identification of areas that are susceptible to invasion and for the adoption of the best preventive measures. Here, we predicted the habitat suitability of 16 invasive weeds in response to climate change and land cover changes in South Korea using a maximum entropy modeling approach. Based on the predictions of the model, climate change is likely to increase habitat suitability. Currently, the area of moderately suitable and highly suitable habitats is estimated to be 8877.46 km2, and 990.29 km2, respectively, and these areas are expected to increase up to 496.52% by 2050 and 1439.65% by 2070 under the representative concentration pathways 4.5 scenario across the country. Although habitat suitability was estimated to be highest in the southern regions (<36° latitude), the central and northern regions are also predicted to have substantial increases in suitable habitat areas. Our study revealed that climate change would exacerbate the threat of northward weed invasions by shifting the climatic barriers of invasive weeds from the southern region. Thus, it is essential to initiate control and management strategies in the southern region to prevent further invasions into new areas. Full article
(This article belongs to the Special Issue Ecology of Invasive Plants)
Show Figures

Figure 1

13 pages, 759 KiB  
Article
Chemical Composition and Antimicrobial Properties of Mentha × piperita cv. ‘Kristinka’ Essential Oil
by Ippolito Camele, Daniela Gruľová and Hazem S. Elshafie
Plants 2021, 10(8), 1567; https://doi.org/10.3390/plants10081567 - 30 Jul 2021
Cited by 75 | Viewed by 7662
Abstract
Several economically important crops, fruits and vegetables are susceptible to infection by pathogenic fungi and/or bacteria postharvest or in field. Recently, plant essential oils (EOs) extracted from different medicinal and officinal plants have had promising antimicrobial effects against phytopathogens. In the present study, [...] Read more.
Several economically important crops, fruits and vegetables are susceptible to infection by pathogenic fungi and/or bacteria postharvest or in field. Recently, plant essential oils (EOs) extracted from different medicinal and officinal plants have had promising antimicrobial effects against phytopathogens. In the present study, the potential microbicide activity of Mentha × piperita cv. ‘Kristinka’ (peppermint) EO and its main constituents have been evaluated against some common phytopathogens. In addition, the cell membrane permeability of the tested fungi and the minimum fungicidal concentrations were measured. The antifungal activity was tested against the following postharvest fungi: Botrytis cinerea, Monilinia fructicola, Penicillium expansum and Aspergillus niger, whereas antibacterial activity was evaluated against Clavibacter michiganensis, Xanthomonas campestris, Pseudomonas savastanoi and P. syringae pv. phaseolicola. The chemical analysis has been carried out using GC-MS and the main components were identified as menthol (70.08%) and menthone (14.49%) followed by limonene (4.32%), menthyl acetate (3.76%) and β-caryophyllene (2.96%). The results show that the tested EO has promising antifungal activity against all tested fungi, whereas they demonstrated only a moderate antibacterial effect against some of the tested bacteria. Full article
(This article belongs to the Special Issue Plant Essential Oil with Biological Activity)
Show Figures

Figure 1

17 pages, 2254 KiB  
Article
Drought Tolerance Responses in Vegetable-Type Soybean Involve a Network of Biochemical Mechanisms at Flowering and Pod-Filling Stages
by Makoena Joyce Moloi and Rouxlene van der Merwe
Plants 2021, 10(8), 1502; https://doi.org/10.3390/plants10081502 - 22 Jul 2021
Cited by 28 | Viewed by 4498
Abstract
Severe drought stress affects the production of vegetable-type soybean (Glycine max L. Merrill), which is in infancy for Africa despite its huge nutritional benefits. This study was conducted under controlled environmental conditions to establish the effects of severe drought stress on ascorbate [...] Read more.
Severe drought stress affects the production of vegetable-type soybean (Glycine max L. Merrill), which is in infancy for Africa despite its huge nutritional benefits. This study was conducted under controlled environmental conditions to establish the effects of severe drought stress on ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and glutathione reductase (GR) activities as well as proline, total soluble sugars (TSS), and hydrogen peroxide (H2O2) contents of five vegetable-type soybean cultivars (UVE8, UVE14, UVE17, AGS354, AGS429) at flowering and pod-filling stages. Drought induced significant increases in the contents of proline (selectively at pod filling for AGS429), TSS (at both stages for AGS429, and only at pod filling for UVE14), and malondialdehyde (AGS354 at flowering; UVE17 at pod filling). UVE8 and AGS354 had the highest H2O2 levels at flowering under drought stress, while AGS429 had the lowest. However, AGS429 was the only cultivar with significantly increased H2O2 under drought stress. Furthermore, drought stress induced significant increases in APX, GPX, and GR activities at flowering for AGS429. AGS354 recorded the highest decline for all antioxidative enzymes, while UVE17 decreased for GPX only. All biochemical parameters, except H2O2, were significantly higher at pod filling than at the flowering stage. The relationship between H2O2 and total seed mass (TSMP) or total seed per plant (TSP) was significantly positive for both stages, while that of TSS (at flowering) and proline (at pod filling) were significantly related to total pods per plant (TPP). The study suggests that during drought, the tolerance responses of vegetable-type soybean, APX, GPX, and GR (especially at the flowering stage), function in concert to minimize H2O2 production and lipid peroxidation, thereby allowing H2O2 to function in the signaling events leading to the induction of drought tolerance. The induction of TSS at flowering and proline at pod filling is important in the drought tolerance response of this crop. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

12 pages, 2789 KiB  
Article
The Application of the Essential Oils of Thymus vulgaris L. and Crithmum maritimum L. as Biocidal on Two Tholu Bommalu Indian Leather Puppets
by Giulia D’Agostino, Belinda Giambra, Franco Palla, Maurizio Bruno and Natale Badalamenti
Plants 2021, 10(8), 1508; https://doi.org/10.3390/plants10081508 - 22 Jul 2021
Cited by 47 | Viewed by 4102
Abstract
The chemical profile of the Thymus vulgaris (Lamiaceae) essential oil (EO) was investigated in order to evaluate its biological properties against microorganisms affecting two Tholu Bommalu, typical Indian leather puppets stored at the International Puppets Museum “Antonio Pasqualino” of Palermo, Italy. A [...] Read more.
The chemical profile of the Thymus vulgaris (Lamiaceae) essential oil (EO) was investigated in order to evaluate its biological properties against microorganisms affecting two Tholu Bommalu, typical Indian leather puppets stored at the International Puppets Museum “Antonio Pasqualino” of Palermo, Italy. A GC–MS analysis, using both polar and apolar columns, was used to determine the chemical composition of the essential oil. The aim of this study was to evaluate the antimicrobial effectiveness of the Thymus vulgaris and Crithmum maritimum essential oils in vapor phase to disinfect heritage leather puppets. Pieces of leather artifacts that were affected by different bacterial colonies were exposed to EO under vacuum and static evaporation conditions. The results presented showed that the vaporization of essential oil was an efficient method in the disinfection of natural skins, eradicating microorganism in short times. T. vulgaris EO in the 50% solution showed excellent inhibitory activity against isolated bacteria with both methods, but the obtained results suggest that the vacuum method allowed for faster exposition of the artifacts to the biocide. Furthermore, the biocidal properties of the essential oil of a Sicilian accession of Crithmum maritimum (Apiaceae) aerial parts were compared and investigated. The results of the latter essential oil showed a poor activity against the isolated micro-organisms. Full article
(This article belongs to the Special Issue 10th Anniversary of Plants—Recent Advances and Perspectives)
Show Figures

Figure 1

18 pages, 4184 KiB  
Article
Thymus serpyllum Essential Oil and Its Biological Activity as a Modern Food Preserver
by Lucia Galovičová, Petra Borotová, Veronika Valková, Nenad L. Vukovic, Milena Vukic, Margarita Terentjeva, Jana Štefániková, Hana Ďúranová, Przemysław Łukasz Kowalczewski and Miroslava Kačániová
Plants 2021, 10(7), 1416; https://doi.org/10.3390/plants10071416 - 11 Jul 2021
Cited by 43 | Viewed by 5890
Abstract
The aim of this study was to analyze the chemical composition and biological and antibiofilm activity of the essential oil (EO) of Thymus serpyllum with the use of a MALDI-TOF MS Biotyper. The main compounds of the EO were thymol, 18.8%; carvacrol, 17.4%; [...] Read more.
The aim of this study was to analyze the chemical composition and biological and antibiofilm activity of the essential oil (EO) of Thymus serpyllum with the use of a MALDI-TOF MS Biotyper. The main compounds of the EO were thymol, 18.8%; carvacrol, 17.4%; o-cymene, 15.4%; and geraniol, 10.7%. It was found that free-radical scavenging activity was high. The highest antimicrobial activity was observed against Pseudomonas aeruginosa, Salmonella enteritidis, and biofilm-forming bacteria. The changes in the biofilm structure after T. serpyllum EO application confirmed the inhibitory action and the most pronounced effect was observed on Bacillus subtilis biofilm. The antifungal activity of the vapor phase was the most effective against Penicillium crustosum. T. serpyllum should be a suitable alternative to synthetic antioxidants as well as antimicrobials. The EO of T. serpyllum can be used in the vapor phase in the storage of root vegetables as well as a growth inhibitor of Penicillium on bread. Full article
(This article belongs to the Special Issue Chemical Composition and Antimicrobial Activity of Essential Oils)
Show Figures

Graphical abstract

17 pages, 1650 KiB  
Article
Chitosan-Induced Activation of the Antioxidant Defense System Counteracts the Adverse Effects of Salinity in Durum Wheat
by Filippo Quitadamo, Vanessa De Simone, Romina Beleggia and Daniela Trono
Plants 2021, 10(7), 1365; https://doi.org/10.3390/plants10071365 - 3 Jul 2021
Cited by 36 | Viewed by 3470
Abstract
The present study was carried out with the aim of (i) evaluating the effect of chitosan (CTS) on the growth of durum wheat under salinity and (ii) examining CTS-regulated mechanisms of salinity tolerance associated with the antioxidant defense system. [...] Read more.
The present study was carried out with the aim of (i) evaluating the effect of chitosan (CTS) on the growth of durum wheat under salinity and (ii) examining CTS-regulated mechanisms of salinity tolerance associated with the antioxidant defense system. To achieve these goals, durum wheat seedlings were treated with CTS at different molecular weight, low (L-CTS, 50–190 kDa), medium (M-CTS, 190–310 kDa) and high (H-CTS, 310–375 kDa). The results obtained show that exposure to 200 mM NaCl reduced the shoot and the root dried biomass by 38% and 59%, respectively. The growth impairment induced by salinity was strongly correlated with an increase in the superoxide anion production (5-fold), hydrogen peroxide content (2-fold) and malondialdehyde (MDA) content (4-fold). Seedlings responded to the oxidative stress triggered by salinity with an increase in the total phenolic content (TPC), total flavonoid content (TFC) and total antioxidant activity (TAA) by 67%, 51% and 32%, respectively. A salt-induced increase in the activity of the antioxidant enzymes superoxide dismutase and catalase (CAT) of 89% and 86%, respectively, was also observed. Treatment of salt-stressed seedlings with exogenous CTS significantly promoted seedling growth, with the strongest effects observed for L-CTS and M-CTS, which increased the shoot biomass of stressed seedlings by 32% and 44%, respectively, whereas the root dried biomass increased by 87% and 64%, respectively. L-CTS and M-CTS treatments also decreased the superoxide anion production (57% and 59%, respectively), the hydrogen peroxide content (35% and 38%, respectively) and the MDA content (48% and 56%, respectively) and increased the TPC (23% and 14%, respectively), the TFC (19% and 10%, respectively), the TAA (up to 10% and 7%, respectively) and the CAT activity (29% and 20%, respectively). Overall, our findings indicate that CTS exerts its protective role against the oxidative damages induced by salinity by enhancing the antioxidant defense system. L-CTS and M-CTS were the most effective in alleviating the adverse effect of NaCl, thus demonstrating that the CTS action is strictly related to its molecular weight. Full article
(This article belongs to the Special Issue Responses of Durum Wheat to Abiotic Stress)
Show Figures

Figure 1

12 pages, 3000 KiB  
Article
Development of an Aus-Derived Nested Association Mapping (Aus-NAM) Population in Rice
by Justine K. Kitony, Hidehiko Sunohara, Mikako Tasaki, Jun-Ichi Mori, Akihisa Shimazu, Vincent P. Reyes, Hideshi Yasui, Yoshiyuki Yamagata, Atsushi Yoshimura, Masanori Yamasaki, Shunsaku Nishiuchi and Kazuyuki Doi
Plants 2021, 10(6), 1255; https://doi.org/10.3390/plants10061255 - 21 Jun 2021
Cited by 27 | Viewed by 5121
Abstract
A genetic resource for studying genetic architecture of agronomic traits and environmental adaptation is essential for crop improvements. Here, we report the development of a rice nested association mapping population (aus-NAM) using 7 aus varieties as diversity donors and T65 as [...] Read more.
A genetic resource for studying genetic architecture of agronomic traits and environmental adaptation is essential for crop improvements. Here, we report the development of a rice nested association mapping population (aus-NAM) using 7 aus varieties as diversity donors and T65 as the common parent. Aus-NAM showed broad phenotypic variations. To test whether aus-NAM was useful for quantitative trait loci (QTL) mapping, known flowering genes (Ehd1, Hd1, and Ghd7) in rice were characterized using single-family QTL mapping, joint QTL mapping, and the methods based on genome-wide association study (GWAS). Ehd1 was detected in all the seven families and all the methods. On the other hand, Hd1 and Ghd7 were detected in some families, and joint QTL mapping and GWAS-based methods resulted in weaker and uncertain peaks. Overall, the high allelic variations in aus-NAM provide a valuable genetic resource for the rice community. Full article
(This article belongs to the Special Issue Genetic Resources and Crop Improvement)
Show Figures

Figure 1

11 pages, 1663 KiB  
Article
Differential Detection of the Tobamoviruses Tomato Mosaic Virus (ToMV) and Tomato Brown Rugose Fruit Virus (ToBRFV) Using CRISPR-Cas12a
by Dan Mark Alon, Hagit Hak, Menachem Bornstein, Gur Pines and Ziv Spiegelman
Plants 2021, 10(6), 1256; https://doi.org/10.3390/plants10061256 - 21 Jun 2021
Cited by 56 | Viewed by 9721
Abstract
CRISPR/Cas12a-based detection is a novel approach for the efficient, sequence-specific identification of viruses. Here we adopt the use of CRISPR/Cas12a to identify the tomato brown rugose fruit virus (ToBRFV), a new and emerging tobamovirus which is causing substantial damage to the global tomato [...] Read more.
CRISPR/Cas12a-based detection is a novel approach for the efficient, sequence-specific identification of viruses. Here we adopt the use of CRISPR/Cas12a to identify the tomato brown rugose fruit virus (ToBRFV), a new and emerging tobamovirus which is causing substantial damage to the global tomato industry. Specific CRISPR RNAs (crRNAs) were designed to detect either ToBRFV or the closely related tomato mosaic virus (ToMV). This technology enabled the differential detection of ToBRFV and ToMV. Sensitivity assays revealed that viruses can be detected from 15–30 ng of RT-PCR product, and that specific detection could be achieved from a mix of ToMV and ToBRFV. In addition, we show that this method can enable the identification of ToBRFV in samples collected from commercial greenhouses. These results demonstrate a new method for species-specific detection of tobamoviruses. A future combination of this approach with isothermal amplification could provide a platform for efficient and user-friendly ways to distinguish between closely related strains and resistance-breaking pathogens. Full article
(This article belongs to the Special Issue Tobamoviruses and Interacting Viruses in Modern Agriculture)
Show Figures

Graphical abstract

15 pages, 12875 KiB  
Article
Impact of Ecklonia maxima Seaweed Extract and Mo Foliar Treatments on Biofortification, Spinach Yield, Quality and NUE
by Salvatore La Bella, Beppe Benedetto Consentino, Youssef Rouphael, Georgia Ntatsi, Claudio De Pasquale, Giovanni Iapichino and Leo Sabatino
Plants 2021, 10(6), 1139; https://doi.org/10.3390/plants10061139 - 3 Jun 2021
Cited by 42 | Viewed by 5186
Abstract
Seaweed extract (SE) application is a contemporary and sustainable agricultural practice used to improve yield and quality of vegetable crops. Plant biofortification with trace element is recognized as a major tool to prevent mineral malnourishment in humans. Mo deficiency causes numerous dysfunctions, mostly [...] Read more.
Seaweed extract (SE) application is a contemporary and sustainable agricultural practice used to improve yield and quality of vegetable crops. Plant biofortification with trace element is recognized as a major tool to prevent mineral malnourishment in humans. Mo deficiency causes numerous dysfunctions, mostly connected to central nervous system and esophageal cancer. The current research was accomplished to appraise the combined effect of Ecklonia maxima brown seaweed extract (SE) and Mo dose (0, 0.5, 2, 4 or 8 µmol L−1) on yield, biometric traits, minerals, nutritional and functional parameters, as well as nitrogen indices of spinach plants grown in a protected environment (tunnel). Head fresh weight (FW), ascorbic acid, polyphenols, N, P, K, Mg and nitrogen use efficiency (NUE) were positively associated with SE treatment. Moreover, head FW, head height (H), stem diameter (SD), ascorbic acid, polyphenols, carotenoids as well as NUE indices were enhanced by Mo-biofortification. A noticeable improvement in number of leaves (N. leaves), head dry matter (DM) and Mo concentration in leaf tissues was observed when SE application was combined with a Mo dosage of 4 or 8 µmol L−1. Overall, our study highlighted that E. maxima SE treatment and Mo supply can improve both spinach production and quality via the key enzyme activity involved in the phytochemical homeostasis of SE and the plant nutritional status modification resulting in an enhanced spinach Mo tolerance. Full article
(This article belongs to the Special Issue Biostimulants as Growth Promoting and Stress Protecting Compounds)
Show Figures

Figure 1

Back to TopTop