Patterns and Mechanisms of Legume Responses to Nitrogen Enrichment: A Global Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Dataset Construction
2.2. Meta-Analysis
2.3. Data Analysis
3. Results
3.1. A Comprehensive Analysis of the Responses of Legume Biomass, N Accumulation, and Symbiotic N2 Fixation to N Enrichment
3.2. Subgroup Analysis of the Impact of N Enrichment on Total Biomass of Leguminous Plants
3.3. Driving Patterns of Legume Responses to N Enrichment
4. Discussion
4.1. N Enrichment on a Global Scale Promotes the Growth of Leguminous Plants but Diminishes Their N2-Fixing Capabilities
4.2. The Impact of N Enrichment on Legumes Exhibits Context Dependency
4.3. Research Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gou, X.; Reich, P.B.; Qiu, L.; Shao, M.; Wei, G.; Wang, J.; Wei, X. Leguminous plants significantly increase soil N cycling across global climates and ecosystem types. Glob. Change Biol. 2023, 29, 4028–4043. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, L.; Baddeley, J.A.; Watson, C.A. Models of biological N fixation of legumes. In Sustainable Agriculture Volume 2; Springer: Dordrecht, The Netherlands, 2011; pp. 883–905. [Google Scholar]
- Guo, K.; Yang, J.; Yu, N.; Luo, L.; Wang, E. Biological N fixation in cereal crops: Progress, strategies, and perspectives. Plant Commun. 2022, 4, 100499. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, R.; Jiang, K.W.; Qi, J.; Hu, Y.; Guo, J.; Zhu, R.; Zhang, T.; Egan, A.N.; Yi, T.S.; et al. Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial N-fixing symbiosis in Fabaceae. Mol. Plant 2021, 14, 748–773. [Google Scholar] [CrossRef] [PubMed]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; et al. N cycles: Past, present, and future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P.; et al. Enhanced N deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef]
- Ackerman, D.; Millet, D.B.; Chen, X. Global estimates of inorganic N deposition across four decades. Glob. Biogeochem. Cycles 2019, 33, 100–107. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, L.; Yi, Y.; Wen, D. Elevated CO2 and N addition diminish the inhibitory effects of cadmium on leaf litter decomposition and nutrient release. Plant Soil 2023, 487, 311–324. [Google Scholar] [CrossRef]
- Peñuelas, J.; Poulter, B.; Sardans, J.; Ciais, P.; van der Velde, M.; Bopp, L.; Boucher, O.; Godderis, Y.; Hinsinger, P.; Llusia, J.; et al. Human-induced N-phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 2013, 4, 2934. [Google Scholar] [CrossRef]
- Ti, C.; Xia, L.; Chang, S.X.; Yan, X. Potential for mitigating global agricultural ammonia emission: A meta-analysis. Environ. Pollut. 2019, 245, 141–148. [Google Scholar] [CrossRef]
- Rasse, D.P. N deposition and atmospheric CO2 interactions on fine root dynamics in temperate forests: A theoretical model analysis. Glob. Change Biol. 2002, 8, 486–503. [Google Scholar] [CrossRef]
- Feng, M.; Yu, C.; Lin, L.G.; Wu, D.; Song, R.; Liu, H. Effects of water and N fertilizer on biomass distribution and water use efficiency of alfalfa (Medicago sativa) in Hexi Corridor. Chin. J. Eco-Agric. 2016, 24, 1623–1632. [Google Scholar]
- Gao, L.M.; Su, J.; Tian, Q.; Shen, Y. Effects of N application on N accumulation and root Nase activity in Medicago sativa at different soil water contents. Acta Pratacult. Sin. 2020, 29, 130. [Google Scholar]
- Wang, Y.-L.; Geng, Q.-Q.; Huang, J.-H.; Li, L.; Hasi, M.; Niu, G.-X.; Wang, C.-H. Effects of N addition and planting density on the growth and biological N fixation of Lespedeza davurica. Chin. J. Plant Ecol. 2021, 45, 13. [Google Scholar] [CrossRef]
- Lu, M.; Yang, Y.; Luo, Y.; Fang, C.; Zhou, X.; Chen, J.; Yang, X.; Li, B. Responses of ecosystem N cycle to N addition: A meta-analysis. New Phytol. 2011, 189, 1040–1050. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, N.; Tanabata, S.; Ohtake, N.; Sueyoshi, K.; Sato, T.; Higuchi, K.; Saito, A.; Ohyama, T. Effects of different chemical forms of nitrogen on the quick and reversible inhibition of soybean nodule growth and nitrogen fixation activity. Front Plant Sci 2019, 10, 131. [Google Scholar] [CrossRef] [PubMed]
- Namvar, A.; Sharifi, R.; Khandan, T.; Moghadam, M. Organic and inorganic N fertilization effects on some physiological and agronomical traits of chickpea (Cicer arietinum L.) in irrigated condition. J. Cent. Eur. Agric. 2013, 14, 28–40. [Google Scholar] [CrossRef]
- Di Paolo, E.; Garofalo, P.; Rinaldi, M. Irrigation and N fertilization treatments on productive and qualitative traits of broad bean (Vicia faba var. minor L.) in a Mediterranean environment. Legume Res.-Int. J. 2015, 38, 209–218. [Google Scholar] [CrossRef]
- Cheminingwa, G.N.; Muthomi, J.W.; Theuri, S.W.M. Effect of rhizobia inoculation and starter-N on nodulation, shoot biomass and yield of grain legumes. Asian J. Plant Sci. 2007, 6, 1113–1118. [Google Scholar]
- Ribeiro, V.H.V.; Maia, L.G.S.; Arneson, N.J.; Oliveira, M.C.; Read, H.W.; Ané, J.-M.; Santos, J.B.D.; Werle, R. Influence of PRE-emergence herbicides on soybean development, root nodulation and symbiotic N fixation. Crop Prot. 2021, 144, 105576. [Google Scholar] [CrossRef]
- Duan, N.; Li, Q.H.; Duo, P.Z.; Wang, J. Plant response to atmospheric N deposition: A research review. World For. Res. 2019, 32, 6–11. [Google Scholar]
- Lu, X.F.; Guo, J.Y.; Wang, B.; Yue, X. Effects of N addition on plant above and below-ground biomass allocation in terrestrial ecosystems in China. Acta Ecol. Sin. 2024, 44, 1313–1323. [Google Scholar]
- Hermans, C.; Hammond, J.P.; White, P.J.; Verbruggen, N. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci. 2006, 11, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Houlton, B.Z.; Wang, Y.P.; Vitousek, P.M.; Field, C.B. A unifying framework for diN fixation in the terrestrial biosphere. Nature 2008, 454, 327–330. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z. Plant Physiology, 2nd ed.; China Agriculture Press: Beijing, China, 2013; pp. 80–119. [Google Scholar]
- Guo, L.Y.; Miao, L.F.; Li, D.D.; Xiang, L.S.; Yang, F. Effects of nitrogen addition and warming on growth, development, and physiological characteristics of Dalbergia odorifera T. Chen seedlings. Plant Sci. J. 2022, 40, 259–268. [Google Scholar]
- Regus, J.U.; Wendlandt, C.E.; Bantay, R.M.; Gano-Cohen, K.A.; Gleason, N.J.; Hollowell, A.C.; O’neill, M.R.; Shahin, K.K.; Sachs, J.L. Nitrogen deposition decreases the benefits of symbiosis in a native legume. Plant Soil 2017, 414, 159–170. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, C.; Chen, H.Y.H.; Ruan, H. Responses of C: N stoichiometry in plants, soil, and microorganisms to nitrogen addition. Plant Soil 2020, 456, 277–287. [Google Scholar] [CrossRef]
- Holub, P.; Tůma, I. The effect of enhanced nitrogen on aboveground biomass allocation and nutrient resorption in the fern Athyrium distentifolium. Plant Ecol. 2010, 207, 373–380. [Google Scholar] [CrossRef]
- Fujita, Y.; Venterink, H.O.; Van Bodegom, P.M.; Douma, J.C.; Heil, G.W.; Hölzel, N.; Jabłońska, E.; Kotowski, W.; Okruszko, T.; Pawlikowski, P.; et al. Low investment in sexual reproduction threatens plants adapted to phosphorus limitation. Nature 2014, 505, 82–86. [Google Scholar] [CrossRef]
- Bloom, A.J.; Chapin, F.S.; Mooney, H.A. Resource limitation in plants—An economic analogy. Annu. Rev. Ecol. Syst. 1985, 16, 363–392. [Google Scholar] [CrossRef]
- Muller, I.; Schmid, B.; Weiner, J. The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspect. Plant Ecol. Evol. Syst. 2000, 3, 115–127. [Google Scholar] [CrossRef]
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol. 2012, 193, 30–50. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, H.; Huang, G.; Liu, R.; Wu, H.; Zhao, C.; McDowell, N.G. Effects of nitrogen enrichment on tree carbon allocation: A global synthesis. Glob. Ecol. Biogeogr. 2020, 29, 573–589. [Google Scholar] [CrossRef]
- Soumare, A.; Diedhiou, A.G.; Thuita, M.; Hafidi, M.; Ouhdouch, Y.; Gopalakrishnan, S.; Kouisni, L. Exploiting biological nitrogen fixation: A route towards a sustainable agriculture. Plants 2020, 9, 1011. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, G.; Huss-Danell, K. Nitrogen fixation in perennial forage legumes in the field. Plant Soil 2003, 253, 353–372. [Google Scholar] [CrossRef]
- Midolo, G.; Alkemade, R.; Schipper, A.M.; Benítez-López, A.; Perring, M.P.; De Vries, W. Impacts of nitrogen addition on plant species richness and abundance: A global meta-analysis. Glob. Ecol. Biogeogr. 2019, 28, 398–413. [Google Scholar] [CrossRef]
- Li, Q.; Huang, Y.X.; Zhou, D.W.; Cong, S. Mechanism of the trade-off between biological nitrogen fixation and phosphorus acquisition strategies of herbaceous legumes under nitrogen and phosphorus addition. Chin. J. Plant Ecol. 2021, 45, 286. [Google Scholar] [CrossRef]
- Gutschick, V.P. Evolved strategies in nitrogen acquisition by plants. Am. Nat. 1981, 118, 607–637. [Google Scholar] [CrossRef]
- Pate, J.S.; Layzell, D.B.; Miflin, B.J.; Lea, P.J. Energetics and biological costs of nitrogen assimilation. Biochem. Plants 1990, 16, 1–42. [Google Scholar]
- West, J.B.; HilleRisLambers, J.; Lee, T.D.; Hobbie, S.E.; Reich, P.B. Legume species identity and soil nitrogen supply determine symbiotic nitrogen-fixation responses to elevated atmospheric [CO2]. New Phytol. 2005, 167, 523–530. [Google Scholar] [CrossRef]
- Barron, A.R.; Purves, D.W.; Hedin, L.O. Facultative nitrogen fixation by canopy legumes in a lowland tropical forest. Oecologia 2011, 165, 511–520. [Google Scholar] [CrossRef]
- La Menza, N.C.; Monzon, J.P.; Specht, J.E.; Grassini, P. Is soybean yield limited by nitrogen supply? Field Crops Res. 2017, 213, 204–212. [Google Scholar] [CrossRef]
- He, Y.; Matthews, M.L. Seasonal climate conditions impact the effectiveness of improving photosynthesis to increase soybean yield. Field Crops Res. 2023, 296, 108907. [Google Scholar] [CrossRef] [PubMed]
- You, G.Y.; Zhang, Z.Y.; Zhang, R.D. Temperature sensitivity of photosynthesis and respiration in terrestrial ecosystems globally. Acta Ecol. Sin. 2018, 38, 8392–8399. [Google Scholar]
- Li, Y.; Tian, D.; Feng, G.; Yang, W.; Feng, L. Climate change and cover crop effects on water use efficiency of a corn-soybean rotation system. Agric. Water Manag. 2021, 255, 107042. [Google Scholar] [CrossRef]
- Montanez, A.; Danso, S.K.A.; Hardarson, G. The effect of temperature on nodulation and nitrogen fixation by five Bradyrhizobium japonicum strains. Appl. Soil Ecol. 1995, 2, 165–174. [Google Scholar] [CrossRef]
- Luo, Y.Q.; Reynolds, J.; Wang, Y.; Wolfe, D. A search for predictive understanding of plant responses to elevated [CO2]. Glob. Change Biol. 1999, 5, 143–156. [Google Scholar] [CrossRef]
- Drake, B.G.; Gonzàlez-Meler, M.A.; Long, S.P. More efficient plants: A consequence of rising atmospheric CO2? Annu. Rev. Plant Biol. 1997, 48, 609–639. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tan, N.D.; Wu, T.; Cheng, Y.; Liu, S.Z.; Fu, S.L.; Li, Y.Y.; Liu, J.X. Plant growth and C: N: P stoichiometey characteristics in response experimental warming in four co-occurring sub-tropical forest tree seedings. Acta Ecol. Sin. 2021, 41, 6146–6158. [Google Scholar]
- Qin, W.; Chen, Y.; Wang, X.; Zhao, H.; Hou, Y.; Zhang, Q.; Guo, X.; Zhang, Z.; Zhu, B. Whole-soil warming shifts species composition without affecting diversity, biomass and productivity of the plant community in an alpine meadow. Fundam. Res. 2023, 3, 160–169. [Google Scholar] [CrossRef]
- Jiang, L.X.; Li, S.; Li, X.F.; Zhang, L.; Du, C. Impacts of climate change on development and yield of soybean over past 30 years in Heilongjiang Province. Soybean Sci. 2011, 30, 921–926. [Google Scholar]
- Thomey, M.L.; Slattery, R.A.; Köhler, I.H.; Bernacchi, C.J.; Ort, D. Yield response of field-grown soybean exposed to heat waves under current and elevated [CO2]. Glob. Change Biol. 2019, 25, 4352–4368. [Google Scholar] [CrossRef] [PubMed]
- Luan, X.; Bommarco, R.; Scaini, A.; Vico, G. Combined heat and drought suppress rainfed maize and soybean yields and modify irrigation benefits in the USA. Environ. Res. Lett. 2021, 16, 064023. [Google Scholar] [CrossRef]
- Wang, D.; Qiao, Y.Z.; Dong, B.D.; Ge, J.; Yang, P.G.; Liu, M.Y. Differential effects of diurnal asymmetric and symmetric warming on yield and water utilization of soybean. Chin. J. Plant Ecol. 2016, 40, 827–833. [Google Scholar]
- Zhang, J.; Li, Y.; Yu, Z.; Xie, Z.; Liu, J.; Wang, G.; Liu, X.; Wu, J.; Stephen, J.H.; Jin, J. Nitrogen cycling in the crop-soil continuum in response to elevated atmospheric CO2 concentration and temperature-a review. Sci. Agric. Sin. 2021, 54, 1684–1701. [Google Scholar]
- Shi, L.; Lin, Z.; Wei, X.; Peng, C.; Yao, Z.; Han, B.; Xiao, Q.; Zhou, H.; Deng, Y.; Liu, K.; et al. Precipitation increase counteracts warming effects on plant and soil C: N: P stoichiometry in an alpine meadow. Front. Plant Sci. 2022, 13, 1044173. [Google Scholar] [CrossRef]
- Herridge, D.F.; Peoples, M.B.; Boddey, R.M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 2008, 311, 1–18. [Google Scholar] [CrossRef]
- Gundale, M.J.; Nilsson, M.; Bansal, S.; Jäderlund, A. The interactive effects of temperature and light on biological nitrogen fixation in boreal forests. New Phytol. 2012, 194, 453–463. [Google Scholar] [CrossRef]
- Rousk, K.; Sorensen, P.L.; Michelsen, A. Nitrogen fixation in the High Arctic: A source of ‘new’ nitrogen? Biogeochemistry 2017, 136, 213–222. [Google Scholar] [CrossRef]
- Ofosu-Budu, K.G.; Ogata, S.; Fujita, K. Temperature effects on root nodule activity and nitrogen release in some sub-tropical and temperate legumes. Soil Sci. Plant Nutr. 1992, 38, 717–726. [Google Scholar] [CrossRef]
- Sarkar, S.; Maity, R. Global climate shift in 1970s causes a significant worldwide increase in precipitation extremes. Sci. Rep. 2021, 11, 11574. [Google Scholar] [CrossRef]
- Lv, P.; Sun, S.; Zhao, X.; Li, Y.; Zhao, S.; Zhang, J.; Hu, Y.; Guo, A.; Yue, P.; Zuo, X. Effects of altered precipitation patterns on soil nitrogen transformation in different landscape types during the growing season in northern China. Catena 2023, 222, 106813. [Google Scholar] [CrossRef]
- Feldman, A.F.; Feng, X.; Felton, A.J.; Konings, A.G.; Knapp, A.K.; Biederman, J.A.; Poulter, B. Plant responses to changing rainfall frequency and intensity. Nat. Rev. Earth Environ. 2024, 5, 276–294. [Google Scholar] [CrossRef]
- Tuo, D.; Gao, G.; Chang, R.; Li, Z.; Ma, Y.; Wang, S.; Wang, C.; Fu, B. Effects of revegetation and precipitation gradient on soil carbon and nitrogen variations in deep profiles on the Loess Plateau of China. Sci. Total Environ. 2018, 626, 399–411. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Dijkstra, F.A. Drought effect on plant nitrogen and phosphorus: A meta-analysis. New Phytol. 2014, 204, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Dijkstra, P.; Koch, G.W.; Peñuelas, J.; Hungate, B.A. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Glob. Change Biol. 2011, 17, 927–942. [Google Scholar] [CrossRef]
- Zheng, M.; Zhou, Z.; Zhao, P.; Luo, Y.; Ye, Q.; Zhang, K.; Song, L.; Mo, J. Effects of human disturbance activities and environmental change factors on terrestrial nitrogen fixation. Glob. Change Biol. 2020, 26, 6203–6217. [Google Scholar] [CrossRef] [PubMed]
- Moyano, F.E.; Manzoni, S.; Chenu, C. Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models. Soil Biol. Biochem. 2013, 59, 72–85. [Google Scholar] [CrossRef]
- Gaju, O.; DeSilva, J.; Carvalho, P.; Hawkesford, M.J.; Griffiths, S.; Greenland, A.; Foulkes, M.J. Leaf photosynthesis and associations with grain yield, biomass and nitrogen-use efficiency in landraces, synthetic-derived lines and cultivars in wheat. Field Crops Res. 2016, 193, 1–15. [Google Scholar] [CrossRef]
- Joshi, J.; Stocker, B.D.; Hofhansl, F.; Zhou, S.; Dieckmann, U.; Prentice, I.C. Towards a unified theory of plant photosynthesis and hydraulics. Nat. Plants 2022, 8, 1304–1316. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, Y.; Yan, Y.; Hou, J.; Wang, H.; Luo, N.; Wei, D.; Meng, Q.; Wang, P. Mitigating heat impacts on photosynthesis by irrigation during grain filling in the maize field. J. Integr. Agric. 2023, 22, 2370–2383. [Google Scholar] [CrossRef]
- Diatta, A.A.; Min, D.; Jagadish, S.V.K. Drought stress responses in non-transgenic and transgenic alfalfa—Current status and future research directions. Adv. Agron. 2021, 170, 35–100. [Google Scholar]
- Truman, C.C.; Strickland, T.C.; Potter, T.L.; Franklin, D.; Bosch, D.; Bednarz, C. Variable rainfall intensity and tillage effects on runoff, sediment, and carbon losses from a loamy sand under simulated rainfall. J. Environ. Qual. 2007, 36, 1495–1502. [Google Scholar] [CrossRef] [PubMed]
- Quinn Thomas, R.; Canham, C.D.; Weathers, K.C.; Goodale, C.L. Increased tree carbon storage in response to nitrogen deposition in the US. Nat. Geosci. 2010, 3, 13–17. [Google Scholar] [CrossRef]
- Wang, X.Y.; Xu, Y.X.; Li, C.H.; Yu, H.L.; Huang, J.Y. Changes of plant biomass, species diversity, and their influencing factors in a desert steppe of northwestern China under long-term changing precipitation. Chin. J. Plant Ecol. 2023, 47, 479. [Google Scholar] [CrossRef]
- Gei, M.; Rozendaal, D.M.A.; Poorter, L.; Bongers, F.; Sprent, J.I.; Garner, M.D.; Aide, T.M.; Andrade, J.L.; Balvanera, P.; Becknell, J.M.; et al. Legume abundance along successional and rainfall gradients in Neotropical forests. Nat. Ecol. Evol. 2018, 2, 1104–1111. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; McDowell, N.G.; Adams, H.D.; Wang, A.; Wu, J.; Jin, C.; Tian, J.; Zhu, K.; Li, W.; Zhang, Y.; et al. Divergences in hydraulic conductance and anatomical traits of stems and leaves in three temperate tree species coping with drought, N addition and their interactions. Tree Physiol. 2019, 40, 230–244. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, X.; Guan, D.; Wang, A.; Yuan, F.; Wu, J. Nitrogen nutrition addition mitigated drought stress by improving carbon exchange and reserves among two temperate trees. Agric. For. Meteorol. 2021, 311, 108693. [Google Scholar] [CrossRef]
- Lozano, Y.M.; Aguilar-Trigueros, C.A.; Flaig, I.C.; Rillig, M.C. Root trait responses to drought depend on plant functional group. bioRxiv 2019. preprint. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, F.; Yi, Q.; Zhang, X.; Chen, S.; Zheng, J.; Li, J.; Xu, T.; Peng, D. Modeling soybean cultivation suitability in China and its future trends in climate change scenarios. J. Environ. Manag. 2023, 345, 118934. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Zomer, R.J.; Xu, J.; Trabucco, A. Version 3 of the global aridity index and potential evapotranspiration database. Sci. Data 2022, 9, 409. [Google Scholar] [CrossRef] [PubMed]
- Hou, E.; Luo, Y.; Kuang, Y.; Chen, C.; Lu, X.; Jiang, L.; Luo, X.; Wen, D. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 2020, 11, 637. [Google Scholar] [CrossRef]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The meta-analysis of response ratios in experimental ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res. Synth. Methods 2010, 1, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Bai, E.; Li, S.; Xu, W.; Li, W.; Dai, W.; Jiang, P. A meta-analysis of experimental warming effects on terrestrial N pools and dynamics. New Phytol. 2013, 199, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Chen, W.; Wang, J.; Du, N.; Li, Q.; Wei, G. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome 2018, 6, 146. [Google Scholar] [CrossRef]
- Yong, T.; Yang, W.; Xiang, D.; Chen, X.-R.; Wan, Y. Production and N nutrient performance of wheat-maize-soybean relay strip intercropping system and evaluation of interspecies competition. Acta Pratacult. Sin. 2012, 21, 50. [Google Scholar]
- Fageria, N.K.; Melo, L.C.; Carvalho, M.C.S. Influence of nitrogen on growth, yield, and yield components and nitrogen uptake and use efficiency in dry bean genotypes. Commun. Soil Sci. Plant Anal. 2015, 46, 2395–2410. [Google Scholar] [CrossRef]
- Dyhrman, S.T.; Chappell, P.D.; Haley, S.T.; Moffett, J.W.; Orchard, E.D.; Waterbury, J.B.; Webb, E.A. Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature 2006, 439, 68–71. [Google Scholar] [CrossRef]
- McCoy, J.M.; Kaur, G.; Golden, B.R.; Orlowski, J.M.; Cook, D.R.; Bond, J.A.; Cox, M.S. Nitrogen fertilization of soybean affects root growth and nodulation on two soil types in Mississippi. Commun. Soil Sci. Plant Anal. 2018, 49, 181–187. [Google Scholar] [CrossRef]
- Wu, F.Z.; Bao, W.K.; Wu, N. Growth, accumulation and partitioning of biomass, C, N and P of Sophora davidii seedlings in response to N supply in dry valley of upper Minjiang River. Acta Ecol. Sin. 2008, 28, 3817–3824. [Google Scholar]
- Li, W.; Jin, C.; Guan, D.; Wang, Q.; Wang, A.; Yuan, F.; Wu, J. The effects of simulated nitrogen deposition on plant root traits: A meta-analysis. Soil Biol. Biochem. 2015, 82, 112–118. [Google Scholar] [CrossRef]
- Gomes, A.L.; Revermann, R.; Meller, P.; Gonçalves, F.M.P.; Aidar, M.P.M.; Lages, F.; Finckh, M. Functional traits and symbiotic associations of geoxyles and trees explain the dominance of detarioid legumes in miombo ecosystems. New Phytol. 2021, 230, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Nasto, M.K.; Alvarez-Clare, S.; Lekberg, Y.; Sullivan, B.W.; Townsend, A.R.; Cleveland, C.C. Interactions among nitrogen fixation and soil phosphorus acquisition strategies in lowland tropical rain forests. Ecol. Lett. 2014, 17, 1282–1289. [Google Scholar] [CrossRef]
- Adams, M.A.; Turnbull, T.L.; Sprent, J.I.; Buchmann, N. Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency. Proc. Natl. Acad. Sci. USA 2016, 113, 4098–4103. [Google Scholar] [CrossRef]
- Bhaskar, R.; Porder, S.; Balvanera, P.; Edwards, E. Ecological and evolutionary variation in community nitrogen use traits during tropical dry forest secondary succession. Ecology 2016, 97, 1194–1206. [Google Scholar] [CrossRef]
- Thompson, J.; Proctor, J.; Viana, V.; Milliken, W.; Ratter, J.A.; Scott, D.A. Ecological studies on a lowland evergreen rain forest on Maraca Island, Roraima, Brazil. I. Physical environment, forest structure and leaf chemistry. J. Ecol. 1992, 80, 689–703. [Google Scholar] [CrossRef]
- Martinelli, L.A.; Piccolo, M.C.; Townsend, A.R.; PVitousek, M.; Cuevas, E.; McDowell, W.; Robertson, G.P.; Santos, O.C.; Treseder, K. Nitrogen stable isotopic composition of leaves and soil: Tropical versus temperate forests. Biogeochemistry 1999, 46, 45–65. [Google Scholar] [CrossRef]
- Nardoto, G.B.; Ometto, J.P.H.B.; Ehleringer, J.R.; Higuchi, N.; Bustamante, M.M.d.C.; Martinelli, L.A. Understanding the influences of spatial patterns on N availability within the Brazilian Amazon forest. Ecosystems 2008, 11, 1234–1246. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Zhang, H.; Yang, Z.; Zhu, Q.; Yan, B.; Fei, J.; Rong, X.; Peng, J.; Luo, G. Intercropping-driven nitrogen trade-off enhances maize productivity in a long-term experiment. Field Crops Res. 2022, 287, 108671. [Google Scholar] [CrossRef]
- Bray, E.A. Plant response to water deficit. Trends Plant Sci. 1997, 2, 48–54. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ju, W.; Chen, J.M.; Ciais, P.; Cescatti, A.; Sardans, J.; Janssens, I.A.; Wu, M.; Berry, J.A.; et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 2020, 370, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.E.; Meacham-Hensold, K.; Lemonnier, P.; Slattery, R.A.; Benjamin, C.; Bernacchi, C.J.; Lawson, T.; Cavanagh, A. The effect of increasing temperature on crop photosynthesis: From enzymes to ecosystems. J. Exp. Bot. 2021, 72, 2822–2844. [Google Scholar] [CrossRef] [PubMed]
- Cookson, W.R.; Osman, M.; Marschner, P.; Abaye, D.; Clark, I.; Murphy, D.; Stockdale, E.; Watson, C. Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature. Soil Biol. Biochem. 2007, 39, 744–756. [Google Scholar] [CrossRef]
- Zheng, H.; Chen, L.; Han, X. Response of soybean yield to daytime temperature change during seed filling: A long-term field study in Northeast China. Plant Prod. Sci. 2009, 12, 526–532. [Google Scholar] [CrossRef]
- Zong, N.; Shi, P.; Song, M.; Zhang, X.; Jiang, J.; Chai, X. Nitrogen critical loads for an alpine meadow ecosystem on the Tibetan Plateau. Environ. Manag. 2016, 57, 531–542. [Google Scholar] [CrossRef]
- Shen, H.; Dong, S.; DiTommaso, A.; Li, S.; Xiao, J.; Yang, M.; Zhang, J.; Gao, X.; Xu, Y.; Zhi, Y.; et al. Eco-physiological processes are more sensitive to simulated N deposition in leguminous forbs than non-leguminous forbs in an alpine meadow of the Qinghai-Tibetan Plateau. Sci. Total Environ. 2020, 744, 140612. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.G.; Wu, M.; Liu, L.; Xiao, J.-H. Seasonal variations of leaf nitrogen and phosphorus stoichiometry of three herbaceous species in Hangzhou Bay coastal wetlands, China. Chin. J. Plant Ecol. 2010, 34, 23. [Google Scholar]
- Lima, J.D.; Da Matta, F.M.; Mosquim, P.R. Growth attributes, xylem sap composition, and photosynthesis in common bean as affected by nitrogen and phosphorus deficiency. J. Plant Nutr. 2000, 23, 937–947. [Google Scholar] [CrossRef]
- Andersen, M.K.; Hauggaard-Nielsen, H.; Ambus, P.; Jensen, E.S. Biomass production, symbiotic nitrogen fixation and inorganic N use in dual and tri-component annual intercrops. Plant Soil 2005, 266, 273–287. [Google Scholar] [CrossRef]
- Li, S.X.; Wang, Z.H.; Hu, T.T.; Gao, Y.J.; Stewart, B.A. Nitrogen in dryland soils of China and its management. Adv. Agron. 2009, 101, 123–181. [Google Scholar]
- Marchal, K.; Vanderleyden, J. The “oxygen paradox” of dinitrogen-fixing bacteria. Biol. Fertil. Soils 2000, 30, 363–373. [Google Scholar] [CrossRef]
- Lyu, X.; Sun, C.; Zhang, J.; Wang, C.; Zhao, S.; Ma, C.; Li, S.; Li, H.; Gong, Z.; Yan, C. Integrated proteomics and metabolomics analysis of nitrogen system regulation on soybean plant nodulation and nitrogen fixation. Int. J. Mol. Sci. 2022, 23, 2545. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, X.; Wang, N.; Li, S.; Yao, X.; Kuang, H.; Qiu, Z.; Ke, D.; Yang, W.; Guan, Y. Nitrogen inhibition of nitrogenase activity involves the modulation of cytosolic invertase in soybean nodule. J. Genet. Genom. 2024, in press. [CrossRef] [PubMed]
- Menge, D.N.L.; Wolf, A.A.; Funk, J.L. Diversity of nitrogen fixation strategies in Mediterranean legumes. Nat. Plants 2015, 1, 15064. [Google Scholar] [CrossRef]
- De Ronde, J.A.; Cress, W.A.; Krüger, G.H.J.; Strasser, R.J.; Van Staden, J. Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J. Plant Physiol. 2004, 161, 1211–1224. [Google Scholar] [CrossRef] [PubMed]
- Garg, N.; Singla, R.; Geetanjali. Nitrogen fixation and carbon metabolism in legume nodules. Indian J. Exp. Biol. 2004, 42, 138–142. [Google Scholar]
- Djekoun, A.; Planchon, C. Water status effect on dinitrogen fixation and photosynthesis in soybean. Agron. J. 1991, 83, 316–322. [Google Scholar] [CrossRef]
- Serraj, R.; Sinclair, T.R.; Purcell, L.C. Symbiotic N2 fixation response to drought. J. Exp. Bot. 1999, 50, 143–155. [Google Scholar] [CrossRef]
- Valentine, A.J.; Benedito, V.A.; Kang, Y. Abiotic stress in legume N2 fixation: From physiology to genomics and beyond. Annu. Plant Rev. 2010, 42, 207–248. [Google Scholar]
- Joseph, J.; Luster, J.; Bottero, A.; Buser, N.; Baechli, L.; Sever, K.; Gessler, A. Effects of drought on nitrogen uptake and carbon dynamics in trees. Tree Physiol. 2021, 41, 927–943. [Google Scholar] [CrossRef] [PubMed]
- Reed, S.C.; Cleveland, C.C.; Townsend, A.R. Functional ecology of free-living nitrogen fixation: A contemporary perspective. Annu. Rev. Ecol. Evol. Syst. 2011, 42, 489–512. [Google Scholar] [CrossRef]
- Robson, R.L.; Postgate, J.R. Oxygen and hydrogen in biological nitrogen fixation. Annu. Rev. Microbiol. 1980, 34, 183–207. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.-G.; Zhao, X.; Li, A.-X.; Li, X.-R.; Huang, G. Nitrogen fixation in biological soil crusts from the Tengger desert, northern China. Eur. J. Soil Biol. 2011, 47, 182–187. [Google Scholar] [CrossRef]
- Schulte Uebbing, L.; De Vries, W. Global-scale impacts of nitrogen deposition on tree carbon sequestration in tropical, temperate, and boreal forests: A meta-analysis. Glob. Change Biol. 2018, 24, E416–E431. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Vitousek, P.M.; Mao, Q.; Gilliam, F.S.; Luo, Y.Q.; Zhou, G.Y.; Zou, X.; Bai, E.; Scanlon, T.M.; Hou, E. Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest. Proc. Natl. Acad. Sci. USA 2018, 115, 5187–5192. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Terrer, C.; Berdugo, M.; Maestre, F.T.; Zhu, Z.; Peñuelas, J.; Yu, K.; Luo, L.; Gong, J.-Y.; Ye, J.-S. Nitrogen addition delays the emergence of an aridity-induced threshold for plant biomass. Natl. Sci. Rev. 2023, 10, nwad242. [Google Scholar] [CrossRef]
- Virk, G.; Snider, J.L.; Chee, P.; Jespersen, D.; Pilon, C.; Rains, G.; Roberts, P.; Kaur, N.; Ermanis, A.; Tishchenko, V. Extreme temperatures affect seedling growth and photosynthetic performance of advanced cotton genotypes. Ind. Crops Prod. 2021, 172, 114025. [Google Scholar] [CrossRef]
- Duzan, H.M.; Mabood, F.; Souleimanov, A.; Smith, D.L. Nod Bj-V (C18: 1, Me Fuc) production by Bradyrhizobium japonicum (USDA110, 532C) at suboptimal growth temperatures. J. Plant Physiol. 2006, 163, 107–111. [Google Scholar] [CrossRef]
- D’Amours, E.; Bertrand, A.; Cloutier, J.; Chalifour, F.; Claessens, A.; Rocher, S.; Bipfubusa, M.; Giroux, C.; Beauchamp, C.J. Selection of rhizobial strains differing in their nodulation kinetics under low temperature in four temperate legume species. Grassl. Res. 2023, 2, 197–211. [Google Scholar] [CrossRef]
- Näsholm, T.; Kielland, K.; Ganeteg, U. Uptake of organic nitrogen by plants. New Phytol. 2009, 182, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, J.; Muller, C.; Cai, Z. Temperature sensitivity of gross N transformation rates in an alpine meadow on the Qinghai-Tibetan Plateau. J. Soils Sediments 2017, 17, 423–431. [Google Scholar] [CrossRef]
- Wu, C.Z.; Pu, W.X.; Sheng, S.; Xiang, Y.; Yang, W.; Li, W.; Huang, P.; Liu, L. Research Advance on Molecular Physiological Mechanisms of the Effect of Suboptimal Low Temperatures on Plant Growth and Nitrogen Nutrition. J. Agric. Sci. Technol. 2023, 25, 16–25. [Google Scholar]
- Laine, P.; Ourry, A.; Macduff, J.; Boucaud, J.; Salette, J. Kinetic parameters of nitrate uptake by different catch crop species: Effects of low temperatures or previous nitrate starvation. Physiol. Plant. 1993, 88, 85–92. [Google Scholar] [CrossRef]
- Wang, M.Y.; Glass AD, M.; Shaff, J.E.; Kochian, L.V. Ammonium uptake by rice roots (III. Electrophysiology). Plant Physiol. 1994, 104, 899–906. [Google Scholar] [CrossRef]
- Bregliani, M.M.; Ros, G.H.; Temminghoff, E.J.M.; van Riemsdijk, W.H. Nitrogen mineralization in soils related to initial extractable organic nitrogen: Effect of temperature and time. Commun. Soil Sci. Plant Anal. 2010, 41, 1383–1398. [Google Scholar] [CrossRef]
- Fan, F.; Xu, S.J.; Zhang, Q.G.; He, F.Y.; Hou, M.H.; Song, X.F. Study on relativity between alfalfa’s yields and nutrition constituent effect of nitrogen, phosphorus and potassium fertilizer. Soil Fertil. Sci. China 2011, 2, 51. [Google Scholar]
- Yan, H.; Wu, Q.; Ding, J.; Zhang, S.R. Effects of precipitation and nitrogen addition on photosynthetically eco-physiological characteristics and biomass of four tree seedlings in Gutian Mountain, Zhejiang Province, China. Acta Ecol. Sin. 2013, 33, 4226–4236. [Google Scholar] [CrossRef]
- Prentice, I.C.; Dong, N.; Gleason, S.M.; Maire, V.; Wright, I.J. Balancing the costs of carbon gain and water transport: Testing a new theoretical framework for plant functional ecology. Ecol. Lett. 2014, 17, 82–91. [Google Scholar] [CrossRef]
- Zhu, K.; Zuo, Q.; Liu, F.; Qin, J.; Wang, A.; Zhang, J.; Flexas, J. Divergences in leaf CO2 diffusion conductance and water use efficiency of soybean coping with water stress and its interaction with N addition. Environ. Exp. Bot. 2024, 217, 105572. [Google Scholar] [CrossRef]
- Akibode, S.; Maredia, M. Global and Regional Trends in Production, Trade and Consumption of Food Legume Crops. Staff Paper Series. 2012. Available online: https://ageconsearch.umn.edu/record/136293 (accessed on 15 June 2024).
- Xie, Y.X.; Xu, H.; Chen, J.; Lu, J.; Li, Y. Effects of varied soil nitrogen and phosphorus concentrations on the growth and biomass allocation of three leguminous tree seedlings. Plant Sci. J. 2019, 37, 662–671. [Google Scholar]
- Xiong, D.; Huang, J.; Yang, Z.; Cai, Y.; Lin, T.-C.; Liu, X.; Xu, C.; Chen, S.; Chen, G.; Xie, J. The effects of warming and nitrogen addition on fine root exudation rates in a young Chinese-fir stand. For. Ecol. Manag. 2020, 458, 117793. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, Y.; Zhang, Y.; Cui, Y.; Wu, J.; Zhang, W.; Wang, D.; Zou, J. Interactions between nitrogen and phosphorus in modulating soil respiration: A meta-analysis. Sci. Total Environ. 2023, 905, 167346. [Google Scholar] [CrossRef] [PubMed]
- Gebremikael, M.T.; Steel, H.; Buchan, D.; Bert, W.; De Neve, S. Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions. Sci. Rep. 2016, 6, 32862. [Google Scholar] [CrossRef]
- Martinez, L.; Wu, S.; Baur, L.; Patton, M.T.; Owen-Smith, P.; Collins, S.L.; Rudgers, J.A. Soil nematode assemblages respond to interacting environmental changes. Oecologia 2023, 202, 481–495. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Yu, C.B.; Cheng, X.; Li, C.J.; Sun, J.H.; Zhang, F.S.; Lambers, H.; Li, L. Intercropping alleviates the inhibitory effect of N fertilization on nodulation and symbiotic N2 fixation of faba bean. Plant Soil 2009, 323, 295–308. [Google Scholar] [CrossRef]
- Li, K.; Liu, X.; Song, L.; Gong, Y.; Lu, C.; Yue, P.; Tian, C.; Zhang, F. Response of alpine grassland to elevated nitrogen deposition and water supply in China. Oecologia 2015, 177, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Zong, N.; Zhao, G.; Shi, P. Different sensitivity and threshold in response to nitrogen addition in four alpine grasslands along a precipitation transect on the Northern Tibetan Plateau. Ecol. Evol. 2019, 9, 9782–9793. [Google Scholar] [CrossRef] [PubMed]
- Stevens, C.J.; Lind, E.M.; Hautier, Y.; Harpole, W.S.; Borer, E.T.; Hobbie, S.; Seabloom, E.W.; Ladwig, L.; Bakker, J.D.; Chu, C.; et al. Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology 2015, 96, 1459–1465. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Zhao, Q.; Liao, H. Genetic improvement of legume roots for adaption to acid soils. Crop J. 2023, 11, 1022–1033. [Google Scholar] [CrossRef]
- Qin, L.; Zhao, J.; Tian, J.; Chen, L.; Sun, Z.; Guo, Y.; Lu, X.; Gu, M.; Xu, G.; Liao, H. The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean. Plant Physiol. 2012, 159, 1634–1643. [Google Scholar] [CrossRef] [PubMed]
- Ashton, I.W.; Miller, A.E.; Bowman, W.D.; Suding, K.N. Niche complementarity due to plasticity in resource use: Plant partitioning of chemical N forms. Ecology 2010, 91, 3252–3260. [Google Scholar] [CrossRef] [PubMed]
- Chantigny, M.H. Dissolved and water-extractable organic matter in soils: A review on the influence of land use and management practices. Geoderma 2003, 113, 357–380. [Google Scholar] [CrossRef]
- Liu, W.T.; Wang, Y.Q.; Sun, S.N.; Zhao, Y.; Shen, Y. Effects of nitro nitrogen forms on nitrogen accumulation and utilization of alfalfa in different stubbles. Pratacult. Sci. 2021, 38, 716–725. [Google Scholar]
- Maeda, S.; Konishi, M.; Yanagisawa, S.; Omata, T. Nitrite transport activity of a novel HPP family protein conserved in cyanobacteria and chloroplasts. Plant Cell Physiol. 2014, 55, 1311–1324. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Xiao, H. Impacts of alien plant invasions on biodiversity and evolutionary responses of native species. Biodivers. Sci. 2010, 18, 622–630. [Google Scholar]
- Mealor, B.A.; Hild, A.L. Post-invasion evolution of native plant populations: A test of biological resilience. Oikos 2010, 116, 1493–1500. [Google Scholar] [CrossRef]
- Gan, Y.B.; Stulen, I.; van Keulen, H.; Kuiper, P.J.C. Low concentrations of nitrate and ammonium stimulate nodulation and N2 fixation while inhibiting specific nodulation (nodule DW g−1 root dry weight) and specific N2 fixation (N2 fixed g−1 root dry weight) in soybean. Plant Soil 2004, 258, 281–292. [Google Scholar] [CrossRef]
- Huang, Y.N.; Wang, D.L.; Su, Y.H. Effects of Low pH on Response of Legume Crops to Nitrogen Forms. Soils 2021, 53, 929–936. [Google Scholar]
- Kalbitz, K.; Solinger, S.; Park, J.H.; Michalzik, B.; Matzner, E. Controls on the dynamics of dissolved organic matter in soils: A review. Soil Sci. 2000, 165, 277–304. [Google Scholar] [CrossRef]
- Kalske, A.; Blande, J.D.; Ramula, S. Soil microbiota explain differences in herbivore resistance between native and invasive populations of a perennial herb. J. Ecol. 2022, 110, 2649–2660. [Google Scholar] [CrossRef]
- Coskun, D.; Britto, D.T.; Shi, W.; Kronzucker, H.J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat. Plants 2017, 3, 17074. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, K.; Neill, C.; Davidson, E.A.; Macedo, M.N.; Costa, C.; Galford, G.L.; Santos, L.M.; Lefebvre, P.; Nunes, D.; Cerri, C.E.P.; et al. Deep soils modify environmental consequences of increased nitrogen fertilizer use in intensifying Amazon agriculture. Sci. Rep. 2018, 8, 13478. [Google Scholar] [CrossRef] [PubMed]
- Butterbach Bahl, K.; Dannenmann, M. Denitrification and associated soil N2O emissions due to agricultural activities in a changing climate. Curr. Opin. Environ. Sustain. 2011, 3, 389–395. [Google Scholar] [CrossRef]
- Fan, C.; Li, B.; Xiong, Z. Nitrification inhibitors mitigated reactive gaseous N intensity in intensive vegetable soils from China. Sci. Total Environ. 2018, 612, 480–489. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, G.; Bol, R.; Wang, L.; Zhuge, Y.; Wu, W.; Li, H.; Meng, F. Influences of irrigation and fertilization on soil N cycle and losses from wheat-maize cropping system in northern China. Environ. Pollut. 2021, 278, 116852. [Google Scholar] [CrossRef]
- Peoples, M.B.; Brockwell, J.; Herridge, D.F.; Rochester, I.J.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M.; Dakora, F.D.; Bhattarai, S.; Maskey, S.L.; et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 2009, 48, 1–17. [Google Scholar] [CrossRef]
- Paynel, F.; Murray, P.J.; Bernard Cliquet, J. Root exudates: A pathway for short-term N transfer from clover and ryegrass. Plant Soil 2001, 229, 235–243. [Google Scholar] [CrossRef]
- Wang, T.; Guo, J.; Peng, Y.; Lyu, X.; Liu, B.; Sun, S.; Wang, X. Light-induced mobile factors from shoots regulate rhizobium-triggered soybean root nodulation. Science 2021, 374, 65–71. [Google Scholar] [CrossRef]
- Yu, Z.; Li, Y.; Wang, G.; Tang, C.; Wang, Y.; Liu, J.; Liu, X.; Jin, J. Elevated CO2 alters the abundance but not the structure of diazotrophic community in the rhizosphere of soybean grown in a Mollisol. Biol. Fertil. Soils 2018, 54, 877–881. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Li, W.; Wei, T.; Huang, R.; Zeng, Z. Patterns and Mechanisms of Legume Responses to Nitrogen Enrichment: A Global Meta-Analysis. Plants 2024, 13, 3244. https://doi.org/10.3390/plants13223244
Tang J, Li W, Wei T, Huang R, Zeng Z. Patterns and Mechanisms of Legume Responses to Nitrogen Enrichment: A Global Meta-Analysis. Plants. 2024; 13(22):3244. https://doi.org/10.3390/plants13223244
Chicago/Turabian StyleTang, Juan, Wei Li, Ting Wei, Ruilong Huang, and Zhuanfei Zeng. 2024. "Patterns and Mechanisms of Legume Responses to Nitrogen Enrichment: A Global Meta-Analysis" Plants 13, no. 22: 3244. https://doi.org/10.3390/plants13223244
APA StyleTang, J., Li, W., Wei, T., Huang, R., & Zeng, Z. (2024). Patterns and Mechanisms of Legume Responses to Nitrogen Enrichment: A Global Meta-Analysis. Plants, 13(22), 3244. https://doi.org/10.3390/plants13223244