Phenolic Fractions from Walnut Milk Residue: Antioxidant Activity and Cytotoxic Potential
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolic Content
2.2. Antioxidant Activity
2.3. Identification and Quantification of Phenolic Compounds from WMR
2.4. Cytotoxicity Against the Human Intestinal Cell Line (Caco-2)
3. Materials and Methods
3.1. Raw Material
3.2. Solvents, Chemical Reagents, and Standards
3.3. Walnut Processing Residues Preparation
3.4. Phenolic Fractions Extraction
3.4.1. Soluble Phenolic Compounds Fractions Extraction
3.4.2. Insoluble-Bound Phenolic Hydrolysates
3.5. Total Phenolic Compounds (TPCs)
3.6. Ferric Reducing Antioxidant Power (FRAP)
3.7. Oxygen Radical Absorbance Capacity (ORAC)
3.8. UPLC-ESI-MS/MS Analysis from WMR
3.9. Cell Culture
3.10. 3-[4,5-Dimethylthiazol-2-yl]-2,5-Diphenyltetrazolium Bromide (MTT) Cell Viability Assay
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdallah, I.B.; Tlili, N.; Martinez-Force, E.; Rubio, A.G.P.; Perez-Camino, M.C.; Albouchi, A.; Boukhchina, S. Content of carotenoids, tocopherols, sterols, triterpenic and aliphatic alcohols, and volatile compounds in six walnuts (Juglans regia L.) varieties. Food Chem. 2015, 173, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Croitoru, A.; Ficai, D.; Craciun, L.; Ficai, A.; Andronescu, E. Evaluation and exploitation of bioactive compounds of walnut, Juglans regia. Curr. Pharm. Des. 2019, 25, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhong, L.; Yang, H.; Zhu, F.; Hou, X.; Wu, C.; Zhang, R.; Cheng, Y. Comparative analysis of antioxidant activities between dried and fresh walnut kernels by metabolomic approaches. LWT 2022, 155, 112875. [Google Scholar] [CrossRef]
- Shahidi, F.; Pinaffi-Langley, A.C.C.; Fuentes, J.; Speisky, H.; De Camargo, A.C. Vitamin E as an essential micronutrient for human health: Common, novel, and unexplored dietary sources. Free Radic. Biol. Med. 2021, 176, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Shen, D.; Wang, R.; Li, Q.; Mo, R.; Zheng, Y.; Zhou, Y.; Liu, Y. Phenolic profiles and antioxidant activities of free, esterified and bound phenolic compounds in walnut kernel. Food Chem. 2021, 350, 129217. [Google Scholar] [CrossRef]
- Alasalvar, C.; Huang, G.; Bolling, B.W.; Jantip, P.A.; Pegg, R.B.; Wong, X.K.; Chang, S.K.; Pelvan, E.; de Camargo, A.C.; Mandalari, G.; et al. Upcycling commercial nut byproducts for food, nutraceutical, and pharmaceutical applications: A comprehensive review. Food Chem. 2024, 467, 142222. [Google Scholar] [CrossRef]
- Carvalho, M.; Ferreira, P.J.; Mendes, V.S.; Silva, R.; Pereira, J.A.; Jerónimo, C.; Silva, B.M. Human cancer cell antiproliferative and antioxidant activities of Juglans regia L. Food Chem. Toxicol. 2010, 48, 441–447. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Hernández-Alonso, P.; Drouin-Chartier, J.-P.; Ruiz-Canela, M.; Razquin, C.; Toledo, E.; Li, J.; Dennis, C.; Wittenbecher, C.; Corella, D.; et al. Walnut consumption, plasma metabolomics, and risk of type 2 diabetes and cardiovascular disease. J. Nutr. 2021, 151, 303–311. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M. Walnuts decrease risk of cardiovascular disease: A summary of efficacy and biologic mechanisms. J. Nutr. 2014, 144, 547S–554S. [Google Scholar] [CrossRef]
- Ni, Z.-J.; Zhang, Y.-G.; Chen, S.-X.; Thakur, K.; Wang, S.; Zhang, J.-G.; Shang, Y.-F.; Wei, Z.-J. Exploration of walnut components and their association with health effects. Crit. Rev. Food Sci. Nutr. 2022, 62, 5113–5129. [Google Scholar] [CrossRef]
- De Camargo, A.C.; Regitano-d’Arce, M.A.B.; Shahidi, F. Phenolic profile of peanut by-products: Antioxidant potential and inhibition of alpha-glucosidase and lipase activities. J. Am. Oil Chem. Soc. 2017, 94, 959–971. [Google Scholar] [CrossRef]
- Zhang, Y.-G.; Kan, H.; Chen, S.-X.; Thakur, K.; Wang, S.; Zhang, J.-G.; Shang, Y.-F.; Wei, Z.-J. Comparison of phenolic compounds extracted from diaphragma juglandis fructus, walnut pellicle, and flowers of Juglans regia using methanol, ultrasonic wave, and enzyme assisted-extraction. Food Chem. 2020, 321, 126672. [Google Scholar] [CrossRef]
- Kafkas, E.; Attar, S.H.; Gundesli, M.A.; Ozcan, A.; Ergun, M. Phenolic and fatty acid profile, and protein content of different walnut cultivars and genotypes (Juglans regia L.) grown in the USA. Int. J. Fruit Sci. 2020, 20, S1711–S1720. [Google Scholar] [CrossRef]
- Slatnar, A.; Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R.; Solar, A. Identification and quantification of phenolic compounds in kernels, oil and bagasse pellets of common walnut (Juglans regia L.). Food Res. Int. 2015, 67, 255–263. [Google Scholar] [CrossRef]
- Shahidi, F.; Yeo, J. Insoluble-bound phenolics in food. Molecules 2016, 21, 1216. [Google Scholar] [CrossRef]
- Arranz, S.; Pérez-Jiménez, J.; Saura-Calixto, F. Antioxidant capacity of walnut (Juglans regia L.): Contribution of oil and defatted matter. Eur. Food Res. Technol. 2008, 227, 425–431. [Google Scholar] [CrossRef]
- Trandafir, I.; Cosmulescu, S.; Botu, M.; Nour, V. Antioxidant activity, and phenolic and mineral contents of the walnut kernel (Juglans regia L.) as a function of the pellicle color. Fruits 2016, 71, 177–184. [Google Scholar] [CrossRef]
- Salem, M.A.; Aborehab, N.M.; Al-Karmalawy, A.A.; Fernie, A.R.; Alseekh, S.; Ezzat, S.M. Potential valorization of edible nuts by-products: Exploring the immune-modulatory and antioxidants effects of selected nut shells extracts in relation to their metabolic profiles. Antioxidants 2022, 11, 462. [Google Scholar] [CrossRef]
- Soto-Maldonado, C.; Caballero-Valdés, E.; Santis-Bernal, J.; Jara-Quezada, J.; Fuentes-Viveros, L.; Zúñiga-Hansen, M.E. Potential of solid wastes from the walnut industry: Extraction conditions to evaluate the antioxidant and bioherbicidal activities. Electron. J. Biotechnol. 2022, 58, 25–36. [Google Scholar] [CrossRef]
- Facts and Factors. Research Plant-Based Beverages Market Size, Growth, Global Trends, Forecast to 2030. Available online: https://www.fnfresearch.com/sample/plant-based-beverages-market (accessed on 12 March 2024).
- Statista. Alternativas a la Leche de Vaca: Consumo en América Latina por País. Available online: https://es.statista.com/estadisticas/1421435/consumo-de-alternativas-a-la-leche-en-america-latina-por-pais/ (accessed on 12 March 2024).
- Garcia-Mendoza, M.D.P.; Espinosa-Pardo, F.A.; Savoire, R.; Etchegoyen, C.; Harscoat-Schiavo, C.; Subra-Paternault, P. Recovery and antioxidant activity of phenolic compounds extracted from walnut press-cake using various methods and conditions. Ind. Crops Prod. 2021, 167, 113546. [Google Scholar] [CrossRef]
- Feng, J.-Y.; Wang, R.; Thakur, K.; Ni, Z.-J.; Zhu, Y.-Y.; Hu, F.; Zhang, J.-G.; Wei, Z.-J. Evolution of okara from waste to value added food ingredient: An account of its bio-valorization for improved nutritional and functional effects. Trends Food Sci. Technol. 2021, 116, 669–680. [Google Scholar] [CrossRef]
- Tiurikova, I.S.; Peresichnyi, M.I.; Matsuk, Y.A.; Kainash, A.P.; Budnik, N.V. Technology of dietary supplements from walnuts. J. Chem. Technol. 2020, 28, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Boncler, M.; Golanski, J.; Lukasiak, M.; Redzynia, M.; Dastych, J.; Watala, C. A new approach for the assessment of the toxicity of polyphenol-rich compounds with the use of high content screening analysis. PLoS ONE 2017, 12, e0180022. [Google Scholar] [CrossRef] [PubMed]
- Lea, T. Caco-2 Cell Line. In The Impact of Food Bioactives on Health; Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., Wichers, H., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 103–111. ISBN 978-3-319-15791-7. [Google Scholar]
- Regueiro, J.; Sánchez-González, C.; Vallverdú-Queralt, A.; Simal-Gándara, J.; Lamuela-Raventós, R.; Izquierdo-Pulido, M. Comprehensive identification of walnut polyphenols by liquid chromatography coupled to linear ion trap–orbitrap mass spectrometry. Food Chem. 2014, 152, 340–348. [Google Scholar] [CrossRef]
- Labuckas, D.O.; Maestri, D.M.; Perelló, M.; Martínez, M.L.; Lamarque, A.L. Phenolics from walnut (Juglans regia L.) kernels: Antioxidant activity and interactions with proteins. Food Chem. 2008, 107, 607–612. [Google Scholar] [CrossRef]
- Fuentealba, C.; Hernández, I.; Saa, S.; Toledo, L.; Burdiles, P.; Chirinos, R.; Campos, D.; Brown, P.; Pedreschi, R. Colour and in vitro quality attributes of walnuts from different growing conditions correlate with key precursors of primary and secondary metabolism. Food Chem. 2017, 232, 664–672. [Google Scholar] [CrossRef]
- Vu, D.C.; Vo, P.H.; Coggeshall, M.V.; Lin, C.-H. Identification and characterization of phenolic compounds in black walnut kernels. J. Agric. Food Chem. 2018, 66, 4503–4511. [Google Scholar] [CrossRef]
- Wei, F.; Li, Y.; Sun, D.; Chen, Q.; Fu, M.; Zhao, H.; Chen, X.; Huang, Y.; Xu, H. Odor, tastes, nutritional compounds and antioxidant activity of fresh-eating walnut during ripening. Sci. Hortic. 2022, 293, 110744. [Google Scholar] [CrossRef]
- Canaan, J.M.M.; Brasil, G.S.P.; De Barros, N.R.; Mussagy, C.U.; Guerra, N.B.; Herculano, R.D. Soybean processing wastes and their potential in the generation of high value added products. Food Chem. 2022, 373, 131476. [Google Scholar] [CrossRef]
- Vital, A.C.P.; Croge, C.; Da Silva, D.F.; Araújo, P.J.; Gallina, M.Z.; Matumoto-Pintro, P.T. Okara residue as source of antioxidants against lipid oxidation in milk enriched with omega-3 and bioavailability of bioactive compounds after in vitro gastrointestinal digestion. J. Food Sci. Technol. 2018, 55, 1518–1524. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci. Rep. 2020, 10, 2611. [Google Scholar] [CrossRef]
- De Camargo, A.C.; Regitano-d’Arce, M.A.B.; Biasoto, A.C.T.; Shahidi, F. Low molecular weight phenolics of grape juice and winemaking byproducts: Antioxidant activities and inhibition of oxidation of human low-density lipoprotein cholesterol and DNA strand breakage. J. Agric. Food Chem. 2014, 62, 12159–12171. [Google Scholar] [CrossRef] [PubMed]
- Christopoulos, M.V.; Tsantili, E. Effects of temperature and packaging atmosphere on total antioxidants and colour of walnut (Juglans regia L.) kernels during storage. Sci. Hortic. 2011, 131, 49–57. [Google Scholar] [CrossRef]
- Ojeda-Amador, R.M.; Salvador, M.D.; Gómez-Alonso, S.; Fregapane, G. Characterization of virgin walnut oils and their residual cakes produced from different varieties. Food Res. Int. 2018, 108, 396–404. [Google Scholar] [CrossRef]
- Wianowska, D.; Olszowy-Tomczyk, M. A concise profile of gallic acid—From its natural sources through biological properties and chemical methods of determination. Molecules 2023, 28, 1186. [Google Scholar] [CrossRef]
- Lu, T.; Shen, Y.; Wu, Z.-X.; Xie, H.-K.; Li, A.; Wang, Y.-F.; Song, L.; Zhou, D.-Y.; Wang, T. Improving the oxidative stability of flaxseed oil with composite antioxidants comprising gallic acid alkyl ester with appropriate chain length. LWT 2021, 138, 110763. [Google Scholar] [CrossRef]
- Roidoung, S.; Dolan, K.D.; Siddiq, M. Gallic acid as a protective antioxidant against anthocyanin degradation and color loss in vitamin-C fortified cranberry juice. Food Chem. 2016, 210, 422–427. [Google Scholar] [CrossRef]
- Hadidi, M.; Liñán-Atero, R.; Tarahi, M.; Christodoulou, M.C.; Aghababaei, F. The potential health benefits of gallic acid: Therapeutic and food applications. Antioxidants 2024, 13, 1001. [Google Scholar] [CrossRef]
- Ambigaipalan, P.; De Camargo, A.C.; Shahidi, F. Phenolic compounds of pomegranate byproducts (outer skin, mesocarp, divider membrane) and their antioxidant activities. J. Agric. Food Chem. 2016, 64, 6584–6604. [Google Scholar] [CrossRef]
- Ayoub, M.; De Camargo, A.C.; Shahidi, F. Antioxidants and bioactivities of free, esterified and insoluble-bound phenolics from berry seed meals. Food Chem. 2016, 197, 221–232. [Google Scholar] [CrossRef]
- De Camargo, A.C.; Regitano-d’Arce, M.A.B.; Biasoto, A.C.T.; Shahidi, F. Enzyme-assisted extraction of phenolics from winemaking byproducts: Antioxidant potential and inhibition of alpha-glucosidase and lipase activities. Food Chem. 2016, 212, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Mazur, W.; Adlercreutz, H. Naturally occurring oestrogens in food. Pure Appl. Chem. 1998, 70, 1759–1776. [Google Scholar] [CrossRef]
- Ososki, A.L.; Kennelly, E.J. Phytoestrogens: A review of the present state of research. Phytother. Res. 2003, 17, 845–869. [Google Scholar] [CrossRef]
- Sarfraz, I.; Rasul, A.; Riaz, A.; Ucak, I.; Zahoor, M.K.; Hussain, G.; Nawaz, J.; Sadiqa, A.; Adem, Ş. Biochanin A and biochanin B. In A Centum of Valuable Plant Bioactives; Mushtaq, M., Anwar, F., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 563–588. ISBN 978-0-12-822923-1. [Google Scholar]
- Rossi, Y.E.; Bohl, L.P.; Vanden Braber, N.L.; Ballatore, M.B.; Escobar, F.M.; Bodoira, R.; Maestri, D.M.; Porporatto, C.; Cavaglieri, L.R.; Montenegro, M.A. Polyphenols of peanut (Arachis hypogaea L.) skin as bioprotectors of normal cells. Studies of cytotoxicity, cytoprotection and interaction with ROS. J. Funct. Foods. 2020, 67, 103862. [Google Scholar] [CrossRef]
- Felix, F.B.; Vago, J.P.; Beltrami, V.A.; Araújo, J.M.D.; Grespan, R.; Teixeira, M.M.; Pinho, V. Biochanin A as a modulator of the inflammatory response: An updated overview and therapeutic potential. Pharmacol. Res. 2022, 180, 106246. [Google Scholar] [CrossRef]
- Hou, Y.; Zhao, W.; Yu, H.; Zhang, F.; Zhang, H.-T.; Zhou, Y. Biochanin A alleviates cognitive impairment and hippocampal mitochondrial damage in ovariectomized APP/PS1 mice. Phytomed. 2022, 100, 154056. [Google Scholar] [CrossRef]
- Jaina, V.K.; Eedara, A.; Svs, S.P.; Jadav, S.S.; Chilaka, S.; Sistla, R.; Andugulapati, S.B. Anti-cancer activity of biochanin A against multiple myeloma by targeting the CD38 and cancer stem-like cells. Process Biochem. 2022, 123, 11–26. [Google Scholar] [CrossRef]
- Sarfraz, A.; Javeed, M.; Shah, M.A.; Hussain, G.; Shafiq, N.; Sarfraz, I.; Riaz, A.; Sadiqa, A.; Zara, R.; Zafar, S.; et al. Biochanin A: A novel bioactive multifunctional compound from nature. Sci. Total Environ. 2020, 722, 137907. [Google Scholar] [CrossRef]
- De Camargo, A.C.; Concepción Alvarez, A.; Arias-Santé, M.F.; Oyarzún, J.E.; Andia, M.E.; Uribe, S.; Núñez Pizarro, P.; Bustos, S.M.; Schwember, A.R.; Shahidi, F.; et al. Soluble free, esterified and insoluble-bound phenolic antioxidants from chickpeas prevent cytotoxicity in human hepatoma HuH-7 cells induced by peroxyl radicals. Antioxidants 2022, 11, 1139. [Google Scholar] [CrossRef]
- Escarpa, A.; González, M.C. Approach to the content of total extractable phenolic compounds from different food samples by comparison of chromatographic and spectrophotometric methods. Anal. Chim. Acta. 2001, 427, 119–127. [Google Scholar] [CrossRef]
- Motilva, M.-J.; Serra, A.; Macià, A. Analysis of food polyphenols by ultra high-performance liquid chromatography coupled to mass spectrometry: An overview. J. Chromatog. A. 2013, 1292, 66–82. [Google Scholar] [CrossRef] [PubMed]
- Arruda, H.S.; Pereira, G.A.; De Morais, D.R.; Eberlin, M.N.; Pastore, G.M. Determination of free, esterified, glycosylated and insoluble-bound phenolics composition in the edible part of araticum fruit (Annona crassiflora Mart.) and its by-products by HPLC-ESI-MS/MS. Food Chem. 2018, 245, 738–749. [Google Scholar] [CrossRef]
- Skroza, D.; Šimat, V.; Vrdoljak, L.; Jolić, N.; Skelin, A.; Čagalj, M.; Frleta, R.; Generalić Mekinić, I. Investigation of antioxidant synergisms and antagonisms among phenolic acids in the model matrices using FRAP and ORAC methods. Antioxidants 2022, 11, 1784. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid Colorimetric Assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Denizot, F.; Lang, R. Rapid Colorimetric assay for cell growth and survival. J. Immunol. Methods 1986, 89, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Green, L.M.; Reade, J.L.; Ware, C.F. Rapid colormetric assay for cell viability: Application to the quantitation of cytotoxic and growth inhibitory lymphokines. J. Immunol. Methods 1984, 70, 257–268. [Google Scholar] [CrossRef]
- Marrelli, M.; Argentieri, M.P.; Alexa, E.; Meleleo, D.; Statti, G.; Avato, P.; Conforti, F.; Mallamaci, R. Antioxidant activity and protective effect of the outer scales hydroalcoholic extract of Allium Cepa L. Var. Tropea on toxicity damage induced by cadmium in Caco-2 cells. Food Chem. Toxicol. 2022, 170, 113495. [Google Scholar] [CrossRef]
- Park, J.G.; Kramer, B.S.; Steinberg, S.M.; Carmichael, J.; Collins, J.M.; Minna, J.D.; Gazdar, A.F. Chemosensitivity testing of human colorectal carcinoma cell lines using a tetrazolium-based colorimetric assay. Cancer Res. 1987, 47, 5875–5879. [Google Scholar]
- Taroncher, M.; Rodríguez-Carrasco, Y.; Aspevik, T.; Kousoulaki, K.; Barba, F.J.; Ruiz, M.-J. Cytoprotective effects of fish protein hydrolysates against H2O2-induced oxidative stress and mycotoxins in Caco-2/TC7 cells. Antioxidants 2021, 10, 975. [Google Scholar] [CrossRef]
- Bórquez, J.C.; Hidalgo, M.; Rodríguez, J.M.; Montaña, A.; Porras, O.; Troncoso, R.; Bravo-Sagua, R. Sucralose stimulates mitochondrial bioenergetics in Caco-2 cells. Front. Nutr. 2021, 7, 585484. [Google Scholar] [CrossRef]
- Fernández-Blanco, C.; Font, G.; Ruiz, M.-J. Role of quercetin on Caco-2 cells against cytotoxic effects of alternariol and alternariol monomethyl ether. Food Chem. Toxicol. 2016, 89, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Jun, N.; Yi-Ting, C.; Yu-Ting, G.; Cheng-Fa, Z.; Li-Juan, L.; Rong, S.; Xiao-yan, Y.; Wen, X.; Xu, Y. Antioxidant, anti-inflammatory, and anticancer function of Engleromyces goetzei Henn aqueous extract on human intestinal Caco-2 cells treated with t-BHP. Food Sci. Nutr. 2023, 11, 3450–3463. [Google Scholar] [CrossRef] [PubMed]
- Laka, K.; Mapheto, K.B.F.; Mbita, Z. Selective in vitro cytotoxicity effect of drimia calcarata bulb extracts against P53 mutant HT-29 and P53 wild-type Caco-2 colorectal cancer cells through STAT5B regulation. Toxicol. Rep. 2021, 8, 1265–1279. [Google Scholar] [CrossRef]
- Van Eyk, A.D. The effect of five artificial sweeteners on Caco-2, HT-29 and HEK-293 cells. Drug Chem. Toxicol. 2015, 38, 318–327. [Google Scholar] [CrossRef]
- Zhou, X.; Ren, M.; Yang, J.; Pan, H.; Yu, M.; Ji, F. Curcumin improves epithelial barrier integrity of Caco-2 monolayers by inhibiting endoplasmic reticulum stress and subsequent apoptosis. Gastroenterol. Res. Pract. 2021, 2021, 5570796. [Google Scholar] [CrossRef]
- Hung, Y.-K.; Ho, S.-T.; Kuo, C.-Y.; Chen, M.-J. In vitro effects of velvet antler water extracts from formosan sambar deer and red deer on barrier integrity in Caco-2 cell. Int. J. Med. Sci. 2021, 18, 1778–1785. [Google Scholar] [CrossRef]
- Lopez-Escalera, S.; Wellejus, A. Evaluation of Caco-2 and human intestinal epithelial cells as in vitro models of colonic and small intestinal integrity. Biochem. Biophys. Rep. 2022, 31, 101314. [Google Scholar] [CrossRef]
- Zongo, A.W.-S.; Zogona, D.; Youssef, M.; Ye, S.; Zhan, F.; Li, J.; Li, B. Senegalia Macrostachya seed polysaccharides attenuate inflammation-induced intestinal epithelial barrier dysfunction in a Caco-2 and RAW264.7 macrophage co-culture model by inhibiting the NF-κB/MLCK pathway. Food Funct. 2022, 13, 11676–11689. [Google Scholar] [CrossRef]
- Lopes Do Carmo, M.C.; Mateus Martins, I.; Ramos Magalhães, A.E.; Maróstica Júnior, M.R.; Alves Macedo, J. Passion fruit (Passiflora edulis) leaf aqueous extract ameliorates intestinal epithelial barrier dysfunction and reverts inflammatory parameters in Caco-2 cells monolayer. Food Res. Int. 2020, 133, 109162. [Google Scholar] [CrossRef]
- Kaak, J.; Lobo De Sá, F.D.; Turner, J.R.; Schulzke, J.; Bücker, R. Unraveling the intestinal epithelial barrier in cyanotoxin microcystin-treated Caco-2 cell monolayers. Ann. N. Y. Acad. Sci. 2022, 1516, 188–196. [Google Scholar] [CrossRef]
- Gravel, A.; Dubois-Laurin, F.; Doyen, A. Effects of hexane on protein profile and techno-functional properties of pea protein isolates. Food Chem. 2023, 406, 135069. [Google Scholar] [CrossRef] [PubMed]
- Rusu, M.E.; Gheldiu, A.-M.; Mocan, A.; Moldovan, C.; Popa, D.-S.; Tomuta, I.; Vlase, L. Process optimization for improved phenolic compounds recovery from walnut (Juglans regia L.) septum: Phytochemical profile and biological activities. Molecules 2018, 23, 2814. [Google Scholar] [CrossRef] [PubMed]
- Swain, T.; Hillis, W.E. The Phenolic constituents of Prunus domestica I.—The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- De Camargo, A.C.; Biasoto, A.C.T.; Schwember, A.R.; Granato, D.; Rasera, G.B.; Franchin, M.; Rosalen, P.L.; Alencar, S.M.; Shahidi, F. Should we ban total phenolics and antioxidant screening methods? The link between antioxidant potential and activation of NF-κB using phenolic compounds from grape by-products. Food Chem. 2019, 290, 229–238. [Google Scholar] [CrossRef]
- Da Silva, M.D.A.S.; Bridi, R.; Arias-Santé, M.F.; Rincón-Cervera, M.A.; Meisel, L.A.; Rhein, S.; Porras, O.; Márquez Calvo, K.; Carrasco, B.; De Camargo, A.C. Soluble and insoluble-bound phenolic bioactive compounds of tortola bean leaf and their antioxidant properties in chemical-based assays and Caco-2 cells. Food Biosci. 2024, 57, 103616. [Google Scholar] [CrossRef]
Sample | Free | Esterified | Etherified | IBPH | Total |
---|---|---|---|---|---|
Total phenolic content (mg GAE 100 g−1 dw) | |||||
DWR | 384.51 ± 9.8 Aa | 141.50 ± 2.2 Ab | 104.15 ± 2.9 Ac | 373.48 ± 5.0 Aa | 1003.64 |
WMR | 124.45 ± 3.5 Ba | 78.30 ± 0.9 Bb | 72.55 ± 0.7 Bb | 167.95 ± 3.3 Bc | 443.25 |
Ferric Reducing Antioxidant Power_FRAP (µmol TE g−1 dw) | |||||
DWR | 887.56 ± 37.5 Aa | 79.70 ± 5.9 Ab | 79.48 ± 5.3 Ab | 167.07 ± 9.4 Ac | 1213.81 |
WMR | 109.64 ± 9.5 Ba | 19.52 ± 1.4 Bb | 8.97 ± 0.9 Bb | 57.94 ± 0.9 Bc | 196.07 |
Oxygen radical absorbance capacity_ORAC (µmol TE g−1 dw) | |||||
DWR | 36.80 ± 2.0 Ab | 20.24 ± 0.4 Ad | 24.70 ± 0.0 Ac | 50.47 ± 1.8 Aa | 132.21 |
WMR | 15.52 ± 0.1 Bb | 13.84 ± 0.1 Bc | 16.05 ± 0.8 Bb | 20.84 ± 0.0 Ba | 66.25 |
Compound | Free | Esterified | Etherified | IBPH | Total |
---|---|---|---|---|---|
Phenolic acids | |||||
Gallic acid | 3061.01 ± 19.71 Aa | 88.87 ± 3.83 Bb | 88.10 ± 0.87 Ab | 530.70 ± 3.89 Bc | 3768.68 |
p-Coumaric acid | 18.15 ± 1.97 Ba | 25.43 ± 0.08 Ca | tr | 111.73 ± 5.65 Cb | 155.31 |
Caffeic acid | 54.50 ± 0.63 C | tr | nd | tr | 54.50 |
Ferulic acid | 5.70 ± 0.44 Ba | 7.38 ± 0.75 Aa | tr | 40.83 ± 3.14 Ab | 53.90 |
3,4-Dihydroxybenzoic acid * | 43.32 ± 0.95 C | nd | nd | nd | 43.32 |
Sinapic acid | tr | tr | 2.11 ± 0.15 B | tr | 2.11 |
Flavonoids | |||||
Biochanin A * | 259.17 ± 20.78 Aa | 593.75 ± 1.50 Bb | nd | nd | 852.92 |
Quercetin | 40.30 ± 1.37 Ba | tr | tr | 34.26 ± 0.64 b | 74.56 |
Quercitrin * | 37.49 ± 1.18 Ba | 12.53 ± 0.15 Cb | 11.03 ± 0.69 b | tr | 61.05 |
Chrysin * | tr | 8.67 ± 0.36 A | tr | tr | 8.67 |
Compound | MRM * Transition 1 | DP | CE | CXP | MRM Transition 2 | DP | CE | CXP |
---|---|---|---|---|---|---|---|---|
Gallic acid | 168.9 ** > 124.9 *** | −70 | −18 | −7 | 168.9 ** > 78.9 *** | −70 | −18 | −7 |
p-Coumaric acid | 162.9 ** > 119.0 *** | −70 | −20 | −5 | 162.9 ** > 119.0 *** | −70 | −38 | −25 |
Caffeic acid | 178.9 ** > 135.0 *** | −70 | −20 | −5 | 178.9 ** > 133.9 *** | −70 | −32 | −7 |
Ferulic acid | 193.0 ** > 134.0 *** | −55 | −20 | −7 | 193.0 ** > 177.9 *** | −55 | −16 | −15 |
Sinapic acid | 223.0 ** > 207.9 *** | −75 | −18 | −7 | 223.0 ** > 148.8 *** | −75 | −26 | −13 |
3,4-Dihydroxybenzoic acid | 152.9 ** > 107.9 *** | −50 | −26 | −3 | 152.9 ** > 108.9 *** | −50 | −16 | −3 |
Biochanin A | 282.9 ** > 267.9 *** | −80 | −32 | −5 | 282.9 ** > 211.1 *** | −80 | −46 | −5 |
Quercetin | 301.0 ** > 150.9 *** | −15 | −28 | −13 | 301.0 ** > 178.8 *** | −15 | −24 | −11 |
Quercitrin | 447.0 ** > 299.9 *** | −105 | −32 | −13 | 447.0 ** > 299.9 *** | −105 | −30 | −7 |
Chrysin | 253.0 ** > 208.9 *** | −130 | −16 | −7 | 253.0 ** > 143.0 *** | −130 | −34 | −3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toledo-Merma, P.R.; Arias-Santé, M.F.; Rincón-Cervera, M.Á.; Porras, O.; Bridi, R.; Rhein, S.; Sánchez-Contreras, M.; Hernandez-Pino, P.; Tobar, N.; Puente-Díaz, L.; et al. Phenolic Fractions from Walnut Milk Residue: Antioxidant Activity and Cytotoxic Potential. Plants 2024, 13, 3473. https://doi.org/10.3390/plants13243473
Toledo-Merma PR, Arias-Santé MF, Rincón-Cervera MÁ, Porras O, Bridi R, Rhein S, Sánchez-Contreras M, Hernandez-Pino P, Tobar N, Puente-Díaz L, et al. Phenolic Fractions from Walnut Milk Residue: Antioxidant Activity and Cytotoxic Potential. Plants. 2024; 13(24):3473. https://doi.org/10.3390/plants13243473
Chicago/Turabian StyleToledo-Merma, Pamela Ruth, María Fernanda Arias-Santé, Miguel Ángel Rincón-Cervera, Omar Porras, Raquel Bridi, Samantha Rhein, Martina Sánchez-Contreras, Paulina Hernandez-Pino, Nicolás Tobar, Luis Puente-Díaz, and et al. 2024. "Phenolic Fractions from Walnut Milk Residue: Antioxidant Activity and Cytotoxic Potential" Plants 13, no. 24: 3473. https://doi.org/10.3390/plants13243473
APA StyleToledo-Merma, P. R., Arias-Santé, M. F., Rincón-Cervera, M. Á., Porras, O., Bridi, R., Rhein, S., Sánchez-Contreras, M., Hernandez-Pino, P., Tobar, N., Puente-Díaz, L., & de Camargo, A. C. (2024). Phenolic Fractions from Walnut Milk Residue: Antioxidant Activity and Cytotoxic Potential. Plants, 13(24), 3473. https://doi.org/10.3390/plants13243473