Nutrient Requirements and Fertilizer Management Strategies in Plant Cultivation

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Horticultural Science and Ornamental Plants".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 7617

Special Issue Editor


E-Mail Website
Guest Editor
Department of Agroecology, Aarhus University, 8830 Tjele, Denmark
Interests: biofortification; crop science; food chemistry; forage production; fruit quality; greenhouse gases; ornamental plants; phytoremediation; plant abiotic stress; plant nutrition; plant physiology; rhizosphere microbiology; soil fertility; trace elements; wetlands
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Essential plant nutrients are critical for plant growth and reproduction; deficiencies in these nutrients may cause the plant growth cycle to fail. For plant cultivation, it is necessary to supplement productively through the addition of fertilizer to satisfy growth demand and increase or sustain yield. Nutrient diagnosis and soil testing, plant analysis, and crop canopy sensing as the main methods are legislation tools used for determining plant nutrition and crucial steps taken to manage the distribution of fertilizers to producers. Balanced fertilization refers to the application of plant nutrients in optimum quantities and in the right proportions through appropriate methods and at the right times for a specific crop’s needs and agroclimatic conditions. The development of novel and sophisticated fertilization practices is a challenge for nutrient management. Nutrient management helps to prevent deficiencies, imbalance, or overuse of fertilizers, improve plant nutrient use efficiency, and contribute to beneficial agronomic systems and environmentally safe plant cultivation.

In this Special Issue, we welcome the submission of interdisciplinary work in the format of original research papers, case studies, and review articles related to nutrient requirements and fertilizer management strategies in plant cultivation from the agronomic perspective to environmental considerations, which will improve our understanding of the mechanisms underlying nutrient utilization linked to plant performance. Studies of plant nutrient requirements at the physiological, molecular, and ecological levels are welcome to be submitted. Papers performing decision-support models by artificial intelligence systems based on machine learning to simulate and recommend fertilizer management strategies for precision agriculture will also be appreciated.

Dr. Lin Tang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biofortification
  • biomass and yield
  • cropping system
  • environmental sustainability
  • foliar application
  • mineral elements
  • nutrient component
  • nutrient diagnosis
  • plant breeding
  • precision agriculture

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 2474 KiB  
Article
Growth and Biomass Distribution Responses of Populus tomentosa to Long-Term Water–Nitrogen Coupling in the North China Plain
by Yafei Wang, Juntao Liu, Yuelin He, Wei Zhu, Liming Jia and Benye Xi
Plants 2025, 14(12), 1833; https://doi.org/10.3390/plants14121833 - 14 Jun 2025
Viewed by 269
Abstract
From 2016 to 2021, a field experiment was conducted in the North China Plain to study the long-term effects of drip irrigation and nitrogen coupling on the growth, biomass allocation, and irrigation water and fertilizer use efficiency of short-rotation triploid Populus tomentosa plantations. [...] Read more.
From 2016 to 2021, a field experiment was conducted in the North China Plain to study the long-term effects of drip irrigation and nitrogen coupling on the growth, biomass allocation, and irrigation water and fertilizer use efficiency of short-rotation triploid Populus tomentosa plantations. The experiment adopted a completely randomized block design, with one control (CK) and six water–nitrogen coupling treatments (IF, two irrigation levels × three nitrogen application levels). Data analysis was conducted using ANOVA, regression models, Spearman’s correlation analysis, and path analysis. The results showed that the effects of water and nitrogen treatments on the annual increment of diameter at breast height (ΔDBH), annual increment of tree height (ΔH), basal area of the stand (BAS), stand volume (VS), and annual forest productivity (AFP) in short-rotation forestry exhibited a significant stand age effect. The coupling of water and nitrogen significantly promoted the DBH growth of 2-year-old trees (p < 0.05), but after 3 years of age, the promoting effect of water and nitrogen coupling gradually diminished. In the 6th year, the above-ground biomass of Populus tomentosa was 5.16 to 6.62 times the under-ground biomass under different treatments. Compared to the I45 treatment (irrigation at soil water potential of −45 kPa), the irrigation water use efficiency of the I20 treatment (−20 kPa) decreased by 88.79%. PFP showed a downward trend with the increase in fertilization amount, dropping by 130.95% and 132.86% under the I20 and I45 irrigation levels. Path analysis indicated that irrigation had a significant effect on the BAS, VS, AFP, and TGB of 6-year-old Populus tomentosa (p < 0.05), with the universality of irrigation being higher than that of fertilization. It is recommended to implement phased water and fertilizer management for Populus tomentosa plantations in the North China Plain. During 1–3 years of tree age, adequate irrigation should be ensured and nitrogen fertilizer application increased. Between the ages of 4 and 6, irrigation and fertilization should be ceased to reduce resource wastage. This work provides scientific guidance for water and fertilizer management in short-rotation plantations. Full article
Show Figures

Figure 1

19 pages, 16309 KiB  
Article
Nutrient Uptake of Two Semidomesticated Jaltomata Schltdl. Species for Their Cultivation
by Ignacio Darío Flores-Sánchez, Manuel Sandoval-Villa and Ebandro Uscanga-Mortera
Plants 2025, 14(7), 1124; https://doi.org/10.3390/plants14071124 - 4 Apr 2025
Viewed by 435
Abstract
The nutrient uptake of a species under cultivated conditions is important for program fertilization. The Jaltomata genus has two semidomesticated species, J. procumbens and J. tlaxcala, used as food and considered with potential for their study in controlled environments. The objective of [...] Read more.
The nutrient uptake of a species under cultivated conditions is important for program fertilization. The Jaltomata genus has two semidomesticated species, J. procumbens and J. tlaxcala, used as food and considered with potential for their study in controlled environments. The objective of this research was to determine nutrient uptake curves of these species in a greenhouse and using hydroponics. The research was carried out at the Colegio de Postgraduados, Campus Montecillo, Texcoco, State of Mexico, from August to November 2020. The treatments included the following: two species and three electrical conductivity levels: 1, 2, and 3 dS m−1. Nutrients in leaf and total dry matter (TDM) were determined. Variability between species and phenological stages on the nutrient concentration and accumulation of TDM was observed. For macronutrients, J. procumbens concentrated in descending order more P from the vegetative stage (4.21–2.43 g kg−1 dry matter), and Mg until fructification (4.92–3.26 g kg−1 dry matter), for K it was higher at vegetative (52.29 g kg−1 dry matter) and harvesting stages (26.05 g kg−1 dry matter), and N (23.92 g kg−1 dry matter) at flowering; J. tlaxcala concentrated more Ca from fructification (10.10–13.85 g kg−1 dry matter). For micronutrients, J. tlaxcala concentrated more Fe from the vegetative stage (157.7–207.5 mg kg−1 dry matter), B and Zn at 23.3–38.4 and 26.04–28.45 mg kg−1 dry matter, respectively, from flowering, and Mn (108.4–232.28 mg kg−1 dry matter) from fructification. The main structures of TDM accumulation by vegetative stage in J. procumbens were the leaf and root (vegetative and flowering), root and stem (fructification), and reproductive structures and root (harvesting); in J. tlaxcala, the main structures were the leaf and root (vegetative), root and leaf (flowering and fructification), and root and reproductive structures (harvesting). Due to this variability, specific fertilization programs are required for each species. Full article
Show Figures

Figure 1

20 pages, 11261 KiB  
Article
Subsoiling Before Wheat Sowing Enhances Grain Yield and Water Use Efficiency of Maize in Dryland Winter Wheat and Summer Maize Double Cropping System Under One-Off Irrigation Practice During the Wheat Season
by Yanmin Peng, Kainan Zhao, Jun Zhang, Kaiming Ren, Junhao Zhang, Jinhua Guo, Rongrong Wang, Huishu Xiao, Peipei Jiang, Ninglu Xu, Ming Huang, Jinzhi Wu and Youjun Li
Plants 2025, 14(5), 738; https://doi.org/10.3390/plants14050738 - 28 Feb 2025
Viewed by 611
Abstract
The winter wheat and summer maize double cropping system is the primary cropping pattern for wheat and maize in dryland areas of China. The management of tillage in this system is typically conducted before wheat sowing. However, few studies have validated and quantified [...] Read more.
The winter wheat and summer maize double cropping system is the primary cropping pattern for wheat and maize in dryland areas of China. The management of tillage in this system is typically conducted before wheat sowing. However, few studies have validated and quantified the impact of tillage methods before wheat sowing and irrigation practices during the wheat season on the yield formation and water use efficiency of summer maize. Therefore, this study hypothesized that subsoiling before wheat sowing improves maize yield and WUE by enhancing soil moisture retention and plant development. A three-year field experiment with a two-factor split-plot design was conducted at the junction of the Loess Plateau and the Huang-Huai-Hai Plain in China for validation, from 2019 to 2022. Three tillage methods before wheat sowing (RT: rotary tillage; PT: plowing, SS: subsoiling) were assigned to the main plots, and two irrigation practices during wheat growing season (W0: zero-irrigation; W1: one-off irrigation) were assigned to subplots. We measured the soil moisture, grain yield, dry matter accumulation, nitrogen (N), phosphorus (P), and potassium (K) accumulation, and water use efficiency of summer maize. The results indicated that subsoiling before wheat sowing increased soil water storage at the sowing of summer maize, thereby promoting dry matter and nutrient accumulation. Compared to rotary tillage and plowing, subsoiling before wheat sowing increased grain yield and water use efficiency of maize by an average of 19.5% and 21.8%, respectively. One-off irrigation during the wheat season had negative effects on pre-sowing soil water storage and maize productivity in terms of yield and dry matter accumulation. However, subsoiling before wheat sowing can mitigate these negative effects of one-off irrigation. Correlation analysis and path model results indicated that tillage methods before wheat sowing had a greater impact on soil water storage and maize productivity than irrigation practices during wheat growing season. The most direct factor affecting maize yield was dry matter accumulation, whereas the most direct factor affecting water use efficiency was nutrient accumulation. The technique for order preference by similarity to an ideal solution (TOPSIS) comprehensive evaluation indicated that subsoiling before wheat sowing was superior for achieving high maize yield and water use efficiency under the practice of one-off irrigation during the wheat season. These findings offer practical guidance for optimizing soil water use and maize productivity in drylands. Full article
Show Figures

Figure 1

15 pages, 979 KiB  
Article
Yield and Sensorial and Nutritional Quality of Strawberry (Fragaria × ananassa Duch.) Fruits from Plants Grown Under Different Amounts of Irrigation in Soilless Cultivation
by Davide Raffaelli, Rohullah Qaderi, Luca Mazzoni, Bruno Mezzetti and Franco Capocasa
Plants 2025, 14(2), 286; https://doi.org/10.3390/plants14020286 - 20 Jan 2025
Cited by 1 | Viewed by 1735
Abstract
Water scarcity is an ecological issue affecting over 10% of Europe. It is intensified by rising temperatures, leading to greater evaporation and reduced precipitation. Agriculture has been confirmed as the sector accounting for the highest water consumption globally, and it faces significant challenges [...] Read more.
Water scarcity is an ecological issue affecting over 10% of Europe. It is intensified by rising temperatures, leading to greater evaporation and reduced precipitation. Agriculture has been confirmed as the sector accounting for the highest water consumption globally, and it faces significant challenges relating to drought, impacting crop yields and food security. Sustainable practices, precision irrigation, and the development of drought-resistant crops are essential for the mitigation of this threat. Effective, innovative solutions are crucial for optimizing water use for intensive crops such as cultivated strawberries (Fragaria × ananassa). This study emphasizes the importance of identifying the genotypes most resilient to low water availability. Experimental trials involving reduced irrigation levels were set up to identify genotypes with a greater capacity to increase fruit quality and maintain fruit yield. Reduced water conditions positively influenced strawberry fruit quality, exhibiting improved citric acid, soluble solids, and color brightness linked to decreased water use, while firmness remained stable. Notably, the total phenolic content was most affected by stress, indicating strong antioxidant responses. With these interesting variations in fruit quality came a different response in plant yield. Plants belonging to the Lauretta and AN15,07,53 cultivars maintained a 98% fruit yield when grown under WS1 conditions. While the yield for the Francesca cultivar increased by 10% under the stressed WS1 conditions in comparison to the control conditions, water stress in the WS2 treatment caused a strong reduction in yield in all three genotypes. Overall, the findings emphasize the importance of identifying for each new cultivar the most appropriate water regime in order to amplify the quality of the fruit, thus maintaining high production standards and saving water. Full article
Show Figures

Figure 1

18 pages, 2402 KiB  
Article
Application of Biochar-Immobilized Bacillus megaterium for Enhancing Phosphorus Uptake and Growth in Rice
by Keru Yu, Zhenyu Wang, Wenyan Yang, Shuai Li, Dongtao Wu, Hongtao Zheng, Zhengqian Ye, Shaona Yang and Dan Liu
Plants 2025, 14(2), 214; https://doi.org/10.3390/plants14020214 - 14 Jan 2025
Cited by 1 | Viewed by 1084
Abstract
Phosphorus (P) is an essential nutrient for rice growth, and the presence of phosphate-solubilizing bacteria (PSB) is an effective means to increase soil P content. However, the direct application of PSB may have minimal significance due to their low survival in soil. Biochar [...] Read more.
Phosphorus (P) is an essential nutrient for rice growth, and the presence of phosphate-solubilizing bacteria (PSB) is an effective means to increase soil P content. However, the direct application of PSB may have minimal significance due to their low survival in soil. Biochar serves as a carrier that enhances microbial survival, and its porous structure and surface characteristics ensure the adsorption of Bacillus megaterium. Inoculating rice husk biochar-immobilized with Bacillus megaterium (BMB) resulted in dissolved inorganic and organic P levels of 39.55 and 31.97 mL L−1, respectively. Subsequently, rice pot experiments were conducted to investigate the response of soil microbial P mobilization and P uptake in rice to fertilizer inputs. The organic fertilizer (OF) combined with BMB treatment (MOF) showed the highest soil available phosphorus (AP) at 38 days, with a value of 7.83 mg kg−1, as well as increased the pqqC abundance while decreasing the abundance of phoD bacterial communities compared with the control. Furthermore, the bioavailable P reservoir (H2O–Pi and NaHCO3–Pi) in soil was greatly increased through the fertilizer input and microbial turnover, with the highest H2O–Pi (3.66 mg kg−1) in OF treatment and the highest NaHCO3–Pi (52.65 mg kg−1) in MOF treatment. Additionally, carbon utilization analysis was applied using the commercial Biolog system, revealing that the MOF treatment significantly increased the utilization of carbohydrates, polymers, and amino acid carbon sources. Moreover, compared to the control, MOF treatment significantly increased the shoot (0.469%) and root P (0.516%) content while promoting root development and thereby supporting rice growth. Our study demonstrates that the MOF treatment displayed higher P levels in both soil and rice plants, providing a theoretical basis for further understanding the role of biochar-based bacterial agents in rice P management. Full article
Show Figures

Figure 1

16 pages, 3622 KiB  
Article
Evaluating a Soil Amendment for Cadmium Mitigation and Enhanced Nutritional Quality in Faba Bean Genotypes: Implications for Food Safety
by Liping Cheng, Jiapan Lian, Xin Wang, Mehr Ahmed Mujtaba Munir, Xiwei Huang, Zhenli He, Chengjian Xu, Wenbin Tong and Xiaoe Yang
Plants 2025, 14(1), 141; https://doi.org/10.3390/plants14010141 - 6 Jan 2025
Viewed by 1044
Abstract
Soil amendments combined with low cadmium (Cd)-accumulating crops are commonly used for remediating Cd contamination and ensuring food safety. However, the combined effects of soil amendments and the cultivation of faba beans (Vicia faba L.)—known for their high nutritional quality and low [...] Read more.
Soil amendments combined with low cadmium (Cd)-accumulating crops are commonly used for remediating Cd contamination and ensuring food safety. However, the combined effects of soil amendments and the cultivation of faba beans (Vicia faba L.)—known for their high nutritional quality and low Cd accumulation—in moderately Cd-contaminated soils remain underexplored. This study investigates the impact of a soil amendment (SA) on agronomic traits, seed nutrition, and Cd accumulation in 11 faba bean genotypes grown in acidic soil (1.3 mg·kg−1 Cd, pH 5.39). The SA treatment increased soil pH to 6.0 (an 11.31% increase) and reduced DTPA-Cd by 37.1%. Although the average yield of faba beans decreased marginally by 8.74%, it remained within the 10% national permissible limit. Notably, SA treatment reduced Cd concentration in seeds by 60% and significantly mitigated Mn and Al toxicity. Additionally, SA treatment enhanced levels of essential macronutrients (Ca, Mg, P, S) and micronutrients (Mo, Cu) while lowering Phytate (Phy)/Ca, Phy/Mg, and Phy/P ratios, thus improving mineral nutrient bioavailability. Among the genotypes, F3, F5, and F6 showed the most favorable balance of nutrient quality, and yield following SA application. This study provides valuable insights into the effectiveness of SA for nutrient fortification and Cd contamination mitigation in Cd-contaminated farmland. Full article
Show Figures

Figure 1

20 pages, 4111 KiB  
Article
Evaluating the Impact of Phosphorus and Solid Oxygen Fertilization on Snap Bean (Phaseolus vulgaris L.): A Two-Year Field Study
by Md. Jahidul Islam Shohag, Elena Máximo Salgado, Marina Curtis Gluck and Guodong Liu
Plants 2024, 13(23), 3384; https://doi.org/10.3390/plants13233384 - 1 Dec 2024
Cited by 1 | Viewed by 1499
Abstract
The snap bean (Phaseolus vulgaris L.) is highly sensitive to both phosphorus (P) deficiency and hypoxic stress, which together can significantly hinder plant growth, nutrient uptake, and yield; however, limited information exists on the effect of P and oxygen (O2) [...] Read more.
The snap bean (Phaseolus vulgaris L.) is highly sensitive to both phosphorus (P) deficiency and hypoxic stress, which together can significantly hinder plant growth, nutrient uptake, and yield; however, limited information exists on the effect of P and oxygen (O2) fertilization to alleviate these stresses and enhance yield. A two-year field experiment assessed the effects of P and O2 fertilization on plant growth, pod yield, and P uptake in acidic sandy soil. Using a randomized complete block design with four replications, we tested five P rates (0, 45, 90, 135, and 179 kg ha−1 of phosphorus pentoxide, P2O5) in the form of triple superphosphate (TSP) along with two rates (0 and 45 kg ha−1) of solid O2 fertilizer as calcium peroxide (CaO2). Phosphorus and O2 fertilizers improved plant growth and pod yield, with the highest yield from the combination of 135 kg ha−1 P2O5 and 45 kg ha−1 CaO2. Pearson correlation analysis indicated strong associations between plant growth, pod yield, and nutrient accumulation. Principal component analysis (PCA) highlighted notable seasonal differences in snap bean and soil characteristics. This study provides essential insights into the use of O2 fertilizers as a cost-effective approach to mitigate hypoxia, enhance P use efficiency, and improve yield in snap bean. Our findings may inspire the development of sustainable nutrient protocols for high-quality snap bean production and serve as a foundation for similar applications in other crops. Full article
Show Figures

Figure 1

Back to TopTop