Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5543 KiB  
Article
Talarolides Revisited: Cyclic Heptapeptides from an Australian Marine Tunicate-Associated Fungus, Talaromyces sp. CMB-TU011
by Angela A. Salim, Waleed M. Hussein, Pradeep Dewapriya, Huy N. Hoang, Yahao Zhou, Kaumadi Samarasekera, Zeinab G. Khalil, David P. Fairlie and Robert J. Capon
Mar. Drugs 2023, 21(9), 487; https://doi.org/10.3390/md21090487 - 11 Sep 2023
Cited by 4 | Viewed by 3653
Abstract
Application of a miniaturized 24-well plate system for cultivation profiling (MATRIX) permitted optimization of the cultivation conditions for the marine-derived fungus Talaromyces sp. CMB-TU011, facilitating access to the rare cycloheptapeptide talarolide A (1) along with three new analogues, B–D (2 [...] Read more.
Application of a miniaturized 24-well plate system for cultivation profiling (MATRIX) permitted optimization of the cultivation conditions for the marine-derived fungus Talaromyces sp. CMB-TU011, facilitating access to the rare cycloheptapeptide talarolide A (1) along with three new analogues, B–D (24). Detailed spectroscopic analysis supported by Marfey’s analysis methodology was refined to resolve N-Me-l-Ala from N-Me-d-Ala, l-allo-Ile from l-Ile and l-Leu, and partial and total syntheses of 2, and permitted unambiguous assignment of structures for 1 (revised) and 24. Consideration of diagnostic ROESY correlations for the hydroxamates 1 and 34, and a calculated solution structure for 1, revealed how cross-ring H-bonding to the hydroxamate moiety influences (defines/stabilizes) the cyclic peptide conformation. Such knowledge draws attention to the prospect that hydroxamates may be used as molecular bridges to access new cyclic peptide conformations, offering the prospect of new biological properties, including enhanced oral bioavailability. Full article
(This article belongs to the Special Issue Diversity of Marine Fungi as a Source of Bioactive Natural Products)
Show Figures

Graphical abstract

20 pages, 7103 KiB  
Article
Spatial Distribution and Biochemical Characterization of Serine Peptidase Inhibitors in the Venom of the Brazilian Sea Anemone Anthopleura cascaia Using Mass Spectrometry Imaging
by Daiane Laise da Silva, Rodrigo Valladão, Emidio Beraldo-Neto, Guilherme Rabelo Coelho, Oscar Bento da Silva Neto, Hugo Vigerelli, Adriana Rios Lopes, Brett R. Hamilton, Eivind A. B. Undheim, Juliana Mozer Sciani and Daniel Carvalho Pimenta
Mar. Drugs 2023, 21(9), 481; https://doi.org/10.3390/md21090481 - 30 Aug 2023
Cited by 3 | Viewed by 2295
Abstract
Sea anemones are known to produce a diverse array of toxins with different cysteine-rich peptide scaffolds in their venoms. The serine peptidase inhibitors, specifically Kunitz inhibitors, are an important toxin family that is believed to function as defensive peptides, as well as prevent [...] Read more.
Sea anemones are known to produce a diverse array of toxins with different cysteine-rich peptide scaffolds in their venoms. The serine peptidase inhibitors, specifically Kunitz inhibitors, are an important toxin family that is believed to function as defensive peptides, as well as prevent proteolysis of other secreted anemone toxins. In this study, we isolated three serine peptidase inhibitors named Anthopleura cascaia peptide inhibitors I, II, and III (ACPI-I, ACPI-II, and ACPI-III) from the venom of the endemic Brazilian sea anemone A. cascaia. The venom was fractionated using RP-HPLC, and the inhibitory activity of these fractions against trypsin was determined and found to range from 59% to 93%. The spatial distribution of the anemone peptides throughout A. cascaia was observed using mass spectrometry imaging. The inhibitory peptides were found to be present in the tentacles, pedal disc, and mesenterial filaments. We suggest that the three inhibitors observed during this study belong to the venom Kunitz toxin family on the basis of their similarity to PI-actitoxin-aeq3a-like and the identification of amino acid residues that correspond to a serine peptidase binding site. Our findings expand our understanding of the diversity of toxins present in sea anemone venom and shed light on their potential role in protecting other venom components from proteolysis. Full article
(This article belongs to the Section Marine Toxins)
Show Figures

Graphical abstract

20 pages, 2442 KiB  
Article
An Investigation of Structure–Activity Relationships and Cell Death Mechanisms of the Marine Alkaloids Discorhabdins in Merkel Cell Carcinoma Cells
by Maria Orfanoudaki, Emily A. Smith, Natasha T. Hill, Khalid A. Garman, Isaac Brownell, Brent R. Copp, Tanja Grkovic and Curtis J. Henrich
Mar. Drugs 2023, 21(9), 474; https://doi.org/10.3390/md21090474 - 29 Aug 2023
Cited by 6 | Viewed by 4057
Abstract
A library of naturally occurring and semi-synthetic discorhabdins was assessed for their effects on Merkel cell carcinoma (MCC) cell viability. The set included five new natural products and semi-synthetic compounds whose structures were elucidated with NMR, HRMS, and ECD techniques. Several discorhabdins averaged [...] Read more.
A library of naturally occurring and semi-synthetic discorhabdins was assessed for their effects on Merkel cell carcinoma (MCC) cell viability. The set included five new natural products and semi-synthetic compounds whose structures were elucidated with NMR, HRMS, and ECD techniques. Several discorhabdins averaged sub-micromolar potency against the MCC cell lines tested and most of the active compounds showed selectivity towards virus-positive MCC cell lines. An investigation of structure–activity relationships resulted in an expanded understanding of the crucial structural features of the discorhabdin scaffold. Mechanistic cell death assays suggested that discorhabdins, unlike many other MCC-active small molecules, do not induce apoptosis, as shown by the lack of caspase activation, annexin V staining, and response to caspase inhibition. Similarly, discorhabdin treatment failed to increase MCC intracellular calcium and ROS levels. In contrast, the rapid loss of cellular reducing potential and mitochondrial membrane potential suggested that discorhabdins induce mitochondrial dysfunction leading to non-apoptotic cell death. Full article
(This article belongs to the Special Issue Marine Natural Products as Anticancer Agents 3.0)
Show Figures

Graphical abstract

13 pages, 2613 KiB  
Article
Butanolides and Butenolides from a Marine-Derived Streptomyces sp. Exert Neuroprotective Activity through Activation of the TrkB Neurotrophin Receptor
by Paolo Giaccio, Despoina Charou, Dafni-Ioanna Diakaki, Anna Chita, Achille Gravanis, Ioannis Charalampopoulos, Vassilios Roussis and Efstathia Ioannou
Mar. Drugs 2023, 21(9), 465; https://doi.org/10.3390/md21090465 - 25 Aug 2023
Cited by 2 | Viewed by 3367
Abstract
Neurodegenerative diseases are incurable and debilitating conditions, characterized by progressive loss and degeneration of vulnerable neuronal populations. Currently, there are no effective therapies available for the treatment of most neurodegenerative disorders. A panel of extracts exhibiting interesting chemical profiles among a high number [...] Read more.
Neurodegenerative diseases are incurable and debilitating conditions, characterized by progressive loss and degeneration of vulnerable neuronal populations. Currently, there are no effective therapies available for the treatment of most neurodegenerative disorders. A panel of extracts exhibiting interesting chemical profiles among a high number of bacterial strains isolated from East Mediterranean marine sediments and macroorganisms were evaluated for their activity on TrkB-expressing cells. Among them, the actinobacterial strain Streptomyces sp. BI0788, exhibiting neuroprotective activity in vitro, was selected and cultivated in large-scale. The chemical analysis of its organic extract resulted in the isolation of four new butanolides (1, 46), along with two previously reported butanolides (2 and 3) and eight previously reported butenolides (714). Compounds 24 and 714 were evaluated for their neuroprotective effects on TrkB-expressing NIH-3T3 cells. Among them, metabolites 3, 4, 7, 10, 11, 13 and 14 exhibited significant protective activity on the aforementioned cells through the activation of TrkB, the high-affinity receptor for the Brain-Derived Neurotrophic Factor (BDNF), which is well known to play a crucial role in neuronal cell survival and maintenance. Full article
Show Figures

Graphical abstract

14 pages, 2935 KiB  
Article
Lobosteroids A–F: Six New Highly Oxidized Steroids from the Chinese Soft Coral Lobophytum sp.
by Zi-Yi Xia, Man-Man Sun, Yang Jin, Li-Gong Yao, Ming-Zhi Su, Lin-Fu Liang, Hong Wang and Yue-Wei Guo
Mar. Drugs 2023, 21(8), 457; https://doi.org/10.3390/md21080457 - 19 Aug 2023
Cited by 5 | Viewed by 3555
Abstract
To explore the steroidal constituents of the soft coral Lobophytum sp. at the coast of Xuwen County, Guangdong Province, China, a chemical investigation of the above-mentioned soft coral was carried out. After repeated column chromatography over silica gel, Sephadex LH-20, and reversed-phase HPLC, [...] Read more.
To explore the steroidal constituents of the soft coral Lobophytum sp. at the coast of Xuwen County, Guangdong Province, China, a chemical investigation of the above-mentioned soft coral was carried out. After repeated column chromatography over silica gel, Sephadex LH-20, and reversed-phase HPLC, six new steroids, namely lobosteroids A–F (16), along with four known compounds 710, were obtained. Their structures were determined by extensive spectroscopic analysis and comparison with the spectral data reported in the literature. Among them, the absolute configuration of 1 was determined by X-ray diffraction analysis using Cu Kα radiation. These steroids were characterized by either the presence of an α,β-α′,β′-unsaturated carbonyl, or an α,β-unsaturated carbonyl moiety in ring A, or the existence of a 5α,8α-epidioxy system in ring B, as well as diverse oxidation of side chains. The antibacterial bioassays showed that all isolated steroids exhibited significant inhibitory activities against the fish pathogenic bacteria Streptococcus parauberis FP KSP28, Phoyobacterium damselae FP2244, and Streptococcus parauberis SPOF3K, with IC90 values ranging from 0.1 to 11.0 µM. Meanwhile, compounds 2 and 610 displayed potent inhibitory effects against the vancomycin-resistant Enterococcus faecium bacterium G7 with IC90 values ranging from 4.4 to 18.3 µM. Therefore, ten highly oxidized steroids with strong antibacterial activities were isolated from the Chinese soft coral Lobophytum sp., which could be developed as new chemotypes of antibacterial drug leads. Full article
(This article belongs to the Section Structural Studies on Marine Natural Products)
Show Figures

Graphical abstract

13 pages, 1588 KiB  
Article
MariClus: Your One-Stop Platform for Information on Marine Natural Products, Their Gene Clusters and Producing Organisms
by Cedric Hermans, Maarten Lieven De Mol, Marieke Mispelaere, Anne-Sofie De Rop, Jeltien Rombaut, Tesneem Nusayr, Rebecca Creamer, Sofie L. De Maeseneire, Wim K. Soetaert and Paco Hulpiau
Mar. Drugs 2023, 21(8), 449; https://doi.org/10.3390/md21080449 - 15 Aug 2023
Cited by 2 | Viewed by 4293
Abstract
Background: The marine environment hosts the vast majority of living species and marine microbes that produce natural products with great potential in providing lead compounds for drug development. With over 70% of Earth’s surface covered in water and the high interaction rate associated [...] Read more.
Background: The marine environment hosts the vast majority of living species and marine microbes that produce natural products with great potential in providing lead compounds for drug development. With over 70% of Earth’s surface covered in water and the high interaction rate associated with liquid environments, this has resulted in many marine natural product discoveries. Our improved understanding of the biosynthesis of these molecules, encoded by gene clusters, along with increased genomic information will aid us in uncovering even more novel compounds. Results: We introduce MariClus (https://www.mariclus.com), an online user-friendly platform for mining and visualizing marine gene clusters. The first version contains information on clusters and the predicted molecules for over 500 marine-related prokaryotes. The user-friendly interface allows scientists to easily search by species, cluster type or molecule and visualize the information in table format or graphical representation. Conclusions: This new online portal simplifies the exploration and comparison of gene clusters in marine species for scientists and assists in characterizing the bioactive molecules they produce. MariClus integrates data from public sources, like GenBank, MIBiG and PubChem, with genome mining results from antiSMASH. This allows users to access and analyze various aspects of marine natural product biosynthesis and diversity. Full article
Show Figures

Graphical abstract

11 pages, 1719 KiB  
Article
Jejucarbosides B–E, Chlorinated Cycloaromatized Enediynes, from a Marine Streptomyces sp.
by Ji Hyeon Im, Yern-Hyerk Shin, Eun Seo Bae, Sang Kook Lee and Dong-Chan Oh
Mar. Drugs 2023, 21(7), 405; https://doi.org/10.3390/md21070405 - 18 Jul 2023
Cited by 6 | Viewed by 2306
Abstract
Four new chlorinated cycloaromatized enediyne compounds, jejucarbosides B–E (14), were discovered together with previously-identified jejucarboside A from a marine actinomycete strain. Compounds 14 were identified as new chlorinated cyclopenta[a]indene glycosides based on 1D and 2D [...] Read more.
Four new chlorinated cycloaromatized enediyne compounds, jejucarbosides B–E (14), were discovered together with previously-identified jejucarboside A from a marine actinomycete strain. Compounds 14 were identified as new chlorinated cyclopenta[a]indene glycosides based on 1D and 2D nuclear magnetic resonance, high-resolution mass spectrometry, and circular dichroism (CD) spectra. Jejucarbosides B and E bear a carbonate functional group whereas jejucarbosides C and D are variants possessing 1,2-diol by losing the carbonate functionality. It is proposed that the production of 14 occurs via Bergman cycloaromatization capturing Cl- and H+ in the alternative positions of a p-benzyne intermediate derived from a 9-membered enediyne core. Jejucarboside E (4) displayed significant cytotoxicity against human cancer cell lines including SNU-638, SK-HEP-1, A549, HCT116, and MDA-MB-231, with IC50 values of 0.31, 0.40, 0.25, 0.29, and 0.48 μM, respectively, while jejucarbosides B–D (13) showed moderate or no cytotoxic effects. Full article
(This article belongs to the Special Issue Marine Drug Research in Korea II)
Show Figures

Graphical abstract

14 pages, 2602 KiB  
Article
Expanding the Utility of Bioinformatic Data for the Full Stereostructural Assignments of Marinolides A and B, 24- and 26-Membered Macrolactones Produced by a Chemically Exceptional Marine-Derived Bacterium
by Min Cheol Kim, Jaclyn M. Winter, Reiko Cullum, Alexander J. Smith and William Fenical
Mar. Drugs 2023, 21(6), 367; https://doi.org/10.3390/md21060367 - 20 Jun 2023
Cited by 2 | Viewed by 2419
Abstract
Marinolides A and B, two new 24- and 26-membered bacterial macrolactones, were isolated from the marine-derived actinobacterium AJS-327 and their stereostructures initially assigned by bioinformatic data analysis. Macrolactones typically possess complex stereochemistry, the assignments of which have been one of the most difficult [...] Read more.
Marinolides A and B, two new 24- and 26-membered bacterial macrolactones, were isolated from the marine-derived actinobacterium AJS-327 and their stereostructures initially assigned by bioinformatic data analysis. Macrolactones typically possess complex stereochemistry, the assignments of which have been one of the most difficult undertakings in natural products chemistry, and in most cases, the use of X-ray diffraction methods and total synthesis have been the major methods of assigning their absolute configurations. More recently, however, it has become apparent that the integration of bioinformatic data is growing in utility to assign absolute configurations. Genome mining and bioinformatic analysis identified the 97 kb mld biosynthetic cluster harboring seven type I polyketide synthases. A detailed bioinformatic investigation of the ketoreductase and enoylreductase domains within the multimodular polyketide synthases, coupled with NMR and X-ray diffraction data, allowed for the absolute configurations of marinolides A and B to be determined. While using bioinformatics to assign the relative and absolute configurations of natural products has high potential, this method must be coupled with full NMR-based analysis to both confirm bioinformatic assignments as well as any additional modifications that occur during biosynthesis. Full article
(This article belongs to the Special Issue 20 Years Commemorative Issue in Honor of Professor Paul J. Scheuer)
Show Figures

Graphical abstract

11 pages, 1223 KiB  
Article
Sesquiterpenes from Streptomyces qinglanensis and Their Cytotoxic Activity
by Cao Van Anh, Jong Soon Kang, Jeong-Wook Yang, Joo-Hee Kwon, Chang-Su Heo, Hwa-Sun Lee, Chan Hong Park and Hee Jae Shin
Mar. Drugs 2023, 21(6), 361; https://doi.org/10.3390/md21060361 - 16 Jun 2023
Cited by 4 | Viewed by 2329
Abstract
Nine sesquiterpenes, including eight pentalenenes (18) and one bolinane derivative (9), were isolated from the culture broth of a marine-derived actinobacterium Streptomyces qinglanensis 213DD-006. Among them, 1, 4, 7, and 9 were new compounds. [...] Read more.
Nine sesquiterpenes, including eight pentalenenes (18) and one bolinane derivative (9), were isolated from the culture broth of a marine-derived actinobacterium Streptomyces qinglanensis 213DD-006. Among them, 1, 4, 7, and 9 were new compounds. Their planar structures were determined by spectroscopic methods (HRMS, 1D, and 2D NMR), and the absolute configuration was established by biosynthesis consideration and electronic-circular-dichroism (ECD) calculations. All the isolated compounds were screened for their cytotoxicity against six solid and seven blood cancer cell lines. Compounds 46 and 8 showed a moderate activity against all of the tested solid cell lines, with GI50 values ranging from 1.97 to 3.46 µM. Full article
(This article belongs to the Special Issue Marine Drug Research in Korea II)
Show Figures

Graphical abstract

68 pages, 7649 KiB  
Review
Cyanobacteria: A Promising Source of Antifungal Metabolites
by Samuel Cavalcante do Amaral, Luciana Pereira Xavier, Vítor Vasconcelos and Agenor Valadares Santos
Mar. Drugs 2023, 21(6), 359; https://doi.org/10.3390/md21060359 - 14 Jun 2023
Cited by 11 | Viewed by 7186
Abstract
Cyanobacteria are a rich source of secondary metabolites, and they have received a great deal of attention due to their applicability in different industrial sectors. Some of these substances are known for their notorious ability to inhibit fungal growth. Such metabolites are very [...] Read more.
Cyanobacteria are a rich source of secondary metabolites, and they have received a great deal of attention due to their applicability in different industrial sectors. Some of these substances are known for their notorious ability to inhibit fungal growth. Such metabolites are very chemically and biologically diverse. They can belong to different chemical classes, including peptides, fatty acids, alkaloids, polyketides, and macrolides. Moreover, they can also target different cell components. Filamentous cyanobacteria have been the main source of these compounds. This review aims to identify the key features of these antifungal agents, as well as the sources from which they are obtained, their major targets, and the environmental factors involved when they are being produced. For the preparation of this work, a total of 642 documents dating from 1980 to 2022 were consulted, including patents, original research, review articles, and theses. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Figure 1

21 pages, 1939 KiB  
Article
Pentaketides and 5-p-Hydroxyphenyl-2-pyridone Derivative from the Culture Extract of a Marine Sponge-Associated Fungus Hamigera avellanea KUFA0732
by Rotchana Klaram, Tida Dethoup, Fátima P. Machado, Luís Gales, Decha Kumla, Salar Hafez Ghoran, Emília Sousa, Sharad Mistry, Artur M. S. Silva and Anake Kijjoa
Mar. Drugs 2023, 21(6), 344; https://doi.org/10.3390/md21060344 - 2 Jun 2023
Cited by 5 | Viewed by 2539
Abstract
Five undescribed pentaketide derivatives, (R)-6,8-dihydroxy-4,5-dimethyl-3-methylidene-3,4-dihydro-1H-2-benzopyran-1-one (1), [(3S,4R)-3,8-dihydroxy-6-methoxy-4,5-dimethyl-1-oxo-3,4-dihydro-1H-isochromen-3-yl]methyl acetate (2), (R)-5, 7-dimethoxy-3-((S)-(1-hydroxyethyl)-3,4-dimethylisobenzofuran-1(3H)-one (4b), (S)-7-hydroxy-3-((S)-1-hydroxyethyl)-5-methoxy-3,4-dimethylisobenzofuran 1(3H)-one ( [...] Read more.
Five undescribed pentaketide derivatives, (R)-6,8-dihydroxy-4,5-dimethyl-3-methylidene-3,4-dihydro-1H-2-benzopyran-1-one (1), [(3S,4R)-3,8-dihydroxy-6-methoxy-4,5-dimethyl-1-oxo-3,4-dihydro-1H-isochromen-3-yl]methyl acetate (2), (R)-5, 7-dimethoxy-3-((S)-(1-hydroxyethyl)-3,4-dimethylisobenzofuran-1(3H)-one (4b), (S)-7-hydroxy-3-((S)-1-hydroxyethyl)-5-methoxy-3,4-dimethylisobenzofuran 1(3H)-one (5), and a p-hydroxyphenyl-2-pyridone derivative, avellaneanone (6), were isolated together with the previously reported (R)-3-acetyl-7-hydroxy-5-methoxy-3,4-dimethylisobenzofuran-1(3H)-one (3), (R)-7-hydroxy-3-((S)-1-hydroxyethyl)-5-methoxy-3,4-dimethylisobenzofuran-1(3H)-one (4a) and isosclerone (7), from the ethyl acetate extract of a culture of a marine sponge-derived fungus, Hamigera avellanea KUFA0732. The structures of the undescribed compounds were elucidated using 1D and 2D NMR, as well as high-resolution mass spectral analyses. The absolute configurations of the stereogenic carbons in 1, 4b, 5, and 6 were established by X-ray crystallographic analysis. The absolute configurations of C-3 and C-4 in 2 were determined by ROESY correlations and on the basis of their common biosynthetic origin with 1. The crude fungal extract and the isolated compounds 1, 3, 4b, 5, 6, and 7 were assayed for their growth inhibitory activity against various plant pathogenic fungi viz. Alternaria brassicicola, Bipolaris oryzae, Colletotrichum capsici, C. gloeosporiodes, Curvularia oryzae, Fusarium semitectum, Lasiodiplodia theobromae, Phytophthora palmivora, Pyricularia oryzae, Rhizoctonia oryzae and Sclerotium rolfsii. Full article
Show Figures

Graphical abstract

11 pages, 1026 KiB  
Article
Synthesis and Antimalarial Evaluation of Halogenated Analogues of Thiaplakortone A
by Folake A. Egbewande, Brett D. Schwartz, Sandra Duffy, Vicky M. Avery and Rohan A. Davis
Mar. Drugs 2023, 21(5), 317; https://doi.org/10.3390/md21050317 - 22 May 2023
Cited by 1 | Viewed by 2239
Abstract
The incorporation of bromine, iodine or fluorine into the tricyclic core structure of thiaplakortone A (1), a potent antimalarial marine natural product, is reported. Although yields were low, it was possible to synthesise a small nine-membered library using the previously synthesised [...] Read more.
The incorporation of bromine, iodine or fluorine into the tricyclic core structure of thiaplakortone A (1), a potent antimalarial marine natural product, is reported. Although yields were low, it was possible to synthesise a small nine-membered library using the previously synthesised Boc-protected thiaplakortone A (2) as a scaffold for late-stage functionalisation. The new thiaplakortone A analogues (311) were generated using N-bromosuccinimide, N-iodosuccinimide or a Diversinate™ reagent. The chemical structures of all new analogues were fully characterised by 1D/2D NMR, UV, IR and MS data analyses. All compounds were evaluated for their antimalarial activity against Plasmodium falciparum 3D7 (drug-sensitive) and Dd2 (drug-resistant) strains. Incorporation of halogens at positions 2 and 7 of the thiaplakortone A scaffold was shown to reduce antimalarial activity compared to the natural product. Of the new compounds, the mono-brominated analogue (compound 5) displayed the best antimalarial activity with IC50 values of 0.559 and 0.058 μM against P. falciparum 3D7 and Dd2, respectively, with minimal toxicity against a human cell line (HEK293) observed at 80 μM. Of note, the majority of the halogenated compounds showed greater efficacy against the P. falciparum drug-resistant strain. Full article
(This article belongs to the Special Issue Marine Antiparasitic Agents)
Show Figures

Figure 1

66 pages, 7625 KiB  
Review
Advanced Methods for Natural Products Discovery: Bioactivity Screening, Dereplication, Metabolomics Profiling, Genomic Sequencing, Databases and Informatic Tools, and Structure Elucidation
by Susana P. Gaudêncio, Engin Bayram, Lada Lukić Bilela, Mercedes Cueto, Ana R. Díaz-Marrero, Berat Z. Haznedaroglu, Carlos Jimenez, Manolis Mandalakis, Florbela Pereira, Fernando Reyes and Deniz Tasdemir
Mar. Drugs 2023, 21(5), 308; https://doi.org/10.3390/md21050308 - 19 May 2023
Cited by 59 | Viewed by 17065
Abstract
Natural Products (NP) are essential for the discovery of novel drugs and products for numerous biotechnological applications. The NP discovery process is expensive and time-consuming, having as major hurdles dereplication (early identification of known compounds) and structure elucidation, particularly the determination of the [...] Read more.
Natural Products (NP) are essential for the discovery of novel drugs and products for numerous biotechnological applications. The NP discovery process is expensive and time-consuming, having as major hurdles dereplication (early identification of known compounds) and structure elucidation, particularly the determination of the absolute configuration of metabolites with stereogenic centers. This review comprehensively focuses on recent technological and instrumental advances, highlighting the development of methods that alleviate these obstacles, paving the way for accelerating NP discovery towards biotechnological applications. Herein, we emphasize the most innovative high-throughput tools and methods for advancing bioactivity screening, NP chemical analysis, dereplication, metabolite profiling, metabolomics, genome sequencing and/or genomics approaches, databases, bioinformatics, chemoinformatics, and three-dimensional NP structure elucidation. Full article
Show Figures

Figure 1

14 pages, 1600 KiB  
Article
Isolation of Nocuolin A and Synthesis of New Oxadiazine Derivatives. Design, Synthesis, Molecular Docking, Apoptotic Evaluation, and Cathepsin B Inhibition
by Víctor Tena Pérez, Luis Apaza Ticona, Alfredo H. Cabanillas, Santiago Maderuelo Corral, Diego Fernando Rosero Valencia, Antera Martel Quintana, Montserrat Ortega Domenech and Ángel Rumbero Sánchez
Mar. Drugs 2023, 21(5), 284; https://doi.org/10.3390/md21050284 - 29 Apr 2023
Cited by 3 | Viewed by 2128
Abstract
Nocuolin A (1), an oxadiazine, was isolated from the cyanobacterium Nostoc sp. Its chemical structure was elucidated using NMR and mass spectroscopic data. From this compound, two new oxadiazines, 3-[(6R)-5,6-dihydro-4,6-dipentyl-2H-1,2,3-oxadiazin-2-yl]-3-oxopropyl acetate (2) and 4-{3-[(6R [...] Read more.
Nocuolin A (1), an oxadiazine, was isolated from the cyanobacterium Nostoc sp. Its chemical structure was elucidated using NMR and mass spectroscopic data. From this compound, two new oxadiazines, 3-[(6R)-5,6-dihydro-4,6-dipentyl-2H-1,2,3-oxadiazin-2-yl]-3-oxopropyl acetate (2) and 4-{3-[(6R)-5,6-dihydro-4,6-dipentyl-2H-1,2,3-oxadiazin-2-yl]-3-oxopropoxy}-4-oxobutanoic acid (3), were synthesised. The chemical structures of these two compounds were elucidated by a combination of NMR and MS analysis. Compound 3 showed cytotoxicity against the ACHN (0.73 ± 0.10 μM) and Hepa-1c1c7 (0.91 ± 0.08 μM) tumour cell lines. Similarly, compound 3 significantly decreased cathepsin B activity in ACHN and Hepa-1c1c7 tumour cell lines at concentrations of 1.52 ± 0.13 nM and 1.76 ± 0.24 nM, respectively. In addition, compound 3 showed no in vivo toxicity in a murine model treated with a dose of 4 mg/kg body weight. Full article
(This article belongs to the Section Synthesis and Medicinal Chemistry of Marine Natural Products)
Show Figures

Graphical abstract

15 pages, 1883 KiB  
Article
Enhanced Molecular Networking Shows Microbacterium sp. V1 as a Factory of Antioxidant Proline-Rich Peptides
by Giovanni Andrea Vitale, Silvia Scarpato, Alfonso Mangoni, Maria Valeria D’Auria, Gerardo Della Sala and Donatella de Pascale
Mar. Drugs 2023, 21(4), 256; https://doi.org/10.3390/md21040256 - 21 Apr 2023
Cited by 4 | Viewed by 3959
Abstract
Two linear proline-rich peptides (12), bearing an N-terminal pyroglutamate, were isolated from the marine bacterium Microbacterium sp. V1, associated with the marine sponge Petrosia ficiformis, collected in the volcanic CO2 vents in Ischia Island (South Italy). Peptide [...] Read more.
Two linear proline-rich peptides (12), bearing an N-terminal pyroglutamate, were isolated from the marine bacterium Microbacterium sp. V1, associated with the marine sponge Petrosia ficiformis, collected in the volcanic CO2 vents in Ischia Island (South Italy). Peptide production was triggered at low temperature following the one strain many compounds (OSMAC) method. Both peptides were detected together with other peptides (38) via an integrated, untargeted MS/MS-based molecular networking and cheminformatic approach. The planar structure of the peptides was determined by extensive 1D and 2D NMR and HR-MS analysis, and the stereochemistry of the aminoacyl residues was inferred by Marfey’s analysis. Peptides 18 are likely to arise from Microbacterium V1 tailor-made proteolysis of tryptone. Peptides 1 and 2 were shown to display antioxidant properties in the ferric-reducing antioxidant power (FRAP) assay. Full article
(This article belongs to the Section Marine Biotechnology Related to Drug Discovery or Production)
Show Figures

Graphical abstract

18 pages, 2603 KiB  
Article
Challenging Structure Elucidation of Lumnitzeralactone, an Ellagic Acid Derivative from the Mangrove Lumnitzera racemosa
by Jonas Kappen, Jeprianto Manurung, Tristan Fuchs, Sahithya Phani Babu Vemulapalli, Lea M. Schmitz, Andrej Frolov, Andria Agusta, Alexandra N. Muellner-Riehl, Christian Griesinger, Katrin Franke and Ludger A. Wessjohann
Mar. Drugs 2023, 21(4), 242; https://doi.org/10.3390/md21040242 - 14 Apr 2023
Cited by 3 | Viewed by 4982
Abstract
The previously undescribed natural product lumnitzeralactone (1), which represents a derivative of ellagic acid, was isolated from the anti-bacterial extract of the Indonesian mangrove species Lumnitzera racemosa Willd. The structure of lumnitzeralactone (1), a proton-deficient and highly challenging condensed [...] Read more.
The previously undescribed natural product lumnitzeralactone (1), which represents a derivative of ellagic acid, was isolated from the anti-bacterial extract of the Indonesian mangrove species Lumnitzera racemosa Willd. The structure of lumnitzeralactone (1), a proton-deficient and highly challenging condensed aromatic ring system, was unambiguously elucidated by extensive spectroscopic analyses involving high-resolution mass spectrometry (HRMS), 1D 1H and 13C nuclear magnetic resonance spectroscopy (NMR), and 2D NMR (including 1,1-ADEQUATE and 1,n-ADEQUATE). Determination of the structure was supported by computer-assisted structure elucidation (CASE system applying ACD-SE), density functional theory (DFT) calculations, and a two-step chemical synthesis. Possible biosynthetic pathways involving mangrove-associated fungi have been suggested. Full article
(This article belongs to the Section Structural Studies on Marine Natural Products)
Show Figures

Figure 1

32 pages, 761 KiB  
Review
Applications of Antioxidant Secondary Metabolites of Sargassum spp.
by Marcelo D. Catarino, Rita Silva-Reis, Amina Chouh, Sónia Silva, Susana S. Braga, Artur M. S. Silva and Susana M. Cardoso
Mar. Drugs 2023, 21(3), 172; https://doi.org/10.3390/md21030172 - 9 Mar 2023
Cited by 27 | Viewed by 9651
Abstract
Sargassum is one of the largest and most diverse genus of brown seaweeds, comprising of around 400 taxonomically accepted species. Many species of this genus have long been a part of human culture with applications as food, feed, and remedies in folk medicine. [...] Read more.
Sargassum is one of the largest and most diverse genus of brown seaweeds, comprising of around 400 taxonomically accepted species. Many species of this genus have long been a part of human culture with applications as food, feed, and remedies in folk medicine. Apart from their high nutritional value, these seaweeds are also a well-known reservoir of natural antioxidant compounds of great interest, including polyphenols, carotenoids, meroterpenoids, phytosterols, and several others. Such compounds provide a valuable contribution to innovation that can translate, for instance, into the development of new ingredients for preventing product deterioration, particularly in food products, cosmetics or biostimulants to boost crops production and tolerance to abiotic stress. This manuscript revises the chemical composition of Sargassum seaweeds, highlighting their antioxidant secondary metabolites, their mechanism of action, and multiple applications in fields, including agriculture, food, and health. Full article
Show Figures

Figure 1

18 pages, 4780 KiB  
Article
Marinobazzanan, a Bazzanane-Type Sesquiterpenoid, Suppresses the Cell Motility and Tumorigenesis in Cancer Cells
by Sultan Pulat, Prima F. Hillman, Sojeong Kim, Ratnakar N. Asolkar, Haerin Kim, Rui Zhou, İsa Taş, Chathurika D. B. Gamage, Mücahit Varlı, So-Yeon Park, Sung Chul Park, Inho Yang, Jongheon Shin, Dong-Chan Oh, Hangun Kim, Sang-Jip Nam and William Fenical
Mar. Drugs 2023, 21(3), 153; https://doi.org/10.3390/md21030153 - 25 Feb 2023
Cited by 11 | Viewed by 3288
Abstract
Marinobazzanan (1), a new bazzanane-type sesquiterpenoid, was isolated from a marine-derived fungus belonging to the genus Acremonium. The chemical structure of 1 was elucidated using NMR and mass spectroscopic data, while the relative configurations were established through the analysis of [...] Read more.
Marinobazzanan (1), a new bazzanane-type sesquiterpenoid, was isolated from a marine-derived fungus belonging to the genus Acremonium. The chemical structure of 1 was elucidated using NMR and mass spectroscopic data, while the relative configurations were established through the analysis of NOESY data. The absolute configurations of 1 were determined by the modified Mosher’s method as well as vibrational circular dichroism (VCD) spectra calculation and it was determined as 6R, 7R, 9R, and 10R. It was found that compound 1 was not cytotoxic to human cancer cells, including A549 (lung cancer), AGS (gastric cancer), and Caco-2 (colorectal cancer) below the concentration of 25 μM. However, compound 1 was shown to significantly decrease cancer-cell migration and invasion and soft-agar colony-formation ability at concentrations ranging from 1 to 5 μM by downregulating the expression level of KITENIN and upregulating the expression level of KAI1. Compound 1 suppressed β-catenin-mediated TOPFLASH activity and its downstream targets in AGS, A549, and Caco-2 and slightly suppressed the Notch signal pathway in three cancer cells. Furthermore, 1 also reduced the number of metastatic nodules in an intraperitoneal xenograft mouse model. Full article
Show Figures

Graphical abstract

18 pages, 2608 KiB  
Article
Bioactive Oxylipins Profile in Marine Microalgae
by Amandyne Linares-Maurizi, Guillaume Reversat, Rana Awad, Valérie Bultel-Poncé, Camille Oger, Jean-Marie Galano, Laurence Balas, Anaelle Durbec, Justine Bertrand-Michel, Thierry Durand, Rémi Pradelles and Claire Vigor
Mar. Drugs 2023, 21(3), 136; https://doi.org/10.3390/md21030136 - 22 Feb 2023
Cited by 14 | Viewed by 6494
Abstract
Microalgae are photosynthetic microscopic organisms that serve as the primary food source in aquatic environments. Microalgae can synthesize a wide variety of molecules, such as polyunsaturated fatty acids (PUFAs) of the omega-3 and omega-6 series. Oxidative degradation of PUFA due to radical and/or [...] Read more.
Microalgae are photosynthetic microscopic organisms that serve as the primary food source in aquatic environments. Microalgae can synthesize a wide variety of molecules, such as polyunsaturated fatty acids (PUFAs) of the omega-3 and omega-6 series. Oxidative degradation of PUFA due to radical and/or enzymatic conversion leads to the formation of oxylipins, which are compounds known for their bioactive properties. In the present study, we aim to profile oxylipins from five microalgae species grown in 10-L photo-bioreactors under optimal conditions. During their exponential phase, microalgae were harvested, extracted and analyzed by LC-MS/MS to determine the qualitative and quantitative profile of oxylipins for each species. The five different selected microalgae revealed a high diversity of metabolites, up to 33 non-enzymatic and 24 enzymatic oxylipins present in different concentrations. Taken together, these findings highlight an interesting role of marine microalgae as a source of bioactive lipids mediators, which we hypothesize have an important function in preventive health measures such as amelioration of inflammation. The rich mixture of oxylipins may display advantages to biological organisms, especially by providing for human health benefits including antioxidant, anti-inflammatory, neuroprotective or immunomodulator activities. Some oxylipins are also well known for their cardiovascular properties. Full article
(This article belongs to the Special Issue Marine-Derived Compounds Applied in Cardiovascular Disease)
Show Figures

Graphical abstract

21 pages, 4498 KiB  
Review
Marine Organisms as a Prolific Source of Bioactive Depsipeptides
by Mingyuan Zeng, Jianyun Tao, Shuang Xu, Xuelian Bai and Huawei Zhang
Mar. Drugs 2023, 21(2), 120; https://doi.org/10.3390/md21020120 - 11 Feb 2023
Cited by 23 | Viewed by 3356
Abstract
Depsipeptides, an important group of polypeptides containing residues of hydroxy acids and amino acids linked together by amide and ester bonds, have potential applications in agriculture and medicine. A growing body of evidence demonstrates that marine organisms are prolific sources of depsipeptides, such [...] Read more.
Depsipeptides, an important group of polypeptides containing residues of hydroxy acids and amino acids linked together by amide and ester bonds, have potential applications in agriculture and medicine. A growing body of evidence demonstrates that marine organisms are prolific sources of depsipeptides, such as marine cyanobacteria, sponges, mollusks, microorganisms and algae. However, these substances have not yet been comprehensively summarized. In order to enrich our knowledge about marine depsipeptides, their biological sources and structural features, as well as bioactivities, are highlighted in this review after an extensive literature search and data analysis. Full article
Show Figures

Graphical abstract

13 pages, 562 KiB  
Article
New Nostocyclophanes from Nostoc linckia
by Jingqiu Dai, Casey S. Philbin, Clay Wakano, Wesley Y. Yoshida and Philip G. Williams
Mar. Drugs 2023, 21(2), 101; https://doi.org/10.3390/md21020101 - 31 Jan 2023
Cited by 6 | Viewed by 4921
Abstract
Six new nostocyclophanes and four known compounds have been isolated from Nostoc linckia (Nostocaceae) cyanobacterial strain UTEX B1932. The new compounds, nostocyclophanes E–J (16), were characterized by NMR and MS techniques. The known compounds were nostocyclophanes B–D, previously isolated [...] Read more.
Six new nostocyclophanes and four known compounds have been isolated from Nostoc linckia (Nostocaceae) cyanobacterial strain UTEX B1932. The new compounds, nostocyclophanes E–J (16), were characterized by NMR and MS techniques. The known compounds were nostocyclophanes B–D, previously isolated from this strain, and dedichloronostocyclophane D. Structural modifications on the new [7.7]paracyclophane analogs 15, isolated from the 80% methanol fraction, range from simple changes such as the lack of methylation or halogenation to more unusual modifications such as those seen in nostocyclophane H (4), in which the exocyclic alkyl chains are of different length; this is the first time this modification has been observed in this family of natural products. In addition, nostocyclophane J (6) is a linear analog in which C-20 is chlorinated in preparation for the presumed enzymatic Friedel–Craft cyclization needed to form the final ring structure, analogous to the biosynthesis of the related cylindrocyclophanes. Nostocyclophane D, dedichloronostocyclophane D, and nostocyclophanes E-J demonstrated moderate to weak growth inhibition against MDA-MB-231 breast cancer cells. Full article
Show Figures

Figure 1

15 pages, 3925 KiB  
Review
Marine Natural and Nature-Inspired Compounds Targeting Peroxisome Proliferator Activated Receptors (PPARs)
by Enrico D’Aniello, Pietro Amodeo and Rosa Maria Vitale
Mar. Drugs 2023, 21(2), 89; https://doi.org/10.3390/md21020089 - 26 Jan 2023
Cited by 11 | Viewed by 4584
Abstract
Peroxisome proliferator-activated receptors α, γ and β/δ (PPARα, PPARγ, and PPARβ/δ) are a family of ligand-activated transcriptional factors belonging to the superfamily of nuclear receptors regulating the expression of genes involved in lipid and carbohydrate metabolism, energy homeostasis, inflammation, and the immune response. [...] Read more.
Peroxisome proliferator-activated receptors α, γ and β/δ (PPARα, PPARγ, and PPARβ/δ) are a family of ligand-activated transcriptional factors belonging to the superfamily of nuclear receptors regulating the expression of genes involved in lipid and carbohydrate metabolism, energy homeostasis, inflammation, and the immune response. For this reason, they represent attractive targets for the treatment of a variety of metabolic diseases and, more recently, for neurodegenerative disorders due to their emerging neuroprotective effects. The degree of activation, from partial to full, along with the selectivity toward the different isoforms, greatly affect the therapeutic efficacy and the safety profile of PPAR agonists. Thus, there is a high interest toward novel scaffolds with proper combinations of activity and selectivity. This review intends to provide an overview of the discovery, optimization, and structure–activity relationship studies on PPAR modulators from marine sources, along with the structural and computational studies that led to their identification and/or elucidation, and rationalization of their mechanisms of action. Full article
Show Figures

Figure 1

30 pages, 2013 KiB  
Review
Promising Antiparasitic Natural and Synthetic Products from Marine Invertebrates and Microorganisms
by Mingyue Zhang, Qinrong Zhang, Qunde Zhang, Xinyuan Cui and Lifeng Zhu
Mar. Drugs 2023, 21(2), 84; https://doi.org/10.3390/md21020084 - 25 Jan 2023
Cited by 9 | Viewed by 4169
Abstract
Parasitic diseases still threaten human health. At present, a number of parasites have developed drug resistance, and it is urgent to find new and effective antiparasitic drugs. As a rich source of biological compounds, marine natural products have been increasingly screened as candidates [...] Read more.
Parasitic diseases still threaten human health. At present, a number of parasites have developed drug resistance, and it is urgent to find new and effective antiparasitic drugs. As a rich source of biological compounds, marine natural products have been increasingly screened as candidates for developing new antiparasitic drugs. The literature related to the study of the antigenic animal activity of marine natural compounds from invertebrates and microorganisms was selected to summarize the research progress of marine compounds and the structure–activity relationship of these compounds in the past five years and to explore the possible sources of potential antiparasitic drugs for parasite treatment. Full article
(This article belongs to the Special Issue Marine Antiparasitic Agents)
Show Figures

Figure 1

15 pages, 2339 KiB  
Article
Secondary Metabolites with Anti-Inflammatory Activity from Laurencia majuscula Collected in the Red Sea
by Mohamed A. Tammam, Maria G. Daskalaki, Nikolaos Tsoureas, Ourania Kolliniati, Aldoushy Mahdy, Sotirios C. Kampranis, Christos Tsatsanis, Vassilios Roussis and Efstathia Ioannou
Mar. Drugs 2023, 21(2), 79; https://doi.org/10.3390/md21020079 - 24 Jan 2023
Cited by 9 | Viewed by 4896
Abstract
The chemical investigation of the organic extract of the red alga Laurencia majuscula collected from Hurghada reef in the Red Sea resulted in the isolation of five C15 acetogenins, including four tricyclic ones of the maneonene type (14) [...] Read more.
The chemical investigation of the organic extract of the red alga Laurencia majuscula collected from Hurghada reef in the Red Sea resulted in the isolation of five C15 acetogenins, including four tricyclic ones of the maneonene type (14) and a 5-membered one (5), 15 sesquiterpenes, including seven lauranes (612), one cuparane (13), one seco-laurane (14), one snyderane (15), two chamigranes (16, 17), two rearranged chamigranes (18, 19) and one aristolane (20), as well as a tricyclic diterpene (21) and a chlorinated fatty acid derivative (22). Among them, compounds 13, 5, 7, 8, 10, 11 and 14 are new natural products. The structures and the relative configurations of the isolated natural products have been established based on extensive analysis of their NMR and MS data, while the absolute configuration of maneonenes F (1) and G (2) was determined on the basis of single-crystal X-ray diffraction analysis. The anti-inflammatory activity of compounds 1, 2, 48, 10, 1216, 18 and 2022 was evaluated by measuring suppression of nitric oxide (NO) release in TLR4-activated RAW 264.7 macrophages in culture. All compounds, except 6, exhibited significant anti-inflammatory activity. Among them, metabolites 1, 4 and 18 did not exhibit any cytostatic activity at the tested concentrations. The most prominent anti-inflammatory activity, accompanied by absence of cytostatic activity at the same concentration, was exerted by compounds 5 and 18, with IC50 values of 3.69 μM and 3.55 μΜ, respectively. Full article
Show Figures

Figure 1

18 pages, 2998 KiB  
Article
Cryptic Diversity of Black Band Disease Cyanobacteria in Siderastrea siderea Corals Revealed by Chemical Ecology and Comparative Genome-Resolved Metagenomics
by Julie L. Meyer, Sarath P. Gunasekera, Anya L. Brown, Yousong Ding, Stephanie Miller, Max Teplitski and Valerie J. Paul
Mar. Drugs 2023, 21(2), 76; https://doi.org/10.3390/md21020076 - 22 Jan 2023
Cited by 10 | Viewed by 5457
Abstract
Black band disease is a globally distributed and easily recognizable coral disease. Despite years of study, the etiology of this coral disease, which impacts dozens of stony coral species, is not completely understood. Although black band disease mats are predominantly composed of the [...] Read more.
Black band disease is a globally distributed and easily recognizable coral disease. Despite years of study, the etiology of this coral disease, which impacts dozens of stony coral species, is not completely understood. Although black band disease mats are predominantly composed of the cyanobacterial species Roseofilum reptotaenium, other filamentous cyanobacterial strains and bacterial heterotrophs are readily detected. Through chemical ecology and metagenomic sequencing, we uncovered cryptic strains of Roseofilum species from Siderastrea siderea corals that differ from those on other corals in the Caribbean and Pacific. Isolation of metabolites from Siderastrea-derived Roseofilum revealed the prevalence of unique forms of looekeyolides, distinct from previously characterized Roseofilum reptotaenium strains. In addition, comparative genomics of Roseofilum strains showed that only Siderastrea-based Roseofilum strains have the genetic capacity to produce lasso peptides, a family of compounds with diverse biological activity. All nine Roseofilum strains examined here shared the genetic capacity to produce looekeyolides and malyngamides, suggesting these compounds support the ecology of this genus. Similar biosynthetic gene clusters are not found in other cyanobacterial genera associated with black band disease, which may suggest that looekeyolides and malyngamides contribute to disease etiology through yet unknown mechanisms. Full article
(This article belongs to the Special Issue Reef Ecology and Marine Drug Discovery)
Show Figures

Figure 1

19 pages, 17326 KiB  
Article
Botryllin, a Novel Antimicrobial Peptide from the Colonial Ascidian Botryllus schlosseri
by Nicola Franchi, Loriano Ballarin and Francesca Cima
Mar. Drugs 2023, 21(2), 74; https://doi.org/10.3390/md21020074 - 21 Jan 2023
Cited by 6 | Viewed by 3866
Abstract
By mining the transcriptome of the colonial ascidian Botryllus schlosseri, we identified a transcript for a novel styelin-like antimicrobial peptide, which we named botryllin. The gene is constitutively transcribed by circulating cytotoxic morula cells (MCs) as a pre-propeptide that is then cleaved [...] Read more.
By mining the transcriptome of the colonial ascidian Botryllus schlosseri, we identified a transcript for a novel styelin-like antimicrobial peptide, which we named botryllin. The gene is constitutively transcribed by circulating cytotoxic morula cells (MCs) as a pre-propeptide that is then cleaved to mature peptide. The synthetic peptide, obtained from in silico translation of the transcript, shows robust killing activity of bacterial and unicellular yeast cells, causing breakages of both the plasma membrane and the cell wall. Specific monoclonal antibodies were raised against the epitopes of the putative amino acid sequence of the propeptide and the mature peptide; in both cases, they label the MC granular content. Upon MC degranulation induced by the presence of nonself, the antibodies recognise the extracellular nets with entrapped bacteria nearby MC remains. The obtained results suggest that the botryllin gene carries the information for the synthesis of an AMP involved in the protection of B. schlosseri from invading foreign cells. Full article
(This article belongs to the Special Issue Pharmacological Potential of Marine Natural Products)
Show Figures

Figure 1

14 pages, 3607 KiB  
Article
Molecular Networking Revealed Unique UV-Absorbing Phospholipids: Favilipids from the Marine Sponge Clathria faviformis
by Silvia Scarpato, Roberta Teta, Paola De Cicco, Francesca Borrelli, Joseph R. Pawlik, Valeria Costantino and Alfonso Mangoni
Mar. Drugs 2023, 21(2), 58; https://doi.org/10.3390/md21020058 - 18 Jan 2023
Cited by 5 | Viewed by 3744
Abstract
Analysis of extracts of the marine sponge Clathria faviformis by high-resolution LC-MS2 and molecular networking resulted in the discovery of a new family of potentially UV-protecting phospholipids, the favilipids. One of them, favilipid A (1), was isolated and its structure [...] Read more.
Analysis of extracts of the marine sponge Clathria faviformis by high-resolution LC-MS2 and molecular networking resulted in the discovery of a new family of potentially UV-protecting phospholipids, the favilipids. One of them, favilipid A (1), was isolated and its structure determined by mass and tandem mass spectrometry, NMR, electronic circular dichroism (ECD), and computational studies. Favilipid A, which has no close analogues among natural products, possesses an unprecedented structure characterized by a 4-aminodihydropiridinium core, resulting in UV-absorbing properties that are very unusual for a phospholipid. Consequently, favilipid A could inspire the development of a new class of molecules to be used as sunscreen ingredients. In addition, favilipid A inhibited by 58–48% three kinases (JAK3, IKKβ, and SYK) involved in the regulation of the immune system, suggesting a potential use for treatment of autoimmune diseases, hematologic cancers, and other inflammatory states. Full article
(This article belongs to the Special Issue Discovering Marine Bioactive Compounds by Molecular Networking)
Show Figures

Graphical abstract

26 pages, 2681 KiB  
Review
Secondary Metabolites from Marine-Derived Bacteria with Antibiotic and Antibiofilm Activities against Drug-Resistant Pathogens
by Joko Tri Wibowo, Asep Bayu, Widya Dwi Aryati, Carla Fernandes, Arry Yanuar, Anake Kijjoa and Masteria Yunovilsa Putra
Mar. Drugs 2023, 21(1), 50; https://doi.org/10.3390/md21010050 - 12 Jan 2023
Cited by 26 | Viewed by 6881
Abstract
The search for new antibiotics against drug-resistant microbes has been expanded to marine bacteria. Marine bacteria have been proven to be a prolific source of a myriad of novel compounds with potential biological activities. Therefore, this review highlights novel and bioactive compounds from [...] Read more.
The search for new antibiotics against drug-resistant microbes has been expanded to marine bacteria. Marine bacteria have been proven to be a prolific source of a myriad of novel compounds with potential biological activities. Therefore, this review highlights novel and bioactive compounds from marine bacteria reported during the period of January 2016 to December 2021. Published articles containing novel marine bacterial secondary metabolites that are active against drug-resistant pathogens were collected. Previously described compounds (prior to January 2016) are not included in this review. Unreported compounds during this period that exhibited activity against pathogenic microbes were discussed and compared in order to find the cue of the structure–bioactivity relationship. The results showed that Streptomyces are the most studied bacteria with undescribed bioactive compounds, followed by other genera in the Actinobacteria. We have categorized the structures of the compounds in the present review into four groups, based on their biosynthetic origins, as polyketide derivatives, amino acid derivatives, terpenoids, as well as compounds with mixed origin. These compounds were active against one or more drug-resistant pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant Staphylococcus epidermidis (MRSE), vancomycin-resistant Enterococci (VRE), multidrug-resistant Mycobacterium tuberculosis (MDR-TB), and amphotericin B-resistant Candida albicans. In addition, some of the compounds also showed activity against biofilm formation of the test bacteria. Some previously undescribed compounds, isolated from marine-derived bacteria during this period, could have a good potential as lead compounds for the development of drug candidates to overcome multidrug-resistant pathogens. Full article
Show Figures

Graphical abstract

28 pages, 6086 KiB  
Article
Marine Sponge and Octocoral-Associated Bacteria Show Versatile Secondary Metabolite Biosynthesis Potential and Antimicrobial Activities against Human Pathogens
by João F. Almeida, Matilde Marques, Vanessa Oliveira, Conceição Egas, Dalila Mil-Homens, Romeu Viana, Daniel F. R. Cleary, Yusheng M. Huang, Arsénio M. Fialho, Miguel C. Teixeira, Newton C. M. Gomes, Rodrigo Costa and Tina Keller-Costa
Mar. Drugs 2023, 21(1), 34; https://doi.org/10.3390/md21010034 - 30 Dec 2022
Cited by 10 | Viewed by 6342
Abstract
Marine microbiomes are prolific sources of bioactive natural products of potential pharmaceutical value. This study inspected two culture collections comprising 919 host-associated marine bacteria belonging to 55 genera and several thus-far unclassified lineages to identify isolates with potentially rich secondary metabolism and antimicrobial [...] Read more.
Marine microbiomes are prolific sources of bioactive natural products of potential pharmaceutical value. This study inspected two culture collections comprising 919 host-associated marine bacteria belonging to 55 genera and several thus-far unclassified lineages to identify isolates with potentially rich secondary metabolism and antimicrobial activities. Seventy representative isolates had their genomes mined for secondary metabolite biosynthetic gene clusters (SM-BGCs) and were screened for antimicrobial activities against four pathogenic bacteria and five pathogenic Candida strains. In total, 466 SM-BGCs were identified, with antimicrobial peptide- and polyketide synthase-related SM-BGCs being frequently detected. Only 38 SM-BGCs had similarities greater than 70% to SM-BGCs encoding known compounds, highlighting the potential biosynthetic novelty encoded by these genomes. Cross-streak assays showed that 33 of the 70 genome-sequenced isolates were active against at least one Candida species, while 44 isolates showed activity against at least one bacterial pathogen. Taxon-specific differences in antimicrobial activity among isolates suggested distinct molecules involved in antagonism against bacterial versus Candida pathogens. The here reported culture collections and genome-sequenced isolates constitute a valuable resource of understudied marine bacteria displaying antimicrobial activities and potential for the biosynthesis of novel secondary metabolites, holding promise for a future sustainable production of marine drug leads. Full article
(This article belongs to the Special Issue Reef Ecology and Marine Drug Discovery)
Show Figures

Graphical abstract

26 pages, 5346 KiB  
Review
Recent Advancement in Anticancer Compounds from Marine Organisms: Approval, Use and Bioinformatic Approaches to Predict New Targets
by Giovanna Santaniello, Angela Nebbioso, Lucia Altucci and Mariarosaria Conte
Mar. Drugs 2023, 21(1), 24; https://doi.org/10.3390/md21010024 - 28 Dec 2022
Cited by 10 | Viewed by 5916
Abstract
In recent years, the study of anticancer bioactive compounds from marine sources has received wide interest. Contextually, world regulatory authorities have approved several marine molecules, and new synthetic derivatives have also been synthesized and structurally improved for the treatment of numerous forms of [...] Read more.
In recent years, the study of anticancer bioactive compounds from marine sources has received wide interest. Contextually, world regulatory authorities have approved several marine molecules, and new synthetic derivatives have also been synthesized and structurally improved for the treatment of numerous forms of cancer. However, the administration of drugs in cancer patients requires careful evaluation since their interaction with individual biological macromolecules, such as proteins or nucleic acids, determines variable downstream effects. This is reflected in a constant search for personalized therapies that lay the foundations of modern medicine. The new knowledge acquired on cancer mechanisms has certainly allowed advancements in tumor prevention, but unfortunately, due to the huge complexity and heterogeneity of cancer, we are still looking for a definitive therapy and clinical approaches. In this review, we discuss the significance of recently approved molecules originating from the marine environment, starting from their organism of origin to their structure and mechanism of action. Subsequently, these bio-compounds are used as models to illustrate possible bioinformatics approaches for the search of new targets that are useful for improving the knowledge on anticancer therapies. Full article
(This article belongs to the Special Issue Bioinformatics of Marine Natural Products 2.0)
Show Figures

Figure 1

17 pages, 641 KiB  
Article
Never, Ever Make an Enemy… Out of an Anemone: Transcriptomic Comparison of Clownfish Hosting Sea Anemone Venoms
by Alonso Delgado, Charlotte Benedict, Jason Macrander and Marymegan Daly
Mar. Drugs 2022, 20(12), 730; https://doi.org/10.3390/md20120730 - 23 Nov 2022
Cited by 10 | Viewed by 5712
Abstract
Sea anemones are predatory marine invertebrates and have diverse venom arsenals. Venom is integral to their biology, and is used in competition, defense, and feeding. Three lineages of sea anemones are known to have independently evolved symbiotic relationships with clownfish, however the evolutionary [...] Read more.
Sea anemones are predatory marine invertebrates and have diverse venom arsenals. Venom is integral to their biology, and is used in competition, defense, and feeding. Three lineages of sea anemones are known to have independently evolved symbiotic relationships with clownfish, however the evolutionary impact of this relationship on the venom composition of the host is still unknown. Here, we investigate the potential of this symbiotic relationship to shape the venom profiles of the sea anemones that host clownfish. We use transcriptomic data to identify differences and similarities in venom profiles of six sea anemone species, representing the three known clades of clownfish-hosting sea anemones. We recovered 1121 transcripts matching verified toxins across all species, and show that hemolytic and hemorrhagic toxins are consistently the most dominant and diverse toxins across all species examined. These results are consistent with the known biology of sea anemones, provide foundational data on venom diversity of these species, and allow for a review of existing hierarchical structures in venomic studies. Full article
Show Figures

Figure 1

22 pages, 2920 KiB  
Article
A Metabolomics-Based Toolbox to Assess and Compare the Metabolic Potential of Unexplored, Difficult-to-Grow Bacteria
by Federica Fiorini, Felizitas Bajerski, Olga Jeske, Cendrella Lepleux, Jörg Overmann and Mark Brönstrup
Mar. Drugs 2022, 20(11), 713; https://doi.org/10.3390/md20110713 - 14 Nov 2022
Cited by 4 | Viewed by 3367
Abstract
Novel high-throughput cultivation techniques create a demand to pre-select strains for in-depth follow-up studies. We report a workflow to identify promising producers of novel natural products by systematically characterizing their metabolomes. For this purpose, 60 strains from four phyla (Proteobacteria, Bacteroidetes, Actinobacteria and [...] Read more.
Novel high-throughput cultivation techniques create a demand to pre-select strains for in-depth follow-up studies. We report a workflow to identify promising producers of novel natural products by systematically characterizing their metabolomes. For this purpose, 60 strains from four phyla (Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes) comprising 16 novel species and six novel genera were cultivated from marine and terrestrial sources. Their cellular metabolomes were recorded by LC-MS/MS; data analysis comprised databases MS/MS matching, in silico compound assignment, and GNPS-based molecular networking. Overall, 1052 different molecules were identified from 6418 features, among them were unusual metabolites such as 4-methoxychalcone. Only a minor portion of the 755 features were found in all phyla, while the majority occurred in a single phylogroup or even in a single strain. Metabolomic methods enabled the recognition of highly talented strains such as AEG42_45, which had 107 unique features, among which a family of 28 potentially novel and related compounds according to MS/MS similarities. In summary, we propose that high-throughput cultivation and isolation of bacteria in combination with the presented systematic and unbiased metabolome analysis workflow is a promising approach to capture and assess the enormous metabolic potential of previously uncultured bacteria. Full article
(This article belongs to the Special Issue Marine Metabolomics 2023)
Show Figures

Figure 1

13 pages, 1141 KiB  
Article
Computational Metabolomics Tools Reveal Subarmigerides, Unprecedented Linear Peptides from the Marine Sponge Holobiont Callyspongia subarmigera
by Andrea Castaldi, Roberta Teta, Germana Esposito, Mehdi A. Beniddir, Nicole J. De Voogd, Sébastien Duperron, Valeria Costantino and Marie-Lise Bourguet-Kondracki
Mar. Drugs 2022, 20(11), 673; https://doi.org/10.3390/md20110673 - 27 Oct 2022
Cited by 3 | Viewed by 4739
Abstract
A detailed examination of a unique molecular family, restricted to the Callyspongia genus, in a molecular network obtained from an in-house Haplosclerida marine sponge collection (including Haliclona, Callyspongia, Xestospongia, and Petrosia species) led to the discovery of subarmigerides, a series [...] Read more.
A detailed examination of a unique molecular family, restricted to the Callyspongia genus, in a molecular network obtained from an in-house Haplosclerida marine sponge collection (including Haliclona, Callyspongia, Xestospongia, and Petrosia species) led to the discovery of subarmigerides, a series of rare linear peptides from Callyspongia subarmigera, a genus mainly known for polyacetylenes and lipids. The structure of the sole isolated peptide, subarmigeride A (1) was elucidated through extensive 1D and 2D NMR spectroscopy, HRMS/MS, and Marfey’s method to assign its absolute configuration. The putative structures of seven additional linear peptides were proposed by an analysis of their respective MS/MS spectra and a comparison of their fragmentation patterns with the heptapeptide 1. Surprisingly, several structurally related analogues of subarmigeride A (1) occurred in one distinct cluster from the molecular network of the cyanobacteria strains of the Guadeloupe mangroves, suggesting that the true producer of this peptide family might be the microbial sponge-associated community, i.e., the sponge-associated cyanobacteria. Full article
Show Figures

Graphical abstract

32 pages, 9725 KiB  
Review
The Tetrahydrofuran Motif in Marine Lipids and Terpenes
by Paula González-Andrés, Laura Fernández-Peña, Carlos Díez-Poza and Asunción Barbero
Mar. Drugs 2022, 20(10), 642; https://doi.org/10.3390/md20100642 - 15 Oct 2022
Cited by 20 | Viewed by 4200
Abstract
Heterocycles are particularly common moieties within marine natural products. Specifically, tetrahydrofuranyl rings are present in a variety of compounds which present complex structures and interesting biological activities. Focusing on terpenoids, a high number of tetrahydrofuran-containing metabolites have been isolated during the last decades. [...] Read more.
Heterocycles are particularly common moieties within marine natural products. Specifically, tetrahydrofuranyl rings are present in a variety of compounds which present complex structures and interesting biological activities. Focusing on terpenoids, a high number of tetrahydrofuran-containing metabolites have been isolated during the last decades. They show promising biological activities, making them potential leads for novel antibiotics, antikinetoplastid drugs, amoebicidal substances, or anticancer drugs. Thus, they have attracted the attention of the synthetics community and numerous approaches to their total syntheses have appeared. Here, we offer the reader an overview of marine-derived terpenoids and related compounds, their isolation, structure determination, and a special focus on their total syntheses and biological profiles. Full article
(This article belongs to the Special Issue Heterocyclic Compounds from Marine Organisms)
Show Figures

Graphical abstract

17 pages, 2576 KiB  
Article
An Aminopyrimidone and Aminoimidazoles Alkaloids from the Rodrigues Calcareous Marine Sponge Ernsta naturalis
by Pierre-Eric Campos, Gaëtan Herbette, Laetitia Fougère, Patricia Clerc, Florent Tintillier, Nicole J. de Voogd, Géraldine Le Goff, Jamal Ouazzani and Anne Gauvin-Bialecki
Mar. Drugs 2022, 20(10), 637; https://doi.org/10.3390/md20100637 - 13 Oct 2022
Cited by 5 | Viewed by 2967
Abstract
A chemical study of the CH2Cl2−MeOH (1:1) extract from the sponge Ernsta naturalis collected in Rodrigues (Mauritius) based on a molecular networking dereplication strategy highlighted one novel aminopyrimidone alkaloid compound, ernstine A (1), seven new aminoimidazole alkaloid [...] Read more.
A chemical study of the CH2Cl2−MeOH (1:1) extract from the sponge Ernsta naturalis collected in Rodrigues (Mauritius) based on a molecular networking dereplication strategy highlighted one novel aminopyrimidone alkaloid compound, ernstine A (1), seven new aminoimidazole alkaloid compounds, phorbatopsins D–E (2, 3), calcaridine C (4), naamines H–I (5, 7), naamidines J–K (6, 8), along with the known thymidine (9). Their structures were established by spectroscopic analysis (1D and 2D NMR spectra and HRESIMS data). To improve the investigation of this unstudied calcareous marine sponge, a metabolomic study by molecular networking was conducted. The isolated molecules are distributed in two clusters of interest. Naamine and naamidine derivatives are grouped together with ernstine in the first cluster of twenty-three molecules. Phorbatopsin derivatives and calcaridine C are grouped together in a cluster of twenty-one molecules. Interpretation of the MS/MS spectra of other compounds of these clusters with structural features close to the isolated ones allowed us to propose a structural hypothesis for 16 compounds, 5 known and 11 potentially new. Full article
(This article belongs to the Special Issue Heterocyclic Compounds from Marine Organisms)
Show Figures

Graphical abstract

31 pages, 8660 KiB  
Article
Targeted Isolation of Antibiotic Brominated Alkaloids from the Marine Sponge Pseudoceratina durissima Using Virtual Screening and Molecular Networking
by James Lever, Florian Kreuder, Jason Henry, Andrew Hung, Pierre-Marie Allard, Robert Brkljača, Colin Rix, Aya C. Taki, Robin B. Gasser, Jan Kaslin, Donald Wlodkowic, Jean-Luc Wolfender and Sylvia Urban
Mar. Drugs 2022, 20(9), 554; https://doi.org/10.3390/md20090554 - 29 Aug 2022
Cited by 7 | Viewed by 5140
Abstract
Many targeted natural product isolation approaches rely on the use of pre-existing bioactivity information to inform the strategy used for the isolation of new bioactive compounds. Bioactivity information can be available either in the form of prior assay data or via Structure Activity [...] Read more.
Many targeted natural product isolation approaches rely on the use of pre-existing bioactivity information to inform the strategy used for the isolation of new bioactive compounds. Bioactivity information can be available either in the form of prior assay data or via Structure Activity Relationship (SAR) information which can indicate a potential chemotype that exhibits a desired bioactivity. The work described herein utilizes a unique method of targeted isolation using structure-based virtual screening to identify potential antibacterial compounds active against MRSA within the marine sponge order Verongiida. This is coupled with molecular networking-guided, targeted isolation to provide a novel drug discovery procedure. A total of 12 previously reported bromotyrosine-derived alkaloids were isolated from the marine sponge species Pseudoceratina durissima, and the compound, (+)-aeroplysinin-1 (1) displayed activity against the MRSA pathogen (MIC: <32 µg/mL). The compounds (13, 6 and 9) were assessed for their central nervous system (CNS) interaction and behavioral toxicity to zebrafish (Danio rerio) larvae, whereby several of the compounds were shown to induce significant hyperactivity. Anthelmintic activity against the parasitic nematode Haemonchus contorutus was also evaluated (24, 68). Full article
(This article belongs to the Special Issue Discovering Marine Bioactive Compounds by Molecular Networking)
Show Figures

Graphical abstract

18 pages, 3013 KiB  
Review
Marine Bacterial Ribosomal Peptides: Recent Genomics- and Synthetic Biology-Based Discoveries and Biosynthetic Studies
by Linda Sukmarini
Mar. Drugs 2022, 20(9), 544; https://doi.org/10.3390/md20090544 - 24 Aug 2022
Cited by 7 | Viewed by 4604
Abstract
Marine biodiversity is represented by an exceptional and ample array of intriguing natural product chemistries. Due to their extensive post-translational modifications, ribosomal peptides—also known as ribosomally synthesized and post-translationally modified peptides (RiPPs)—exemplify a widely diverse class of natural products, endowing a broad range [...] Read more.
Marine biodiversity is represented by an exceptional and ample array of intriguing natural product chemistries. Due to their extensive post-translational modifications, ribosomal peptides—also known as ribosomally synthesized and post-translationally modified peptides (RiPPs)—exemplify a widely diverse class of natural products, endowing a broad range of pharmaceutically and biotechnologically relevant properties for therapeutic or industrial applications. Most RiPPs are of bacterial origin, yet their marine derivatives have been quite rarely investigated. Given the rapid advancement engaged in a more powerful genomics approach, more biosynthetic gene clusters and pathways for these ribosomal peptides continue to be increasingly characterized. Moreover, the genome-mining approach in integration with synthetic biology techniques has markedly led to a revolution of RiPP natural product discovery. Therefore, this present short review article focuses on the recent discovery of RiPPs from marine bacteria based on genome mining and synthetic biology approaches during the past decade. Their biosynthetic studies are discussed herein, particularly the organization of targeted biosynthetic gene clusters linked to the encoded RiPPs with potential bioactivities. Full article
Show Figures

Figure 1

69 pages, 21855 KiB  
Review
Anthraquinones and Their Analogues from Marine-Derived Fungi: Chemistry and Biological Activities
by Salar Hafez Ghoran, Fatemeh Taktaz, Seyed Abdulmajid Ayatollahi and Anake Kijjoa
Mar. Drugs 2022, 20(8), 474; https://doi.org/10.3390/md20080474 - 25 Jul 2022
Cited by 39 | Viewed by 6188
Abstract
Anthraquinones are an interesting chemical class of polyketides since they not only exhibit a myriad of biological activities but also contribute to managing ecological roles. In this review article, we provide a current knowledge on the anthraquinoids reported from marine-derived fungi, isolated from [...] Read more.
Anthraquinones are an interesting chemical class of polyketides since they not only exhibit a myriad of biological activities but also contribute to managing ecological roles. In this review article, we provide a current knowledge on the anthraquinoids reported from marine-derived fungi, isolated from various resources in both shallow waters such as mangrove plants and sediments of the mangrove habitat, coral reef, algae, sponges, and deep sea. This review also tentatively categorizes anthraquinone metabolites from the simplest to the most complicated scaffolds such as conjugated xanthone–anthraquinone derivatives and bianthraquinones, which have been isolated from marine-derived fungi, especially from the genera Apergillus, Penicillium, Eurotium, Altenaria, Fusarium, Stemphylium, Trichoderma, Acremonium, and other fungal strains. The present review, covering a range from 2000 to 2021, was elaborated through a comprehensive literature search using the following databases: ACS publications, Elsevier, Taylor and Francis, Wiley Online Library, MDPI, Springer, and Thieme. Thereupon, we have summarized and categorized 296 anthraquinones and their derivatives, some of which showed a variety of biological properties such as enzyme inhibition, antibacterial, antifungal, antiviral, antitubercular (against Mycobacterium tuberculosis), cytotoxic, anti-inflammatory, antifouling, and antioxidant activities. In addition, proposed biogenetic pathways of some anthraquinone derivatives are also discussed. Full article
Show Figures

Graphical abstract

20 pages, 2877 KiB  
Article
The Marine-Derived Macrolactone Mandelalide A Is an Indirect Activator of AMPK
by Daphne R. Mattos, Xuemei Wan, Jeffrey D. Serrill, Minh H. Nguyen, Ian R. Humphreys, Benoit Viollet, Amos B. Smith III, Kerry L. McPhail and Jane E. Ishmael
Mar. Drugs 2022, 20(7), 418; https://doi.org/10.3390/md20070418 - 27 Jun 2022
Cited by 8 | Viewed by 3859
Abstract
The mandelalides are complex macrolactone natural products with distinct macrocycle motifs and a bioactivity profile that is heavily influenced by compound glycosylation. Mandelalides A and B are direct inhibitors of mitochondrial ATP synthase (complex V) and therefore more toxic to mammalian cells with [...] Read more.
The mandelalides are complex macrolactone natural products with distinct macrocycle motifs and a bioactivity profile that is heavily influenced by compound glycosylation. Mandelalides A and B are direct inhibitors of mitochondrial ATP synthase (complex V) and therefore more toxic to mammalian cells with an oxidative metabolic phenotype. To provide further insight into the pharmacology of the mandelalides, we studied the AMP-activated protein kinase (AMPK) energy stress pathway and report that mandelalide A is an indirect activator of AMPK. Wild-type mouse embryonic fibroblasts (MEFs) and representative human non-small cell lung cancer (NSCLC) cells showed statistically significant increases in phospho-AMPK (Thr172) and phospho-ACC (Ser79) in response to mandelalide A. Mandelalide L, which also harbors an A-type macrocycle, induced similar increases in phospho-AMPK (Thr172) and phospho-ACC (Ser79) in U87-MG glioblastoma cells. In contrast, MEFs co-treated with an AMPK inhibitor (dorsomorphin), AMPKα-null MEFs, or NSCLC cells lacking liver kinase B1 (LKB1) lacked this activity. Mandelalide A was significantly more cytotoxic to AMPKα-null MEFs than wild-type cells, suggesting that AMPK activation serves as a protective response to mandelalide-induced depletion of cellular ATP. However, LKB1 status alone was not predictive of the antiproliferative effects of mandelalide A against NSCLC cells. When EGFR status was considered, erlotinib and mandelalide A showed strong cytotoxic synergy in combination against erlotinib-resistant 11-18 NSCLC cells but not against erlotinib-sensitive PC-9 cells. Finally, prolonged exposures rendered mandelalide A, a potent and efficacious cytotoxin, against a panel of human glioblastoma cell types regardless of the underlying metabolic phenotype of the cell. These results add biological relevance to the mandelalide series and provide the basis for their further pre-clinical evaluation as ATP synthase inhibitors and secondary activators of AMPK. Full article
Show Figures

Graphical abstract

21 pages, 1375 KiB  
Review
Recent Discoveries on Marine Organism Immunomodulatory Activities
by Eleonora Montuori, Donatella de Pascale and Chiara Lauritano
Mar. Drugs 2022, 20(7), 422; https://doi.org/10.3390/md20070422 - 27 Jun 2022
Cited by 36 | Viewed by 6596
Abstract
Marine organisms have been shown to be a valuable source for biologically active compounds for the prevention and treatment of cancer, inflammation, immune system diseases, and other pathologies. The advantage of studying organisms collected in the marine environment lies in their great biodiversity [...] Read more.
Marine organisms have been shown to be a valuable source for biologically active compounds for the prevention and treatment of cancer, inflammation, immune system diseases, and other pathologies. The advantage of studying organisms collected in the marine environment lies in their great biodiversity and in the variety of chemical structures of marine natural products. Various studies have focused on marine organism compounds with potential pharmaceutical applications, for instance, as immunomodulators, to treat cancer and immune-mediated diseases. Modulation of the immune system is defined as any change in the immune response that can result in the induction, expression, amplification, or inhibition of any phase of the immune response. Studies very often focus on the effects of marine-derived compounds on macrophages, as well as lymphocytes, by analyzing the release of mediators (cytokines) by using the immunological assay enzyme-linked immunosorbent assay (ELISA), Western blot, immunofluorescence, and real-time PCR. The main sources are fungi, bacteria, microalgae, macroalgae, sponges, mollusks, corals, and fishes. This review is focused on the marine-derived molecules discovered in the last three years as potential immunomodulatory drugs. Full article
(This article belongs to the Section Marine Chemoecology for Drug Discovery)
Show Figures

Figure 1

22 pages, 4580 KiB  
Review
The Development of the Bengamides as New Antibiotics against Drug-Resistant Bacteria
by Cristina Porras-Alcalá, Federico Moya-Utrera, Miguel García-Castro, Antonio Sánchez-Ruiz, Juan Manuel López-Romero, María Soledad Pino-González, Amelia Díaz-Morilla, Seiya Kitamura, Dennis W. Wolan, José Prados, Consolación Melguizo, Iván Cheng-Sánchez and Francisco Sarabia
Mar. Drugs 2022, 20(6), 373; https://doi.org/10.3390/md20060373 - 31 May 2022
Cited by 9 | Viewed by 4421
Abstract
The bengamides comprise an interesting family of natural products isolated from sponges belonging to the prolific Jaspidae family. Their outstanding antitumor properties, coupled with their unique mechanism of action and unprecedented molecular structures, have prompted an intense research activity directed towards their total [...] Read more.
The bengamides comprise an interesting family of natural products isolated from sponges belonging to the prolific Jaspidae family. Their outstanding antitumor properties, coupled with their unique mechanism of action and unprecedented molecular structures, have prompted an intense research activity directed towards their total syntheses, analogue design, and biological evaluations for their development as new anticancer agents. Together with these biological studies in cancer research, in recent years, the bengamides have been identified as potential antibiotics by their impressive biological activities against various drug-resistant bacteria such as Mycobacterium tuberculosis and Staphylococcus aureus. This review reports on the new advances in the chemistry and biology of the bengamides during the last years, paying special attention to their development as promising new antibiotics. Thus, the evolution of the bengamides from their initial exploration as antitumor agents up to their current status as antibiotics is described in detail, highlighting the manifold value of these marine natural products as valid hits in medicinal chemistry. Full article
(This article belongs to the Special Issue Marine Drugs Research in Spain)
Show Figures

Figure 1

13 pages, 7390 KiB  
Review
Preclinical Development of Seriniquinones as Selective Dermcidin Modulators for the Treatment of Melanoma
by Amanda S. Hirata, James J. La Clair, Paula C. Jimenez, Leticia Veras Costa-Lotufo and William Fenical
Mar. Drugs 2022, 20(5), 301; https://doi.org/10.3390/md20050301 - 28 Apr 2022
Cited by 5 | Viewed by 3960
Abstract
The bioactive natural product seriniquinone was discovered as a potential melanoma drug, which was produced by the as-yet-undescribed marine bacterium of the rare genus Serinicoccus. As part of a long-term research program aimed at the discovery of new agents for the treatment [...] Read more.
The bioactive natural product seriniquinone was discovered as a potential melanoma drug, which was produced by the as-yet-undescribed marine bacterium of the rare genus Serinicoccus. As part of a long-term research program aimed at the discovery of new agents for the treatment of cancer, seriniquinone revealed remarkable in vitro activity against a diversity of cancer cell lines in the US National Cancer Institute 60-cell line screening. Target deconvolution studies defined the seriniquinones as a new class of melanoma-selective agents that act in part by targeting dermcidin (DCD). The targeted DCD peptide has been recently examined and defined as a “pro-survival peptide” in cancer cells. While DCD was first isolated from human skin and thought to be only an antimicrobial peptide, currently DCD has been also identified as a peptide associated with the survival of cancer cells, through what is believed to be a disulfide-based conjugation with proteins that would normally induce apoptosis. However, the significantly enhanced potency of seriniquinone was of particular interest against the melanoma cell lines assessed in the NCI 60-cell line panel. This observed selectivity provided a driving force that resulted in a multidimensional program for the discovery of a usable drug with a new anticancer target and, therefore, a novel mode of action. Here, we provided an overview of the discovery and development efforts to date. Full article
Show Figures

Graphical abstract

20 pages, 1764 KiB  
Perspective
Responsible Research and Innovation Framework, the Nagoya Protocol and Other European Blue Biotechnology Strategies and Regulations: Gaps Analysis and Recommendations for Increased Knowledge in the Marine Biotechnology Community
by Xenia Theodotou Schneider, Belma Kalamujić Stroil, Christiana Tourapi, Céline Rebours, Susana P. Gaudêncio, Lucie Novoveska and Marlen I. Vasquez
Mar. Drugs 2022, 20(5), 290; https://doi.org/10.3390/md20050290 - 26 Apr 2022
Cited by 13 | Viewed by 5402
Abstract
As the quest for marine-derived compounds with pharmacological and biotechnological potential upsurges, the importance of following regulations and applying Responsible Research and Innovation (RRI) also increases. This article aims at: (1) presenting an overview of regulations and policies at the international and EU [...] Read more.
As the quest for marine-derived compounds with pharmacological and biotechnological potential upsurges, the importance of following regulations and applying Responsible Research and Innovation (RRI) also increases. This article aims at: (1) presenting an overview of regulations and policies at the international and EU level, while demonstrating a variability in their implementation; (2) highlighting the importance of RRI in biodiscovery; and (3) identifying gaps and providing recommendations on how to improve the market acceptability and compliance of novel Blue Biotechnology compounds. This article is the result of the work of the Working Group 4 “Legal aspects, IPR and Ethics” of the COST Action CA18238 Ocean4Biotech, a network of more than 130 Marine Biotechnology scientists and practitioners from 37 countries. Three qualitative surveys (“Understanding of the Responsible Research and Innovation concept”, “Application of the Nagoya Protocol in Your Research”, and “Brief Survey about the experiences regarding the Nagoya Protocol”) indicate awareness and application gaps of RRI, the Nagoya Protocol, and the current status of EU policies relating to Blue Biotechnology. The article categorises the identified gaps into five main categories (awareness, understanding, education, implementation, and enforcement of the Nagoya Protocol) and provides recommendations for mitigating them at the European, national, and organisational level. Full article
Show Figures

Graphical abstract

15 pages, 7594 KiB  
Article
Discovery of New Secondary Metabolites from Marine Bacteria Hahella Based on an Omics Strategy
by Shufen He, Peishan Li, Jingxuan Wang, Yanzhu Zhang, Hongmei Lu, Liufei Shi, Tao Huang, Weiyan Zhang, Lijian Ding, Shan He and Liwei Liu
Mar. Drugs 2022, 20(4), 269; https://doi.org/10.3390/md20040269 - 18 Apr 2022
Cited by 7 | Viewed by 4743
Abstract
Hahella is one characteristic genus under the Hahellaceae family and shows a good potential for synthesizing new natural products. In this study, we examined the distribution of the secondary metabolite biosynthetic gene cluster (SMBGC) under Hahella with anti-SMASH. The results derived from five [...] Read more.
Hahella is one characteristic genus under the Hahellaceae family and shows a good potential for synthesizing new natural products. In this study, we examined the distribution of the secondary metabolite biosynthetic gene cluster (SMBGC) under Hahella with anti-SMASH. The results derived from five genomes released 70 SMBGCs. On average, each strain contains 12 gene clusters, and the most abundant ones (45.7%) are from the family of non-ribosomal peptide synthetase (NRPS) and non-ribosomal peptide synthetase hybrid with polyketide synthase (NRPS/PKS), indicating a great potential to find bioactive compounds. The comparison of SMBGC between H. chejuensis and other species showed that H. chejuensis contained two times more gene clusters than H. ganghwensis. One strain, designed as NBU794, was isolated from the mangrove soil of Dongzhai Port in Haikou (China) by iChip. The 16S rRNA gene of NBU794 exhibited 99% identity to H. chejuensis KCTC 2396 and clustered with the H. chejuensis clade on the phylogenetic trees. Genome mining on strain NBU794 released 17 SMBGCs and two groups of bioactive compounds, which are chejuenolide A-C and nine prodiginines derivatives. The prodiginines derivatives include the well-known lead compound prodigiosin and two new compounds, 2-methyl-3-pentyl-4-O-methyl-prodiginine and 2-methyl-3-octyl-prodiginine, which were identified through fragmentation analysis based on LC-MS/MS. The anti-microbial activity assay showed prodigiosin and 2-methyl-3-heptyl-prodiginine exhibited the best performance in inhibiting Escherichia coli, Salmonella paratyphi B, MASA Staphylococcus aureus, Bacillus subtilis, and Candida albicans. Moreover, the yield of prodigiosin in H. chejuensis NBU794 was also evaluated, which could reach 1.40 g/L under the non-optimized condition and increase to 5.83 g/L in the modified ISP4 medium with macroporous adsorption beads added, indicating that NBU794 is a promising source of prodigiosin. Full article
Show Figures

Graphical abstract

30 pages, 10822 KiB  
Article
Cytotoxic Alkylynols of the Sponge Cribrochalina vasculum: Structure, Synthetic Analogs and SAR Studies
by Dimitry Kovalerchik, Ana Zovko, Petra Hååg, Adam Sierakowiak, Kristina Viktorsson, Rolf Lewensohn, Micha Ilan and Shmuel Carmeli
Mar. Drugs 2022, 20(4), 265; https://doi.org/10.3390/md20040265 - 13 Apr 2022
Cited by 2 | Viewed by 2946
Abstract
A series of twenty-three linear and branched chain mono acetylene lipids were isolated from the Caribbean Sea sponge Cribrochalina vasculum. Seventeen of the compounds, 1–17, are new, while six, 18–23, were previously characterized from the same sponge. Some of the [...] Read more.
A series of twenty-three linear and branched chain mono acetylene lipids were isolated from the Caribbean Sea sponge Cribrochalina vasculum. Seventeen of the compounds, 1–17, are new, while six, 18–23, were previously characterized from the same sponge. Some of the new acetylene-3-hydroxy alkanes 1, 6, 7, 8, 10 were tested for selective cytotoxicity in non-small cell lung carcinoma (NSCLC) cells over WI-38 normal diploid lung fibroblasts. Compound 7, presented clear tumor selective activity while, 1 and 8, showed selectivity at lower doses and 6 and 10, were not active towards NSCLC cells at all. The earlier reported selective cytotoxicity of some acetylene-3-hydroxy alkanes (scal-18 and 23), in NSCLC cells and/or other tumor cell types were also confirmed for 19, 20 and 22. To further study the structure activity relationships (SAR) of this group of compounds, we synthesized several derivatives of acetylene-3-hydroxy alkanes, rac-18, scal-S-18, R-18, rac-27, rac-32, R-32, S-32, rac-33, rac-41, rac-42, rac-43, rac-45, rac-48 and rac-49, along with other 3-substituted derivatives, rac-35, rac-36, rac-37, rac-38, rac-39 and rac-40, and assessed their cytotoxic activity against NSCLC cells and diploid fibroblasts. SAR studies revealed that the alcohol moiety at position 3 and its absolute R configuration both were essential for the tumor cell line selective activity while for its cytotoxic magnitude the alkyl chain length and branching were of less significance. Full article
(This article belongs to the Special Issue Marine Sponge Biotechnology)
Show Figures

Graphical abstract

35 pages, 4855 KiB  
Review
What Was Old Is New Again: The Pennate Diatom Haslea ostrearia (Gaillon) Simonsen in the Multi-Omic Age
by Noujoud Gabed, Frédéric Verret, Aurélie Peticca, Igor Kryvoruchko, Romain Gastineau, Orlane Bosson, Julie Séveno, Olga Davidovich, Nikolai Davidovich, Andrzej Witkowski, Jon Bent Kristoffersen, Amel Benali, Efstathia Ioannou, Aikaterini Koutsaviti, Vassilios Roussis, Hélène Gâteau, Suliya Phimmaha, Vincent Leignel, Myriam Badawi, Feriel Khiar, Nellie Francezon, Mostefa Fodil, Pamela Pasetto and Jean-Luc Mougetadd Show full author list remove Hide full author list
Mar. Drugs 2022, 20(4), 234; https://doi.org/10.3390/md20040234 - 29 Mar 2022
Cited by 9 | Viewed by 5548
Abstract
The marine pennate diatom Haslea ostrearia has long been known for its characteristic blue pigment marennine, which is responsible for the greening of invertebrate gills, a natural phenomenon of great importance for the oyster industry. For two centuries, this taxon was considered unique; [...] Read more.
The marine pennate diatom Haslea ostrearia has long been known for its characteristic blue pigment marennine, which is responsible for the greening of invertebrate gills, a natural phenomenon of great importance for the oyster industry. For two centuries, this taxon was considered unique; however, the recent description of a new blue Haslea species revealed unsuspected biodiversity. Marennine-like pigments are natural blue dyes that display various biological activities—e.g., antibacterial, antioxidant and antiproliferative—with a great potential for applications in the food, feed, cosmetic and health industries. Regarding fundamental prospects, researchers use model organisms as standards to study cellular and physiological processes in other organisms, and there is a growing and crucial need for more, new and unconventional model organisms to better correspond to the diversity of the tree of life. The present work, thus, advocates for establishing H. ostrearia as a new model organism by presenting its pros and cons—i.e., the interesting aspects of this peculiar diatom (representative of benthic-epiphytic phytoplankton, with original behavior and chemodiversity, controlled sexual reproduction, fundamental and applied-oriented importance, reference genome, and transcriptome will soon be available); it will also present the difficulties encountered before this becomes a reality as it is for other diatom models (the genetics of the species in its infancy, the transformation feasibility to be explored, the routine methods needed to cryopreserve strains of interest). Full article
Show Figures

Graphical abstract

19 pages, 776 KiB  
Article
Identification of New CTX Analogues in Fish from the Madeira and Selvagens Archipelagos by Neuro-2a CBA and LC-HRMS
by Àngels Tudó, Maria Rambla-Alegre, Cintia Flores, Núria Sagristà, Paloma Aguayo, Laia Reverté, Mònica Campàs, Neide Gouveia, Carolina Santos, Karl B. Andree, Antonio Marques, Josep Caixach and Jorge Diogène
Mar. Drugs 2022, 20(4), 236; https://doi.org/10.3390/md20040236 - 29 Mar 2022
Cited by 13 | Viewed by 3585
Abstract
Ciguatera Poisoning (CP) is caused by consumption of fish or invertebrates contaminated with ciguatoxins (CTXs). Presently CP is a public concern in some temperate regions, such as Macaronesia (North-Eastern Atlantic Ocean). Toxicity analysis was performed to characterize the fish species that can accumulate [...] Read more.
Ciguatera Poisoning (CP) is caused by consumption of fish or invertebrates contaminated with ciguatoxins (CTXs). Presently CP is a public concern in some temperate regions, such as Macaronesia (North-Eastern Atlantic Ocean). Toxicity analysis was performed to characterize the fish species that can accumulate CTXs and improve understanding of the ciguatera risk in this area. For that, seventeen fish specimens comprising nine species were captured from coastal waters inMadeira and Selvagens Archipelagos. Toxicity was analysed by screening CTX-like toxicity with the neuroblastoma cell-based assay (neuro-2a CBA). Afterwards, the four most toxic samples were analysed with liquid chromatography-high resolution mass spectrometry (LC-HRMS). Thirteen fish specimens presented CTX-like toxicity in their liver, but only four of these in their muscle. The liver of one specimen of Muraena augusti presented the highest CTX-like toxicity (0.270 ± 0.121 µg of CTX1B equiv·kg−1). Moreover, CTX analogues were detected with LC-HRMS, for M. augusti and Gymnothorax unicolor. The presence of three CTX analogues was identified: C-CTX1, which had been previously described in the area; dihydro-CTX2, which is reported in the area for the first time; a putative new CTX m/z 1127.6023 ([M+NH4]+) named as putative C-CTX-1109, and gambieric acid A. Full article
(This article belongs to the Special Issue Marine Phycotoxins)
Show Figures

Graphical abstract

16 pages, 38481 KiB  
Review
Discovery of Marine Natural Products as Promising Antibiotics against Pseudomonas aeruginosa
by Haoran Li, Mireguli Maimaitiming, Yue Zhou, Huaxuan Li, Pingyuan Wang, Yang Liu, Till F. Schäberle, Zhiqing Liu and Chang-Yun Wang
Mar. Drugs 2022, 20(3), 192; https://doi.org/10.3390/md20030192 - 4 Mar 2022
Cited by 18 | Viewed by 6841
Abstract
Pseudomonas aeruginosa, one of the most intractable Gram-negative bacteria, has become a public health threat due to its outer polysaccharide layer, efflux transporter system, and high level of biofilm formation, all of which contribute to multi-drug resistance. Even though it is a [...] Read more.
Pseudomonas aeruginosa, one of the most intractable Gram-negative bacteria, has become a public health threat due to its outer polysaccharide layer, efflux transporter system, and high level of biofilm formation, all of which contribute to multi-drug resistance. Even though it is a pathogen of the highest concern, the status of the antibiotic development pipeline is unsatisfactory. In this review, we summarize marine natural products (MNPs) isolated from marine plants, animals, and microorganisms which possess unique structures and promising antibiotic activities against P. aeruginosa. In the last decade, nearly 80 such MNPs, ranging from polyketides to alkaloids, peptides, and terpenoids, have been discovered. Representative compounds exhibited impressive in vitro anti-P. aeruginosa activities with MIC values in the single-digit nanomolar range and in vivo efficacy in infectious mouse models. For some of the compounds, the preliminary structure-activity-relationship (SAR) and anti-bacterial mechanisms of selected compounds were introduced. Compounds that can disrupt biofilm formation or membrane integrity displayed potent inhibition of multi-resistant clinical P. aeruginosa isolates and could be considered as lead compounds for future development. Challenges on how to translate hits into useful candidates for clinical development are also proposed and discussed. Full article
Show Figures

Graphical abstract

11 pages, 1482 KiB  
Article
Unveiling the Chemical Diversity of the Deep-Sea Sponge Characella pachastrelloides
by Sam Afoullouss, Anthony R. Sanchez, Laurence K. Jennings, Younghoon Kee, A. Louise Allcock and Olivier P. Thomas
Mar. Drugs 2022, 20(1), 52; https://doi.org/10.3390/md20010052 - 5 Jan 2022
Cited by 2 | Viewed by 6163
Abstract
Sponges are at the forefront of marine natural product research. In the deep sea, extreme conditions have driven secondary metabolite pathway evolution such that we might expect deep-sea sponges to yield a broad range of unique natural products. Here, we investigate the chemodiversity [...] Read more.
Sponges are at the forefront of marine natural product research. In the deep sea, extreme conditions have driven secondary metabolite pathway evolution such that we might expect deep-sea sponges to yield a broad range of unique natural products. Here, we investigate the chemodiversity of a deep-sea tetractinellid sponge, Characella pachastrelloides, collected from ~800 m depth in Irish waters. First, we analyzed the MS/MS data obtained from fractions of this sponge on the GNPS public online platform to guide our exploration of its chemodiversity. Novel glycolipopeptides named characellides were previously isolated from the sponge and herein cyanocobalamin, a manufactured form of vitamin B12, not previously found in nature, was isolated in a large amount. We also identified several poecillastrins from the molecular network, a class of polyketide known to exhibit cytotoxicity. Light sensitivity prevented the isolation and characterization of these polyketides, but their presence was confirmed by characteristic NMR and MS signals. Finally, we isolated the new betaine 6-methylhercynine, which contains a unique methylation at C-2 of the imidazole ring. This compound showed potent cytotoxicity towards against HeLa (cervical cancer) cells. Full article
(This article belongs to the Special Issue Discovering Marine Bioactive Compounds by Molecular Networking)
Show Figures

Figure 1

26 pages, 2521 KiB  
Article
Computer-Aided Drug Design (CADD) to De-Orphanize Marine Molecules: Finding Potential Therapeutic Agents for Neurodegenerative and Cardiovascular Diseases
by Laura Llorach-Pares, Alfons Nonell-Canals, Conxita Avila and Melchor Sanchez-Martinez
Mar. Drugs 2022, 20(1), 53; https://doi.org/10.3390/md20010053 - 5 Jan 2022
Cited by 9 | Viewed by 5668
Abstract
Computer-aided drug design (CADD) techniques allow the identification of compounds capable of modulating protein functions in pathogenesis-related pathways, which is a promising line on drug discovery. Marine natural products (MNPs) are considered a rich source of bioactive compounds, as the oceans are home [...] Read more.
Computer-aided drug design (CADD) techniques allow the identification of compounds capable of modulating protein functions in pathogenesis-related pathways, which is a promising line on drug discovery. Marine natural products (MNPs) are considered a rich source of bioactive compounds, as the oceans are home to much of the planet’s biodiversity. Biodiversity is directly related to chemodiversity, which can inspire new drug discoveries. Therefore, natural products (NPs) in general, and MNPs in particular, have been used for decades as a source of inspiration for the design of new drugs. However, NPs present both opportunities and challenges. These difficulties can be technical, such as the need to dive or trawl to collect the organisms possessing the compounds, or biological, due to their particular marine habitats and the fact that they can be uncultivable in the laboratory. For all these difficulties, the contributions of CADD can play a very relevant role in simplifying their study, since, for example, no biological sample is needed to carry out an in-silico analysis. Therefore, the amount of natural product that needs to be used in the entire preclinical and clinical study is significantly reduced. Here, we exemplify how this combination between CADD and MNPs can help unlock their therapeutic potential. In this study, using a set of marine invertebrate molecules, we elucidate their possible molecular targets and associated therapeutic potential, establishing a pipeline that can be replicated in future studies. Full article
(This article belongs to the Special Issue Marine Drugs Research in Spain)
Show Figures

Graphical abstract

Back to TopTop