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Abstract: Novel high-throughput cultivation techniques create a demand to pre-select strains for
in-depth follow-up studies. We report a workflow to identify promising producers of novel natural
products by systematically characterizing their metabolomes. For this purpose, 60 strains from four
phyla (Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes) comprising 16 novel species and
six novel genera were cultivated from marine and terrestrial sources. Their cellular metabolomes
were recorded by LC-MS/MS; data analysis comprised databases MS/MS matching, in silico com-
pound assignment, and GNPS-based molecular networking. Overall, 1052 different molecules were
identified from 6418 features, among them were unusual metabolites such as 4-methoxychalcone.
Only a minor portion of the 755 features were found in all phyla, while the majority occurred in
a single phylogroup or even in a single strain. Metabolomic methods enabled the recognition of
highly talented strains such as AEG42_45, which had 107 unique features, among which a family
of 28 potentially novel and related compounds according to MS/MS similarities. In summary, we
propose that high-throughput cultivation and isolation of bacteria in combination with the presented
systematic and unbiased metabolome analysis workflow is a promising approach to capture and
assess the enormous metabolic potential of previously uncultured bacteria.

Keywords: LC-MS/MS; untargeted metabolomics; natural products; difficult-to-grow bacteria; novel
bacterial strains

1. Introduction

Thanks to their exceptional bioactive properties, natural products (NPs) play a central
role in biomedical research. Discovering natural products and deciphering their function
not only improves our understanding of microbial ecology but has also led to the devel-
opment of therapeutic drugs [1–4]. However, directing research efforts to novel chemical
substances and limiting the unproductive and time-consuming isolation of known chemical
entities constitutes a major challenge for natural product discovery [4].

The chance to find chemical novelty is particularly high from understudied taxa [5,6].
This long-prevailing ‘common sense’ has been substantiated by recent studies. For example,
Hoffmann et al. compared the metabolomes of 2300 different myxobacterial strains from
14 genera to their phylogenic diversity and demonstrated a correlation between taxonomic
distance and the production of distinct secondary metabolite families [7]. Similar con-
clusions were drawn from a study of 72 isolates belonging to the actinomycete genus
Planomonospora, that has shown a correlation between chemical diversity and strain phy-
logeny using a pipeline of freely available tools for metabolome and genome mining [8].
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About 70% of the Earth’s surface is covered with water and the oceans hold over 95%
of all waters, but only about 20% of environmental bacterial isolates come from aquatic
environments, and only half of them originate from marine sediment [9]. Thus, the ocean
may contribute a large number of species to the Earth’s bacterial community [10] and
genera such as Salinospora have already proven to be a prolific source of structurally unique
bioactive compounds [11,12].

Liquid chromatography coupled to (tandem) mass spectrometry (LC-MS(/MS)) has
become a key technology in natural product dereplication, defined as the process of recog-
nizing previously known substances present in an extract [13,14]. Methods of untargeted
metabolomics, originally developed and applied for studying primary metabolism across
a broad range of concentrations, have been recently adopted to natural product research
in order to capture secondary metabolism from a large number of samples at hitherto
unprecedented depth [15]. The change in dereplication has been fueled by coupling high-
resolution LC-MS/MS to global databases [16] and novel bioinformatics methods such as
SIRIUS4 [17] or Global Natural Products Social Molecular Networking (GNPS) [18] Besides
early dereplication, the identification and prioritization of “talented” producer strains out
of larger bacterial collections provides guidance to potentially novel chemistries [12,19,20].

Even if untargeted metabolomic profiling is a promising approach, the large amount
and high complexity of signals remains a challenge for high-throughput data processing and
interpretation [21]. Many novel open software, approaches, and algorithms are constantly
developed for the different steps of metabolomic signal processing and analysis [22].
MetaboAnalyst [23] and Workflow4Metabolomics [24], for example, provide different
options for data processing and other tools as user-friendly web platforms, but they are
focused in particular on the statistical tasks, such as supervised data projection, and
dimensionality reduction techniques. Some of these tools cover most of the processing
and analysis steps [23–25]; however, to the best of our knowledge, there is still no suitable
unified procedure available from signal acquisition to data interpretation, which includes
dereplication and prioritization of strains for follow-up studies. Thus, our objective was to
combine standardized LC-MS/MS measurements with selected open-access metabolomics
tools, to provide a comprehensive workflow from signal acquisition to “talented” strain
prioritization for guiding the discovery of novel NPs.

With these premises, we studied the metabolic capability of difficult-to-cultivate
bacteria, and in particular of novel bacterial species from environmental samples. We report
an unbiased endo-metabolomics investigation of 60 crude extracts from novel bacterial
strains isolated from marine (water, sediment, algae, sponges) and from terrestrial (soil)
sources of different geographical locations. In particular, the study addresses the following
aspects: (i) What proportion of metabolite features extracted from a novel bacterial species
can be readily assigned to known metabolites, and what proportion is potentially new?
(ii) Is there an overlap of unassigned features, or are they unique to a specific strain?
(iii) Can a standardized workflow of LC-MS measurements be combined with open-access
analysis tools to guide strain selection across phyla to the most talented producers and
novel NPs?

2. Results and Discussion
2.1. Samples Sources, Isolation and Cultivation

The microbial resource selection focused on difficult-to-grow bacterial strains that
were rarely isolated because of their particular growth requirements. Marine samples
(water, sediment, algae, sponges) from diverse regional origins, including the Atlantic
Ocean, Baltic Sea, Channel Sea and Sea of Japan, and terrestrial samples from German
soils, were used in a high-throughput approach that comprised a combination of biofilm,
chemotaxis, direct plating and multiwell plate cultivation (Supplementary Figure S1). The
combination of broad (high-throughput, different media and cultivation techniques) and
selective (longer growth/incubation period for more than two to three days, ambient tem-
peratures, and selective substrates) cultivation approaches aimed at the isolation of those
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microorganism that usually would not grow using standard cultivation conditions or that
would be easily overgrown by so-called fast-growers. Thus, all our isolates are supposed
to be slow growing fastidious bacteria. Starting from a pool of more than 900 strains of
264 different species, a set of 60 novel (based on 16S rRNA nucleotide sequence similarity to
described species) and/or fastidious (based on selective isolation) marine isolates as well as
some difficult-to-grow terrestrial soil isolates were selected (Figure 1A,B). Strains that did
not regrow, failed in analyses or were potential clonal replicates were removed from further
analysis. Using the 95% [26] and 98.7% [27] threshold values currently recommended to
determine the affiliation of bacterial isolates to an existing or new genus or species, six
novel genera and 16 novel species were identified. The isolated bacteria could be assigned
to the phyla Proteobacteria (35), Bacteroidetes (17), Actinobacteria (8) and Firmicutes (1),
thereby representing the dominant marine (here, with except of the soil isolates) bacterial
community known from the literature and databases such as BacDive (Figure 1C and
Table 1) [9]. Different sample sources at various geographic locations have their own
bacterial community that can be targeted with different cultivation strategies. Thus, all the
parameters resulted in a selected isolation. However, we did not observe a clear pattern or
bias for the dominant phyla caused by any of the parameters (Supplementary Figure S2).
Overall, different numbers of strains per phylum were obtained, which reflects the pecu-
liarity of the untargeted high-throughput cultivation method. This untargeted isolation
was used as an input for metabolomics, which is in contrast to the most common approach
of selecting several strains that all correspond to a single phylogenetic group [28,29]. While
the latter, common approach allows to identify and distinguish a core metabolome from
special, often secondary metabolites in a narrow group, our study addresses the question
of how far different phylogenetic groups share a consensus metabolome, or whether the
phylogenetic distance is reflected by unique metabolites. For this purpose, the strains were
fermented at a small, 100 mL scale to create biomass and provide organic extracts.

Figure 1. Characteristics of microbial strains. (A): Selection cascade from 920 difficult-to-grow
strains, cultivated as outlined in Supplementary Figure S1, to the 60 strains investigated in this study.
(B): Sample source and origin of the selected 60 difficult-to-grow bacterial strains. Samples were
collected from four different aquatic marine sources (blue), two aquatic hosts (yellow, orange) and
one terrestrial environment (green). (C): Pie chart with phylogenetic composition of the 60 strains and
number of strains per phylum (blue for Proteobacteria, purple for Firmicutes, green for Bacteroidetes
and red for Actinobacteria).
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Table 1. Overview of the 60 bacterial isolates that were selected for metabolomics analysis.

Extract ID Strain ID Accession
Number Source Origin Cultivation

Strategy Isolation Medium Phylum Genus Closest Relative Similarity
(%)

01 HEG41_91 OP776843 Soil German soil Direct plating SSE 1:10 HD Proteobacteria Bradyrhizobium Bradyrhizobium uaiense
UFLA03 164 KC879705 97.02 *

02 4RS2_G4 OP776844 Sediment Channel Sea Biofilm ASWsalts 1:10 HD Proteobacteria Sulfitobacter Sulfitobacter dubius DQ915635 99.67

03 JAB_HD_127b OP776845 Water Baltic Sea Multiwell plate ABWsalts 1:10 HD Actinobacteria Rhodococcus Rhodococcus qingshengii
JCM 15477 DQ090961 100.00

04 PCS2D_E11 OP776846 Sediment Atlantic Ocean Multiwell plate ASWsalts 1:10 HD
Polymer Proteobacteria Oceanisphaera Oceanisphaera psychrotolerans KF418814 99.89

05 JAB_HD_128b OP776847 Water Baltic Sea Multiwell plate ABWsalts 1:10 HD Proteobacteria Devosia Devosia psychrophila GU441678 98.83

06 JAB_HD_2a OP776848 Water Baltic Sea Multiwell plate ABWsalts 1:10 HD Actinobacteria Rhodococcus Rhodococcus qingshengii
JCM 15477DQ090961 100.00

07 JAB_HD_137a OP776849 Water Baltic Sea Multiwell plate ABWsalts 1:10 HD Actinobacteria Rhodococcus Rhodococcus jostii KF410370 99.24

08 JAB_HD_121a OP776850 Water Baltic Sea Multiwell plate ABWsalts 1:10 HD Actinobacteria Microbacterium Microbacterium marinum EF204420 100.00

09 4RS2_G3b OP776852 Sediment Channel Sea Biofilm ASWsalts 1:10 HD
Glass Proteobacteria Aliidiomarina Aliidiomarina soli KX548074 97.10

10 4RW5_PS1 OP776853 Water Channel Sea Biofilm ASWsalts 1:10 HD
Polymer Proteobacteria Alteromonas Alteromonas macleodii AB681740 99.35

11 CS1_PP3 OP776854 Sediment Atlantic Ocean Multiwell plate ASWsalts 1:10 HD
Polymer Proteobacteria Pseudoalteromonas Pseudoalteromonas shioyasakiensis

AB720724 99.65

12 4CH2_twe OP776855 Sponge host Chemotaxis ASWsalts 1:10 HD Proteobacteria Vibrio Vibrio kanaloae CAIM 485 MT757984 99.85

13 JAB_HD_4a2 OP776856 Water Baltic Sea Multiwell plate ABWsalts 1:10 HD Actinobacteria Aeromicrobium Aeromicrobium ginsengisoli AB245394 99.47

14 4RS2_G3a OP776857 Sediment Channel Sea Biofilm ASWsalts 1:10 HD
Glass Proteobacteria Halomonas Halomonas alkaliphila AJ640133 99.93

15 4RW5_PS3 OP776858 Water Channel Sea Biofilm ASWsalts 1:10 HD Proteobacteria Pseudovibrio Pseudovibrio ascidiaceicola AB681198 98.51

16 3RW5_S4aa OP776859 Water Channel Sea Biofilm ASWsalts 1:10 HD
Steel Bacteroidetes Maribacter Maribacter litoralis MG456900 99.93

17 JAB_HD_102a2 OP776860 Water Baltic Sea Multiwell plate ABWsalts 1:10 HD Proteobacteria Pseudomonas Pseudomonas pelagia strain
CL-AP6 EU888911 98.79

18 4d1_twe OP776861 Sponge host Chemotaxis ASWsalts 1:10 HD Proteobacteria Pseudomonas Pseudomonas knackmussii B13 AJ272544 99.67

19 4RS2_G7 OP776862 Sediment Channel Sea Biofilm ASWsalts 1:10 HD
Glass Proteobacteria Lutimaribacter Lutimaribacter pacificus DQ659449 97.04 *

20 JAB_HD_109a OP776863 Water Baltic Sea Multiwell plate ABWsalts 1:10 HD Proteobacteria Pseudorhodobacter Pseudorhodobacter ponti KX771233 97.15 *

21 RW5_G2 OP776864 Water Channel Sea Biofilm ASWsalts 1:10 HD
Glass Bacteroidetes Altibacter-

Rhodococcus Rhodococcus yunnanensis AY602219 99.33
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Table 1. Cont.

Extract ID Strain ID Accession
Number Source Origin Cultivation

Strategy Isolation Medium Phylum Genus Closest Relative Similarity
(%)

22 CS1PS2a OP776865 Sediment Atlantic Ocean Biofilm ASWsalts 1:10 HD
Polymer Proteobacteria Paracoccus Paracoccus indicus MG845150 99.77

23 D100_Iso2 OP776866 Alga host Direct plating MB Proteobacteria Aquicoccus Aquicoccus porphyridii MF113254 96.82 *

24 MEBiC05055 OP776870 Sponge host Direct plating MB Proteobacteria Tateyamaria Tateyamaria armeniaca LC464518 98.34

25 DSM_16472T OP776867 Water Sea of Japan Direct plating MB Proteobacteria Sulfitobacter Sulfitobacter dubius DQ915635 100.00 *

26 DSM_10251T OP776871 Alga host Direct plating MB Proteobacteria Marinovum Marinovum algicola DG898 DSM 27768 100.00 *

27 DSM_27768 OP776872 Alga host Direct plating MB Proteobacteria Marinovum Marinovum algicola FF3 DSM 10251T 100.00 *

29 C05C_116 OP776869 Alga host Direct plating L1ZM10 Proteobacteria Sulfitobacter Sulfitobacter pseudonitzschiae KF006321 99.50

30 A11D_105 OP776868 Alga host Direct plating MB Proteobacteria Sulfitobacter Sulfitobacter porphyrae AB758574 99.85

31 A05D_005 OP776873 Alga host Direct plating MB Proteobacteria Aquicoccus Aquicoccus porphyridii MF113254 100.00

32 C05C_110 OP776875 Alga host Direct plating MB Proteobacteria Hoeflea Hoeflea alexandrii MT760263 99.69

33 H01Y_008A OP776874 Alga host Direct plating MB Proteobacteria Fretibacter Fretibacter rubidus FJ394547 97.12 *

34 RW5_G4 OP776824 Water Channel Sea Biofilm ASWsalts 1:10 HD
Glass Proteobacteria Amylibacter Amylibacter cionae KX790330 99.19

35 JAB_HD_121b OP776851 Water Baltic Sea Multiwell plate ABWsalts 1:10 HD Proteobacteria Pseudorhodobacter Pseudorhodobacter wandonensis JN247434 99.18

36 JAB_HD_38 OP776826 Water Baltic Sea Multiwell plate ASWsalts 1:10 HD Bacteroidetes Algoriphagus Algoriphagus aquaemixtae KY661386 99.26

112 M64 OP776831 Water Baltic Sea Biofilm KM14 Bacteroidetes Flavobacterium Flavobacterium circumlabens
P5626 MH100898 98.80

122 M66 OP776832 Water Baltic Sea Biofilm KM14 Bacteroidetes Flavobacterium Flavobacterium terriphilum
CUG00004 KT592306 99.12

132 M20 OP776827 Water Baltic Sea Biofilm KM14 Actinobacteria Rubrobacter Rubrobacter radiotolerans X87134 93.95 **

212 M55 OP776829 Water Baltic Sea Biofilm MB Proteobacteria Altererythrobacter Altererythrobacter epoxidivorans DQ304436 97.94 *

222 M62 OP776830 Water Baltic Sea Biofilm MB Firmicutes Bacillus Bacillus mobilis MCCC 1A05942 KJ812449 99.93

232 M09 OP776828 Water Baltic Sea Biofilm MB Proteobacteria Altererythrobacter Altererythrobacter aquiaggeris KX812543 98.73

312 SEG27_38 OP776841 Soil German soil Direct plating SSE 1:10 HD Bacteroidetes Chitinophaga Chitinophaga flava MH553387 93.57 **

322 AEG42_45 OP776842 Soil German soil Direct plating SSE 1:10 HD Actinobacteria Sporichthya Sporichthya brevicatena AB006164 96.46 *

332 AEG42_13 OP776840 Soil German soil Direct plating SSE 1:10 HD Actinobacteria Nocardioides Nocardioides humi EF623863 96.86 *

342 ACS3D_E6 OP776819 Sediment Atlantic Ocean Multiwell plate SSE 1:10 HD Bacteroidetes Ulvibacter Ulvibacter antarcticus AB681898 97.28 *

352 HEG41_64b OP776836 Soil German soil Direct plating SSE 1:10 HD Bacteroidetes Niastella Niastella populi EU877262 96.17 *

362 SEG27_44 OP776837 Soil German soil Direct plating SSE 1:10 HD Bacteroidetes Pseudoflavitalea Pseudoflavitalea rhizosphaerae KU379667 94.04 **

372 AEG42_46 OP776839 Soil German soil Direct plating SSE 1:10 HD Bacteroidetes Flavitalea Flavitalea flava KX762320 99.80
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Table 1. Cont.

Extract ID Strain ID Accession
Number Source Origin Cultivation

Strategy Isolation Medium Phylum Genus Closest Relative Similarity
(%)

382 SEG27_28 OP776838 Soil German soil Direct plating SSE 1:10 HD Bacteroidetes Niveitalea Niveitalea solisilvae KX268597 92.80 **

392 AEG42_23 OP776835 Soil German soil Direct plating SSE 1:10 HD Bacteroidetes Ferruginibacter Ferruginibacter yonginensis MT760289 93.85 **

412 PCS2D_E7 OP776816 Sediment Atlantic Ocean Multiwell plate ASWsalts 1:10 HD
Polymer Proteobacteria Marinomonas Marinomonas atlantica LN909522 99.86

422 CS3_PS3b OP776818 Sediment Atlantic Ocean Biofilm ASWsalts 1:10 HD
Polymer Proteobacteria Amylibacter Amylibacter lutimaris MF113253 99.85

432 3RW5_PP6 OP776825 Water Channel Sea Biofilm ASWsalts 1:10 HD
Polymer Bacteroidetes Ulvibacter Ulvibacter antarcticus AB681898 96.77 *

442 ACS3C_E5 OP776817 Sediment Atlantic Ocean Multiwell plate ASWsalts 1:10 HD Proteobacteria Pseudoalteromonas Pseudoalteromonas shioyasakiensis
SE3 AB720724 99.65

452 2CW3_G4 OP776820 Water Atlantic Ocean Biofilm ASWsalts 1:10 HD
Polymer Bacteroidetes Balneola Balneola vulgaris AY576749 94.85 **

462 M68 OP776833 Water Baltic Sea Biofilm ABWsalts 1:10 HD Bacteroidetes Arenibacter Arenibacter algicola FJ176555 99.91

472 RS2_PS_4 OP776823 Sediment Channel Sea Biofilm ASWsalts 1:10 HD
Polymer Proteobacteria Pararhodobacter Pararhodobacter oceanensis KY009733 99.85

482 M72 OP776834 Water Baltic Sea Biofilm ABWsalts 1:10 HD Bacteroidetes Algoriphagus Algoriphagus jejuensis EF217418 98.79

2F2 ARW1_2F2 OP776821 Water Channel Sea Multiwell plate ASWsalts 1:10 HD Proteobacteria Arcobacter Arcobacter lekithochrous LT629298 98.16 *

2G2 ARW1_2G2 OP776822 Water Channel Sea Multiwell plate ASWsalts 1:10 HD Proteobacteria Arcobacter Arcobacter lekithochrous LT629298 98.17 *

ID: Identification; SSE: Soil solution equivalent; ASW: Artificial sea water; MB: Marine broth; L1ZM10; KM14; HD: Yeast (Hefe) and glucose (dextrane) addition (Table S1); * potential
new species; ** potential new genus.
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2.2. Untargeted Metabolomics Analysis

Endo-metabolites were extracted with acetone from 100 mL fermented cultures of
the 60 difficult-to-grow bacterial samples. After drying and reconstituting the extracts,
untargeted metabolomics using LC-MS/MS in the positive ion mode were performed
in order to characterize the endo-metabolome chemical space. The collected data were
processed and analysed with a workflow comprising the following steps (Figure 2A): (i) pre-
processing of raw data with MZmine2 to list all the so-called molecular features defined by
a unique combination of m/z and retention time (r.t.); (ii) annotation of known metabolites.
This was performed consecutively by searching them against analytical standards present
in our in-house library, followed by matching the MS/MS spectra with online databases,
and finally through the structure prediction tool SIRIUS4 [30] coupled with CSI:Finger
ID [31] (iii) generation of a molecular network through GNPS and chemical classification
via ClassyFire, MolNetEnhancer, available from GNPS, and CANOPUS, available from
SIRIUS (both tools are based on ClassyFire taxonomy).

Figure 2. Global metabolome analysis across 60 bacterial strains. (A): Metabolomics experimental
and data analysis workflow. (B): Venn diagram indicating the number of metabolomic features
detected per phylum (total number of features: 6418). (C): Upper bar plot (white bars) depicting the
total number of features detected per extract; lower bar plot depicting the number of strain-specific
features that were only detected in the indicated extract (and in none of the other 59 extracts). The
colour code indicates the bacterial phylum, and the dotted line depicts an arbitrarily chosen threshold
of 80.

A total of 6418 features were obtained from all 60 extracts after step (i) of the reported
workflow, including isotopes, different adducts of the same metabolite and impurities from
the extraction processes. For a first overview on the distribution of chemical diversity across
phyla, the number of features detected in each phylum was plotted in a Venn diagram
(Figure 2B) that visualized both features specific to each phylum as well as the number
of features that were shared by two or more phyla. Of notice, only 11.7% of the features
detected in the whole experiment (i.e., 755) were shared between all phyla (by at least one
member per phylum). Of these, 340 features had a precursor ion mass of less than 300 Da,
as is typical for primary metabolites. Almost half of the 6418 features (2873, i.e., 45%) were
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found to be specific to any one of the four phyla. Proteobacteria also displayed the highest
specificity, with 1478 features detected only for this phylum, followed by Bacteroidetes
(862 features), Actinobacteria (452 features) and finally by Firmicutes (81 features). This
analysis indicates a large extent of unique metabolism of the investigated strains. The
number of unique features per phylum strongly correlates (R = 0.99) with the number of
isolates per phylum, indicating that the more different strains analysed, the more unique
features and thus potential novel compounds can be detected. The investigated number of
extracts was thus too small to reach saturation. On the single strain level, a large variability
in the number of total features, and especially in the number of strain-specific features
was observed (Figure 2C), identifying the most promising strains in terms of metabolite
uniqueness. Notably, several strains within the Bacteroidetes displayed a high number
of strain-specific features. In extracts 16, 122 and 22, more than 80 features specific to
each of the strains were detected. In contrast, within the Proteobacteria phylum, no strain,
out of the 35, had a high number of specific features. From the only strain belonging to
Firmicutes, i.e., extract 222, 81 features were found to be strain-specific, with an overall
number of 976 detected features. Among the eight extracts analysed from Actinobacteria,
extracts 322 and 332 presented a high number of strain-specific features, whereas extract
132, which exhibited the second highest number of total features (1534, see top bar plot in
Figure 2C) detected in the whole experiment, had a relatively low number of strain-specific
features (only 56). Along this line, the number of specific features was zero in extract
312 and particularly low for extracts 342, 412 and 442 (2 features each), extracts 01, 21 and
25 (3 features each), extract 392 (4 features), extracts 352, 362, 432 and 2F2 (5 features each)
and extracts 03, 07 and 2G2 (6 features each); these strains would be deprioritized in an
in-depth follow-up investigation from a chemodiversity point of view.

Remarkably, among the extracts with more than 80 strain-specific features, extracts
322 and 332 from the Actinobacteria phylum displayed a very low percentage of
similarity [27,32] to their closest relative strain (Table 1). In particular, with a similar-
ity of 96.46% for AEG42_45 (extract 322) and of 96.86% for AEG42_13 (extract 332) to their
next relatives “Sporichthya brevicatena AB006164” and “Nocardioides humi EF623863”, respec-
tively, these two strains represent novel species in their respective genera and potentially
even new genera. Thus, extracts 322 and 332 combine genetic distance with high metabolite
specificity, and might therefore have a high potential for novel NPs. However, a clear
correlation between taxonomic similarity to the next relative and presence of strain-specific
features was not observed across the overall data set (Supplementary Figure S3). There
is a trend that strains with a high similarity to their closest relative display a rather low
specificity in terms of the number of detected features (yellow area in Supplementary
Figure S3). However, exceptions to this trend exist, i.e., extracts 16, 122 and 22.

The highest number of strain-specific features in the whole set were detected for extract
16, corresponding to strain 3RW5_S4aa, and for extract 122, corresponding to strain M66,
which produced, respectively, 180 and 170 features that were not found in any other extract
(Figure 2C and Supplementary Figure S3). These two bacteria were identified as Maribacter
(closest relative to strain 3RW5_S4aa is M. litoralis MG456900 with 99.93% similarity) and
Flavobacterium (closest relative to strain M66 is F. terriphilum CUG00004 KT592306 with
99.12% similarity). A manifestation of the metabolome uniqueness, as observed within our
analytical pipeline, would require a comparison with larger panels of closely related strains
using the same methodology; this was beyond the scope of this study. Because multiple
cultivation media were used, a subtraction of a standard medium blank was not possible.
Thus, it is principally possible that some of the features are media components. However,
we focused on the intracellular metabolomes, which are less impacted by the cultivation
media than the exometabolome. Moreover, the large differences between samples cultivated
with the same media demonstrates that the metabolome signatures are not dominated by
media components.

We concluded that a highly diverse set of bacterial strains can be readily classified
according to the overall number and the fraction of specific metabolic features they produce,
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with vast differences between and within phyla. However, within this diverse set, a
correlation of taxonomic distance and uniqueness of metabolite features was not detectable.

2.3. Metabolite Annotation

Dereplication, or metabolite annotation, is a prerequisite for uncovering meaningful
biological information from the acquired data. To distinguish known metabolites from
potentially new ones in the investigated set, a dereplication of the 6418 features following a
systematic protocol was conducted. This work resulted in the annotation of 1052 (16.4% of
all) features (Figure 3A and Supplementary Data Table S4), with different confidence levels
of metabolite identification [33,34].

Figure 3. Metabolite annotation. (A): Pie chart of the whole experiment representing the percentage
of (i) identified features (dark green), i.e., match of m/z and retention time vs. standards present in
the in-house library; (ii) putatively identified ones (green), i.e., match of MS/MS spectrum vs. online
databases, such as GNPS; (iii) tentatively assigned ones (light green), i.e., based on in silico evaluation
of isotope pattern and fragmentation tree from SIRIUS4; (iv) unknowns (orange). (B): Bar plot of the
percentage of known (green) and unknown (orange) features per each sample. Coloured bars on
the right represent the four different phyla. Data labels on the right-hand side indicate the sum of
percentages of all green features, whereas the label on the left-hand side indicates the percentage of
unknown features. (C): Abundances of identified (in green) and unidentified (in orange) features
in extract 21 were plotted in an m/z scan, with the peak area on the y-axis; labels of m/z values
or compound annotation, where dereplicated, are displayed for the most abundant peaks. Extract
21 was the extract with the highest percentage of identified features.

In particular, 0.6% of the features were identified structures (confidence level 1),
i.e., their identity was confirmed from a match of precursor ion, MS/MS spectrum and
retention time, from pure reference standards present in the in-house library and acquired
under identical analytical conditions. An additional 6.6% were putatively identified fea-
tures (confidence level 2), i.e., exhibiting accurate precursor masses and MS/MS fragments
consistent with externally acquired spectra present in online databases, such as GNPS and
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MassBank of North America. Finally, 9.2% of the detected features produced tentative
structures (confidence level 3) when their accurate masses, isotopic distribution patterns
and fragmentation trees were calculated from in silico structure prediction software (SIR-
IUS4 coupled with CSI:FingerID. Thus, the in silico evaluation allowed to significantly
increase the annotation of known features; even if only tentative structures were proposed,
completely unknown and potentially known molecules could be discriminated.

To evaluate the annotation accuracy of our approach, we compared the results obtained
with the present workflow to those obtained by CluMSID, an MS/MS similarity-based
method previously developed in our group [35] followed by a manual assignment, using a
dataset obtained from a P. aeruginosa PA14 cell extract (see the Supplementary Material).
While the two methods commonly identified 80 metabolites, 24 additional metabolites were
only found by the untargeted method and 45 only by CluMSID/manual interpretation.
A manual re-analysis of the additional 24 metabolites confirmed that all were annotated
in a correct manner, while a majority of the missed 45 were detected in a knowledge-
based, semi-targeted manner. This demonstrates that the annotation workflow described
in this work generates metabolite assignments of a quality that is comparable to that of a
hand-curated data analysis.

Of the annotated features in the present data set, 199 were found ubiquitously pro-
duced in all four phyla (by at least one strain per phylum) while 321 features were found
exclusively in any one of the four phyla. Considering the dereplication depth at a strain-
level, 18 strains had 25% or more of annotated features (Figure 3B). Extract 21 was the
sample with the highest ratio of annotated features (37.8%), with 108 dereplicated features
from 286 detected. We hypothesized that known features were of rather high abundance
(and have therefore been noticed and identified before), whereas unknown features were
of low abundance (and have been therefore overseen so far). To probe this, the peak area
of each feature in extract 21 was plotted versus its mass-to-charge ratio, thereby reducing
the LC/MS run to a single mass spectrum (Figure 3C). From this plot, it was evident that
there was no correlation between feature abundance and annotation capability. Thus, many
among the most abundant features could not be assigned to a metabolite.

In 20 extracts among the whole collection, more than 80% of all detected features
remained unidentified, irrespective of the extensive effort to expand the annotation. This
result suggests the high potential of these bacteria strains for the production of novel
molecules. Among these 20 extracts, 132 and 362 were the only ones displaying a high
rate of unknowns (84.5% and 82.7%, respectively) and also representing new genera in
their respective families (Table 1). However, overall, a correlation between the share of
non-annotated features, thus potentially new molecules, with phylogenetic novelty could
not be observed.

2.4. Metabolite Distribution and Chemical Richness

Next, we examined the chemical nature of the metabolites that were dereplicated in
the whole data set. For this purpose, they were classified according to chemical taxonomy
rules with ClassyFire [36] an open access tool that covers 4820 classes of organic and
inorganic compounds (http://classyfire.wishartlab.com/, accessed on 18 January 2021).
Based on this analysis, the highest number of known molecules present in our collection of
strains belonged to the class of “carboxylic acids and derivatives”, including the subclass of
“amino acids, peptides, and analogues” (Supplementary Figure S4). This is not surprising,
as amino acids are vital molecules in all kingdoms of life, providing the building blocks
of proteins. Other well represented classes in the data set were fatty acyls. Bacteria cell
membranes are the primary source of lipids; it is known that bacteria can control the
biophysical characteristics of their phospholipidic membrane by adjusting its composition
with different types of fatty acids that are produced from the alteration of the structures of
pre-existing phospholipids; this behaviour allows them to survive and adapt to changes in
environmental conditions, particularly temperature [37–39]. The fatty acyl characteristics
of lipids rather than the headgroup, can promote membrane fluidity, for example when

http://classyfire.wishartlab.com/
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branching, double bonds, or cyclopropyl modifications are present, or rigidity, when
saturated straight-chain fatty acids are present [40].

Interestingly, 4-methoxychalcone, belonging to the chemical class of “linear
1,3-diarylpropanoids”, was detected only in three strains, i.e., two Bacteroidetes, both be-
longing to the genus Flavobacterium (extracts 112 and 122) and in one Actinobacterium of the
genus Rubrobacter (extract 132). 4-Methoxychalcone is a chalcone derivative that has shown
diverse pharmacological properties, including anti-tumour and anti-inflammatory activi-
ties [41,42]. Ecologically, it may play a role in the chemical communication during biofilm
(de-)formation. More precisely, 4-methoxychalcone has been reported to show antimicrobial
activity by damaging the bacterial cell membrane and inhibiting slime-producing microor-
ganisms [43,44]. Because 4-methoxychalcone is a known plant metabolite isolated from
Ficus lyrata, its assignment from bacterial sources is remarkable. However, the synthesis of
structurally identical aromatic polyketides from plants and bacteria, including chalcones
such as naringenin, has been reported before [45,46]. Therefore, the microbial biosynthesis
of 4-methoxychalcone is principally conceivable.

The analysis of chemical richness and chemical nature presented above was based
exclusively on the 1052 dereplicated features of the study. However, even after extensive
dereplication, there was still a large fraction of features (84%) that were not annotated.

To have a broader overview on the chemical space detected in the 60 strains, and
illuminate the major chemical classes present, a feature-based molecular network (FBMN)
was created in GNPS [18,47] and visualized with the software Cytoscape [48] (Figure 4A).
The FBMN gives an overview on feature similarities that were detected in the whole
experiment, regardless of a metabolite annotation. Each feature is represented by a node,
characterized by its mass-to-charge ratio, its retention time, and its corresponding MS/MS
fragmentation spectrum. Nodes were connected by edges if their MS/MS spectra were
similar to each other, i.e., when they shared at least four common fragment ions and
had a cosine score of 0.5 or more. This reflects a presumed chemical relatedness of the
connected nodes.

Figure 4. Feature-based molecular network and chemical classification. (A): FBMN (singletons
are omitted in the figure) obtained from GNPS and visualized in Cytoscape. Strain-specific nodes
(i.e., nodes detected in only one strain) are coloured according to their provenance strain (for colour
legend, see Supplementary Figure S5). Subnetwork families where (almost) all unknown nodes
derive exclusively from one extract are enlarged in the boxes. (B): FBMN coloured according to
MolNetEnhancer chemical classification of superclass (based on ClassyFire). (C): (Top) Enlarge-
ment of subnetwork family of 28 nodes detected only in extract 322 and non-dereplicated. (Bot-
tom) Enlargement of subnetwork family of 15 nodes detected only in extract 16, indicating indole-
containing metabolites. Nodes are coloured according to the most specific classes obtained from
CANPOPUS analysis.
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The features clustered based on MS/MS spectral similarity were further analysed
with the MolNetEnhancer program that propagates chemical class annotations to the full
subnetwork in a semiautomated manner [49]. This approach requires an annotated node
within the subnetwork family. Therefore, the information from the MolNetEnhancer was
complemented by CANOPUS, a computational tool recently developed and integrated
into the SIRIUS4 pipeline, which uses a deep neural network to predict compound classes
from fragmentation spectra, and targets in particular features where spectral and structural
references are not available [50].

The 6418 features detected in this work were organized into 292 subnetwork families
comprising at least two nodes; the remaining 4456 (69%) features were singletons, meaning
that they had a distinct MS/MS spectrum that was not clustered with any other one from
the data set.

An ion identity molecular network (IIMN) [51] was also generated to reduce the
complexity and redundancy of the FBMN by combining unconnected singletons and
by collapsing multiple ions of the same molecule into single representative nodes. The
collapsed network indeed presented a lower number of nodes (5054), but IIMN was not
successful in reducing the number of singletons in the network, with a 65.3% share of
unconnected nodes. This is possibly due to the raw data acquisition parameters, where
the acquisition of MS/MS scans was favoured over survey scan frequencies, resulting in
lower possible correlation of MS1 and thus connectivity in the molecular network. The high
collision energy setting, which was selected to increase the number of MS/MS fragments
generated for a given precursor ion, might also have contributed to the resulting high
number of self-looped nodes [52].

Interestingly, the FBMN visualization points to the presence of metabolites produced
and detected in only certain strains, as exemplified by a subnetwork found in extract
322 (Figure 4A): all 28 nodes from the subnetwork (depicted in blue) were exclusively
detected in this sample. None of these nodes was dereplicated, indicating that a full
family of potentially novel metabolites was present in this strain. The similarities are
not easily recognized by eye, because the masses of the nodes are distributed in a range
between 152–575 Da, and their retention times span between 1.4 and 10.5 min, with the
majority being above 6 min. Finally, the peak areas cover a >30 fold range from 2 × 104 to
7 × 105. Nevertheless, the unique molecular features for extract 322 should be confirmed
with repeat analysis of new extracts of the same strain, which could not be conducted in
the current investigation due to the very limited biomass available.

While no matches could be assigned for the 28 nodes of the subnetwork family
described above from the MolNetEnhancer workflow, CANOPUS predicted the presence
of mainly carboxylic acids and derivatives (among which there were especially amino acids
and derivatives, a secondary carboxylic acid amide and a carboxylic acid ester feature).
Other well-represented subclasses were organosulfonic acids and derivatives and benzene
and substituted derivatives (Figure 4C). Extract 322 has already emerged from the previous
analysis as one of the samples with the highest number of specific features within the
whole data set (Figure 2C). Moreover, with 84% of unknown features, it was also among the
samples with a high potential for chemical novelty. The FBMN confirmed this assessment.
Collectively these findings indicate that extract 322 is a priority candidate for an in-depth
isolation effort.

A similar situation was found in extracts 332 (purple nodes in Figure 4A), 16 (light
blue nodes in Figure 4A) and 34 (orange nodes in Figure 4A): the FBMN highlighted small
clusters of non-de-replicated nodes detected almost exclusively from one of these three
strains, which were already noted for their high number of strain-specific features (exacts
332 and 16) and ≥80% of unknown features (extracts 332 and 34).

Apart from focusing on potentially novel structures, a different goal may be to search
for metabolites from specific chemical classes. In extract 16, several nodes were part of a
larger cluster with representatives of indole derivatives (Figure 4C). Moreover, CANOPUS
analysis identified these nodes as 3-alkylindoles or beta carbolines; thus, an isolation
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effort from a scale-up cultivation of this sample is predicted to yield organoheterocyclic
compounds, and in particular indole-containing metabolites.

3. Conclusions

This study reports a workflow and several data analysis tools that can be applied
to systematically explore the metabolomes of 60 newly isolated difficult-to-cultivate ma-
rine and soil bacteria from various sources and geographical locations. Experimental
LC-MS/MS data were analysed with open-access tools in order to guide future targeted
isolation efforts on selected strains and to improve the chances of finding potentially novel
NPs. The de-replication workflow allowed to identify 1052 known molecules; however, the
vast majority (84%) of metabolic features could not be assigned. This finding reflects an
overlay of two phenomena: there are methodological limitations in data acquisition and
analysis that lead to assignment failures, i.e., previously reported molecules are not recog-
nized based on their (often non-trivial) LC-MS/MS signals [53]. Moreover, the retrieval of
published mass spectral data from journal archives is often time consuming or impossible
since they are reported only as figures. In addition, the large portion of unassigned features
reflects the probably novel chemical compounds produced by such organisms. This is in
line with the observation that the primary and secondary metabolomes of different species
differ substantially [54,55]. We demonstrated that many features occur in only a single
phylogroup or are even unique for a single strain. A part of the unidentified features was
highly abundant, which suggests that the isolation of the corresponding compounds might
be technically feasible. Technically, it is noteworthy that dereplication using a standard
matching to internal and public databases was successful in only 7% of cases. The study
illustrates that prediction tools like SIRIUS4 or molecular networks reflecting spectral
similarity gave a substantial and required improvement in metabolome description. The
further development of such tools, actively pursued currently [15], is clearly warranted.

Due to the high diversity of the microbial strain collection and its limited size, sat-
uration effects were not yet visible, and likely novel metabolic features were observed
from taxonomically new as well as known species at similar rates; this means, on the other
hand, that genomic distance alone was not a sufficient pre-selection criterion. However,
individual strains differed vastly by the overall number and the fraction of potentially
novel metabolic features they produce, illustrating the importance of a pre-selection before
large-scale cultivation and isolation.

In addition, the prediction tools yield a chemical structure classification, and they
pinpoint to clusters of related metabolites within a strain. Compared to classical natural
product dereplication procedures, the methods are unbiased, more comprehensive, and
substantially faster. While this is achieved without any need of prior genomic knowledge,
we anticipate that coupling metabolome and genomic information on biosynthetic gene
clusters should yield an even better and more informed prediction [56].

Overall, we demonstrated that the metabolomics cascade established here—from
untargeted data analysis via database matching to prediction and clustering—is a powerful
method to classify microbial strains from large collections and prioritize samples for
isolation, thereby fuelling the discovery of novel natural products.

4. Materials and Methods
4.1. Samples Collection

Marine samples of sea water, sediment and sponges from the Atlantic Ocean, Mediter-
ranean Sea, Baltic Sea, Channel Sea and Pacific Ocean were collected during different
sampling campaigns between 2014 and 2018. Seawater samples were collected close to the
water surface (1 m depth) and about 10 m depth (Channel Sea and Baltic Sea) in sterile
Nalgene bottles. Marine sediments were sampled in sterile 50 mL reaction tubes by divers
or via the use of a small crane with a sediment grabber and directly transferred to a sterile
50 mL reaction tube. Samples were kept at 4 ◦C and processed within 10 h after sam-
pling. Subsamples were fixed in 2% (v/v) glutaraldehyde for subsequent cell count-
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ing. For bacterial isolation, sediment samples were dispersed by vortexing in 10 mM
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffered at pH 7.3. Soil sam-
ples were collected in Brandenburg, Thüringen and Baden-Würtemberg in the framework of
the Biodiversity Exploratories field campaign in May 2014 [57]. Isolates from marine hosts
were obtained by direct plating (algae and sponge) and chemotaxis experiments (sponge).
Isolate Rhodobacteraceae bacterium D100-Iso2 was isolated from a cyanobacterial cul-
ture from the Saltern ponds of Trapani, Sicily (in the framework of the EMBRIC project).
Rhodobacteraceae sp. MEBiC05055, was isolated from a marine sponge in Geomun-Island,
Korea. The respective algae (given in parenthesis) were provided by the Culture Collection
of Algae at Goettingen University (SAG): Sulfitobacter porphyrae A11D-105 (isolated from
/Prorocentrum micans/ SAG 2018, Dinophyta), Sulfitobacter pseudonitzschiae C05C-116 (iso-
lated from /Pyrenomonas salina/ SAG 2002, Cryptophyta), Hoeflea sp. C05C-110 (isolated
from /Pyrenomonas salina/ SAG 2002, Cryptophyta). The following strains were taken
from the DSMZ: Sulfitobacter dubius DSM 16472T (isolated from /Zostera marina/, sea grass),
Marinovum algicola FF3 DSM 10251T (isolated from /Prorocentrum lima/, Dinophyta),
Marinovum algicola DG898 DSM 27768 (isolated from /Gymnodinium catenatum/, Dinophyta).

4.2. Cultivation Strategies

For bacterial isolation, four complementary strategies were applied in order to max-
imise the diversity of isolated strains (Figure S1).

4.2.1. Single Dilution High-Throughput Cultivation in Liquid Media

This strategy applied a high-throughput cultivation approach based on (i) liquid
oligotrophic media, (ii) a low concentration of inoculum in order to outcompete less
abundant but fast-growing bacteria and (iii) long incubation times. These three factors
allowed accessing difficult-to-grow bacteria [58–60].

Parallel liquid cultures were set up in 96-well microtiter plates (Figure S1). Before
inoculation, total bacterial cell numbers were determined for each natural sample by flu-
orescence microscopy after staining with SYBR Green I (Life Technologies, Ltd., Paisley,
UK). Each well of the microtiter plates was filled with 180 µL of medium and subse-
quently inoculated with 20 µL of inoculum containing 10 or 50 cells [61]. The plates were
filled and inoculated either by hand using multichannel pipettes or automatically using
the Thermo Scientific™ Multidrop™ Combi Reagent Dispenser (Waltham, MA, USA).
The outer wells of each plate (36 wells) were not inoculated and served as negative con-
trols. Five different culture media were used for the bacterial enrichment and isolation
(Table S1): (i) DSMZ medium 1649 Artificial Sea Water (ASW) salts—including yeast and
glucose (HD; 1:10 diluted); (ii) DSMZ medium 1649 Artificial Sea Water (ASW) salts -HD
(1:10 diluted) Polymer; (iii) medium “insoluble humic analogs” (iv) medium “soluble
humic analogs” and (v) DSMZ medium 1426 Soil Solution Equivalent (SSE)/HD 1:10,
(Additional Information). Plates were incubated at 15 ◦C in the dark for 6–12 weeks. Af-
ter incubation, the bacterial community grown in each well was analysed by a barcoded
Illumina paired-end sequencing method targeting the 16S ribosomal RNA V1-2 hyper-
variable region [62]. The taxonomy of the reads was assigned against the SILVA database
(v.128) [63] with UCLUST [64]. According to the taxonomic structure of the bacterial com-
munity of each well, a selected isolation strategy was carried out. Aliquots of each culture
were plated on the above described medium solidified with 0.8% gelrite (w/v) (SERVA,
Heidelberg, Germany). After incubation for 4–6 weeks, several representative colonies were
picked from each plate and purified by three additional passages on the corresponding
solidified medium.

4.2.2. Direct Plating Method

The direct plating method was used for the enrichment of slow-growing bacteria
which required a solid surface for growth. This approach is limited to bacteria able to
produce (micro-)colonies on solid media. Five different culture media solidified with 0.8%
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gelrite (w/v) or 1.5% agar (w/v) were used for the bacterial enrichment (Table S1): (i) DSMZ
medium 1649 Artificial Sea Water (ASW) salts -HD (1:10 diluted); (ii) DSMZ medium
514 Medium BACTO MARINE BROTH; (iii) L1ZM10; (iv) medium Soil Solution Equivalent
SSE/HP and (v) DSMZ medium 1426 Soil Solution Equivalent (SSE)/HD 1:10 (Additional
Information). Experiments were carried out in 90 mm Ø Petri dishes (Figure S1). Tenfold
serial dilutions of the natural samples were performed in the corresponding medium.
Subsequently, 100 µL of the 10−3 to 10−6 dilution was added to the culture medium surface
and spread with a Drigalsky spatula. Plates were incubated at 15 ◦C in the dark for
6–12 weeks. After incubation, several representative colonies were picked from each plate
and purified by three additional passages on the corresponding solidified medium.

4.2.3. Growth in Biofilms

For the enrichment and isolation of biofilm-forming bacteria, the methodology de-
scribed by Gich et al. [65] was used and adapted to marine samples. Solid, inert surfaces
may lead to the stimulation of cell division and growth of starved bacteria [10,66]. Strips
consisting of different, largely inert, solid materials (stainless steel, glass, polypropylene
and polystyrene) were employed and incubated in 20 mL glass vials (Figure S1). Solid
surfaces were incubated in 3 different media (Table S1): (i) DSMZ medium 1649 Artificial
Sea Water (ASW) salts -HD (1:10 diluted); (ii) KM14 and (iii) DSMZ medium 514 Medium
BACTO MARINE BROTH, and inoculated with 1000 cells from the natural samples. Vials
were incubated at 15 ◦C for 8 weeks. To exert a selection pressure towards biofilm-forming
microorganisms, three sequential enrichments were done. A sample was incubated with
one strip, the colonized first strip was transferred to a second vial containing a sterile
second strip and after its colonization, the second strip was transferred to yet another vial
containing a sterile third strip. The solid surface strips were transferred to fresh medium
every third month and the cultures incubated at room temperature. Finally, the biofilm that
formed on the surface of the strips was spread onto the corresponding media and cultures
were purified by subsequent re-streaking.

4.2.4. Chemotaxis Chambers

Another approach for the selective enrichment and subsequent isolation of novel types
of bacteria exploited the chemotactic responses of bacteria to specific substrates [67–69].
Although restricted to motile and chemotactically active microorganisms, a considerable
fraction of species can be recovered with this technique, particularly in bacterioplankton
communities. For the chemotaxis assays, glass capillaries loaded with defined substrate
solutions were inserted in a suspension of motile microorganisms, and the accumula-
tion of cells at the opening of or within the capillary was monitored by light microscopy.
The substrates used for the isolation of marine bacteria are listed as Additional Infor-
mation. Experiments were set up in small microscopic chambers (Figure S1; modified
from Overmann, 2005 [69]), which were prepared using small 21 × 21 × 0.17 mm cov-
erslips as spacers between the microscope slide and the lid, which consisted of another
60 × 24 × 0.17 mm coverslip. Spacers and the lid were fixed by sealing the two short
and one long edges of the chamber with a paraffin/mineral oil mixture (4:1, v/v). Flat
rectangular glass capillaries with a length of 50 mm, an inside diameter of 0.1 × 1.0 mm,
and a capacity of 5 µL (Vitrocom, Mountain Lakes, NJ, USA) were used. These capillaries
fit exactly into the opening of the chemotaxis chamber. The specific geometry of these
capillaries permitted direct light microscopic examination of their contents. For marine
samples, the small microscopic chambers were incubated at room temperature for 3 h.
After incubation, the capillaries are removed from the chambers. For direct microscopy of
the accumulated microorganisms, the open end of each capillary was immediately sealed
with plasticine. Subsequently, bacterial cells trapped in the capillaries could be transferred
to Petri dishes or 96-multiwell plates filled with DSMZ medium 1649 Artificial Sea Water
(ASW) salts -HD (1:10 diluted) exerting positive pressure with a pipette from one end of
the capillary.
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4.3. Taxonomic Affiliation of Isolates

The taxonomic affiliation of all axenic bacterial isolates was investigated by sequencing
their 16S rRNA gene. The almost full-length 16S gene of strains was amplified directly
by colony-PCR using the primer pair 8f (5′-AGAGTTTGATCCTGGCTCAG-3′) [70] and
1492r (5′-GGTTACCTTGTTACGACTT-3′). PCR mixtures included 2.0 µL PCR buffer (10×),
0.8 µL MgCl2 (25 mM), BSA 0.4 µL (20 mg mL−1), 0.4 µL dNTPs (10 mM each),
0.08 µL each forward and reverse primers (50 pmol µL−1), 0.08 µL Dream Taq DNA
polymerase (5 U µL−1 Thermo Scientific) and 1.0 µL template (picked colonies were added
to 20 µL of water followed by three freeze/thaw cycles (−20 ◦C/microwave oven)) in
a total volume of 20 µL. The thermal cycling program consisted of: (i) 10 min at 94 ◦C;
(ii) 32 cycles of 30 s at 94 ◦C, 30 s at 56 ◦C and 1 min at 72 ◦C, and (iii) a final elonga-
tion step of 7 min at 72 ◦C. PCR products were purified and sequenced using the above
primer pairs and the internal primers 1055f (5′-ATGGCTGTCGTCAGCT-3′) [71] and 341r
(5′-CTGCTGCCTCCCGTAGG-3′) [72] and by Sanger sequencing employing the AB 3730
DNA DNA analyser (Applied Biosystems, Foster City, CA, USA) and the AmpliTaq® FS
BigDye® Terminator Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA).
Subsequently, the 16S rRNA sequences were analysed with the online database EzBio-
Cloud [73].

Pairwise sequence similarities were calculated using the method recommended by
Meier-Kolthoff et al. [74]. Sequences were uploaded to the online webserver Genome-
to-Genome Distance Calculator available at http://ggdc.dsmz.de/ accessed on 17 May
2022 [75] using the online submission form to determine single-gene trees (phylogeny
server) [76] and the obtained 16S rRNA sequences of the 60 isolates as multi-FASTA file
format as query and reference [77]. Phylogenies (trees and similarities) were inferred
by the GGDC web server [75] available at http://ggdc.dsmz.de/ accessed on 17 May
2022 using the DSMZ phylogenomic pipeline [76] adapted to single genes. A multiple
sequence alignment was created with MUSCLE [78]. maximum likelihood (ML) and max-
imum parsimony (MP) trees were inferred from the alignment with RAxML [79] and
TNT [80], respectively. For ML, rapid bootstrapping in conjunction with the autoMRE
bootstopping criterion [81] and subsequent search for the best tree was used; for MP,
1000 bootstrapping replicates were used in conjunction with tree-bisection-and-reconnection
branch swapping and ten random sequence addition replicates. The sequences were
checked for compositional bias using the X2 test as implemented in PAUP* (* Phylogenetic
Analysis Using PAUP) [82,83]. The input nucleotide matrix for the maximum likelihood
phylogenetic tree comprised 60 operational taxonomic units and 1591 characters, 864 of
which were variable and 762 of which were parsimony informative. The base-frequency
check indicated no compositional bias (p = 0.74, α = 0.05). ML analysis under the GTR+CAT
model yielded the highest log likelihood of−24,049.98, whereas the estimated alpha param-
eter was 0.34. The ML bootstrapping converged after 650 replicates; the average support
was 79.49%, MP analysis yielded a best score of 5074 (consistency index 0.33, retention
index 0.66) and 2 best trees. The MP bootstrapping average support was 80.65%. The tree
was plotted using the Interactive Tree Of Life (iTOL) v6 [84].

4.4. Fermentation of Bacteria for Natural Product Analysis

For the fermentation of strains, 1 × 100 mL cultures containing liquid ASW/HD 1:10
(in 250 mL Erlenmeyer flasks) were inoculated with 3.0 mL (3% v/v final culture volume)
of a seed culture. Depending on the growth kinetics and optimum condition of each strain,
the cultures were fermented at 15–28 ◦C for 3–5 days, on a rotary shaker at 180 rpm.

After fermentation, the well-grown culture (1 × 100 mL) was sieved through a
metal sieve (mesh size 270 µm). The biomass was added to Erlenmeyer flasks containing
70 mL of acetone and shaken at 180 rpm at 21 ◦C in a dark chamber for 3 h. The acetone
was then filtrated through a folded filter into a 250 mL round-bottomed flask and dried
in a rotavapor at 44 ◦C. Biomasses were reconstituted in acetonitrile at a concentration of
0.5 mg/mL.

http://ggdc.dsmz.de/
http://ggdc.dsmz.de/
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All solvents used were Baker Analyzed™ Ultra LC/MS grade (Fisher Scientific,
Schwerte, Germany).

4.5. Untargeted Metabolomic Profiling

All reconstituted extracts were analysed by ultra-high-performance liquid
chromatography—tandem mass spectrometry (UPLC-ESI-QToF-MS/MS) on a Bruker
maXis HD QToF mass spectrometer, equipped with an Apollo II electrospray source (Bruker,
Bremen, Germany), operated in positive electrospray ionization mode. The mass spectrome-
ter was coupled to an UltiMate 3000 RS (Thermo Scientific Dionex) UPLC system, equipped
with a Kinetex C18 reversed phase column (1.7 µm, 150 × 2.1 mm from Phenomenex,
Aschaffenburg, Germany), for chromatographic separation of metabolites.

Sample injection volume was 5 µL, with a system flow rate of 300 µL/min; the system
was kept at 40 ◦C. A 30 min gradient elution with water (+0.1% v/v formic acid) as eluent
A and acetonitrile (+0.1% v/v formic acid) as eluent B, was run as follows: 1% B for 0 min
to 2 min, linear gradient from 1% B to 100% B from 2 to 20 min, 100% B held until 25 min
and linear gradient from 100% B to 1% B from 25 to 30 min.

Raw data were acquired in full scan mode (50–1500 Da) in a data dependent MS/MS
mode, performing collision-induced fragmentation of the five most abundant ions in
each MS scan, using Bruker’s “Smart Exclusion” (2×) functionality to minimize multiple
fragmentation of the same ion. The collision energy was ramped from 80% to 200% of
the default auto-MS/MS collision energy (CID interpolated list: mass = 100, width = 4,
charge state = 1, collision energy = 20; mass = 500, width = 5, charge state = 1, collision
energy = 35; mass = 1000, width = 6, charge state = 1, collision energy = 55; mass = 100,
width = 4, charge state = 2, collision energy = 17; mass = 500, width = 5, charge state = 2,
collision energy = 30; mass = 1000, width = 6, charge state = 2, collision energy = 50).

4.6. Data Processing and Metabolomics Analysis
4.6.1. Feature Detection

Raw LC-MS/MS data had lock mass calibration applied and were converted into
mzXML format using Bruker DataAnalysis and Bruker Compass Xport software.

The data processing software MZmine2 (version 2.37.1-corr17.7) was used for de-
tection of chromatographic peaks and filtering of detected features (retention time—m/z
pairs). Processing parameters to obtain the feature table, generating and exporting the mgf
and quantification table to be used in GNPS and SIRIUS4 and for ion identity molecular
networking in MZmine2 are reported in Table S2.

4.6.2. Metabolite Annotation

Features were searched first against our in-house library, built with analytical stan-
dards from the MSMLS—Mass Spectrometry Metabolite Library of Standards (IROA Tech-
nologies, Bolton, MA, USA) as well as a number of individually bought compounds from
Sigma-Aldrich (Taufkirchen, Germany). Identification was confirmed by matching the
precursor mass, retention time and MS/MS spectrum values to the available standards.

Then, putative annotation of known metabolites was expanded through GNPS
(https://gnps.ucsd.edu/, accessed initially on 3 October 2020) spectral library match-
ing of mass values and MS/MS spectra (library spectra were required to have at least
a score of 0.6 and 3 matched peaks; annotations were then manually filtered based on
quality of library entry, biological knowledge of sample set and eventually validated
by matching with other online spectral databases, such as MassBank of North America
(https://mona.fiehnlab.ucdavis.edu/, accessed on 20 November 2020). MS2LDA [84tha]
workflow was used to guide or confirm some putative annotation, through the analysis of
common patterns of mass fragments and indication of neutral losses.

Finally, SIRIUS4 (version 4.9.12), a software framework for the analysis of LC-MS/MS
data of metabolites, integrated with CSI:FingerID (both developed at developed at the
Chair of for Bioinformatics, Jena, Germany), was used to propose tentative structures

https://gnps.ucsd.edu/
https://mona.fiehnlab.ucdavis.edu/
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for known features that were not identified in the previous annotation steps. Molecu-
lar formulas are deduced in SIRIUS4 by ranking isotope patterns from mass spectra of
high resolution; while structures were proposed through a combination of fragmentation
tree computation and machine learning in CSI:FingerID. The parameters used to process
the present data set were the following: for molecular formula calculation, possible ion-
ization: [M + H]+, [M + Na]+, [M + K]+, instrument: Q-TOF, ppm tolerance: 10 ppm,
top molecular formula candidates: 10, filter: formulas from databases: Natural Products,
KNApSAcK, SuperNatural, COCONUT, CHEBI, ZINC bio and MeSH. For the CSI:FingerID
step, the possible adducts were set to: [M + H]+, [M-H2O + H]+, [M + Na]+, [M + K]+

and [M + NH4]+. A structure prediction was considered correct and thus kept in the present
analysis only when its CSI:FingerID score was smaller than −150 and the corresponding
best molecular formula candidate had a Zodiac score larger than 60%.

Chemical classification according to ClassyFire taxonomy was accessed thought
the web-based application for automated structural classification of chemical entities
(http://classyfire.wishartlab.com/, accessed on 18 January 2021) for annotations of level 1
(derived from the in-house library) and through GNPS MolNetEnhancer [49] and SIRIUS4
CANOPUS [50] for annotations of level 2 and 3, respectively, as class annotation through
ClassyFire is integrated and available via these tools.

4.6.3. Molecular Networking

mzXML files, together with MS/MS spectra files mgf and feature table csv files from
MZmine2 were uploaded to the Global Natural Products Social Molecular Networking
(GNPS, http://gnps.ucsd.edu, accessed initially on 3 October 2020) online tool, and a
FBMN was generated through the online workflow available from the GNPS website.

Data was filtered by removing all MS/MS fragment ions within +/−17 Da of the
precursor m/z. The precursor ion mass tolerance was set to 0.02 Da and a MS/MS fragment
ion tolerance of 0.02 Da. A network was then created where edges were filtered to have a
cosine score above 0.5 and more than four matched peaks. Edges between two nodes were
kept in the network only if each of the nodes appeared in each other’s respective top ten
most similar nodes.

Finally, the maximum size of a molecular family was set to 100, and the lowest scoring
edges were removed from molecular families until the molecular family size was below this
threshold. The visualization and analysis of the obtained FBMN was conducted through
Cytoscape software [48] version 3.9.1.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/md20110713/s1. Figures S1–S5, Tables S1–S3, and supple-
mentary text are combined in a single file. Table S4 is available as an additional xlsx file.
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