- Article
Explainable Turkish E-Commerce Review Classification Using a Multi-Transformer Fusion Framework and SHAP Analysis
- Sıla Çetin and
- Esin Ayşe Zaimoğlu
The rapid expansion of e-commerce has significantly influenced consumer purchasing behavior, making user reviews a critical source of product-related information. However, the large volume of low-quality and superficial reviews limits the ability to obtain reliable insights. This study aims to classify Turkish e-commerce reviews as either useful or useless, thereby highlighting high-quality content to support more informed consumer decisions. A dataset of 15,170 Turkish product reviews collected from major e-commerce platforms was analyzed using traditional machine learning approaches, including Support Vector Machines and Logistic Regression, and transformer-based models such as BERT and RoBERTa. In addition, a novel Multi-Transformer Fusion Framework (MTFF) was proposed by integrating BERT and RoBERTa representations through concatenation, weighted-sum, and attention-based fusion strategies. Experimental results demonstrated that the concatenation-based fusion model achieved the highest performance with an F1-score of 91.75%, outperforming all individual models. Among standalone models, Turkish BERT achieved the best performance (F1: 89.37%), while the BERT + Logistic Regression hybrid approach yielded an F1-score of 88.47%. The findings indicate that multi-transformer architectures substantially enhance classification performance, particularly for agglutinative languages such as Turkish. To improve the interpretability of the proposed framework, SHAP (SHapley Additive exPlanations) was employed to analyze feature contributions and provide transparent explanations for model predictions, revealing that the model primarily relies on experience-oriented and semantically meaningful linguistic cues. The proposed approach can support e-commerce platforms by automatically prioritizing high-quality and informative reviews, thereby improving user experience and decision-making processes.
5 February 2026






