Dual-Pathway Effects of Product and Technological Attributes on Consumer Engagement in Augmented Reality Advertising
Abstract
1. Introduction
2. Literature Review
2.1. Theoretical Framework
2.1.1. Elaboration Likelihood Model
2.1.2. Flow Theory
2.2. AR Ad Content Characteristics
Ref. | Studies | Augmented Reality Characteristics |
---|---|---|
[1] | Hilken et al. (2017) | Augmentation |
[4] | Uribe et al. (2022) | Informativeness, Entertaining |
[7] | Feng & Xie (2018) | Informativeness, Novelty, Entertainment, Complexity |
[8] | Barhorst et al. (2021) | Interactivity, Vividness, and Novelty |
[9] | Poushneh & Vasquez-Parraga (2017) | Interactivity |
[10] | Kumar & Srivastava (2022) | Interactivity, Augmentation |
[28] | Yim et al. (2017) | Interactivity, Vividness |
[29] | Javornik (2016) | Interactivity, Media Richness |
[30] | Chen et al. (2022) | Vividness, Spatial Accuracy |
[31] | Rauschnabel et al. (2019) | Augmentation Quality |
[32] | Sung et al. (2022) | AR App Control, Design |
[33] | Saleem et al. (2022) | Informativeness, Entertainment, Irritation |
[34] | Cowan et al. (2024) | Immersive |
[35] | Pozharliev et al. (2022) | processing fluency |
[36] | Ahn et al. (2023) | Interactivity |
2.3. Consumer Engagement
3. Hypothesis Development
3.1. Attractiveness
3.2. Informativeness
3.3. Interactivity
3.4. Augmentation
3.5. Information Credibility
3.6. Enjoyment
3.7. Attitude to Ad
3.8. Flow
4. Methodology
4.1. Data Collection
4.2. Measures Instrument
- Attractiveness (two-item scale adapted from Baum et al. [66])
- Interactivity (a three-item scale adapted from Yim et al. [28])
- Augmentation (three items from Kumar and Srivastava [10])
- Information Credibility (three items from Brackett and Carr [68])
- Enjoyment (a three-item scale from Yim et al. [28])
- Flow (a two-item semantic differential scale developed by Yim et al. [28])
- Purchase Intention (a two-item scale based on Spears and Singh [70])
4.3. Data Analysis
5. Results
5.1. Participants’ Characteristics
5.2. Common Method Bias
5.3. Measurement Model
5.4. Structural Model
6. General Discussion
6.1. Theoretical Implications
6.2. Practical Implications
6.3. Limitations and Future Research
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AR | Augmented Reality |
ELM | Elaboration Likelihood Model |
PLS-SEM | Partial Least Squares Structural Equation Modeling |
Ad | Advertisement |
ATTR | Attractiveness |
INF | Informativeness |
INT | Interactivity |
AUG | Augmentation |
FL | Flow |
IC | Information Credibility |
ENJ | Enjoyment |
ATTI | Attitude to Ad |
PI | Purchase Intention |
CMB | Common method bias |
References
- Hilken, T.; De Ruyter, K.; Chylinski, M.; Mahr, D.; Keeling, D.I. Augmenting the Eye of the Beholder: Exploring the Strategic Potential of Augmented Reality to Enhance Online Service Experiences. J. Acad. Mark. Sci. 2017, 45, 884–905. [Google Scholar] [CrossRef]
- ARtillery Intelligence. Mobile AR Global Revenue Forecast: 2023–2028. Available online: https://artilleryiq.com/reports/mobile-ar-global-revenue-forecast-2023-2028/ (accessed on 17 June 2024).
- ARtillery Intelligence. Headworn AR Global Revenue Forecast: 2023–2028. Available online: https://artilleryiq.com/reports/headworn-ar-global-revenue-forecast-2023-2028/ (accessed on 17 June 2024).
- Uribe, R.; Labra, R.; Manzur, E. Modeling and Evaluating the Effectiveness of AR Advertising and the Moderating Role of Personality Traits. Int. J. Advert. 2022, 41, 703–730. [Google Scholar] [CrossRef]
- De Ruyter, K.; Heller, J.; Hilken, T.; Chylinski, M.; Keeling, D.I.; Mahr, D. Seeing with the Customer’s Eye: Exploring the Challenges and Opportunities of AR Advertising. J. Advert. 2020, 49, 109–124. [Google Scholar] [CrossRef]
- Scholz, J.; Smith, A.N. Augmented Reality: Designing Immersive Experiences That Maximize Consumer Engagement. Bus. Horiz. 2016, 59, 149–161. [Google Scholar] [CrossRef]
- Feng, Y.; Xie, Q. Measuring the Content Characteristics of Videos Featuring Augmented Reality Advertising Campaigns. J. Res. Interact. Mark. 2018, 12, 489–508. [Google Scholar] [CrossRef]
- Barhorst, J.B.; McLean, G.; Shah, E.; Mack, R. Blending the Real World and the Virtual World: Exploring the Role of Flow in Augmented Reality Experiences. J. Bus. Res. 2021, 122, 423–436. [Google Scholar] [CrossRef]
- Poushneh, A.; Vasquez-Parraga, A.Z. Discernible Impact of Augmented Reality on Retail Customer’s Experience, Satisfaction and Willingness to Buy. J. Retail. Consum. Serv. 2017, 34, 229–234. [Google Scholar] [CrossRef]
- Kumar, H.; Srivastava, R. Exploring the Role of Augmented Reality in Online Impulse Behaviour. Int. J. Retail. Distrib. Manag. 2022, 50, 1281–1301. [Google Scholar] [CrossRef]
- Brodie, R.J.; Hollebeek, L.D.; Jurić, B.; Ilić, A. Customer Engagement: Conceptual Domain, Fundamental Propositions, and Implications for Research. J. Serv. Res. 2011, 14, 252–271. [Google Scholar] [CrossRef]
- Hollebeek, L.D.; Macky, K. Digital Content Marketing’s Role in Fostering Consumer Engagement, Trust, and Value: Framework, Fundamental Propositions, and Implications. J. Interact. Mark. 2019, 45, 27–41. [Google Scholar] [CrossRef]
- Pelet, J.-É.; Ettis, S.; Cowart, K. Optimal Experience of Flow Enhanced by Telepresence: Evidence from Social Media Use. Inf. Manag. 2017, 54, 115–128. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, C.A. Consumer Behavior in an Augmented Reality Environment: Exploring the Effects of Flow via Augmented Realism and Technology Fluidity. Telemat. Inform. 2022, 71, 101833. [Google Scholar] [CrossRef]
- Azuma, R.; Baillot, Y.; Behringer, R.; Feiner, S.; Julier, S.; MacIntyre, B. Recent Advances in Augmented Reality. IEEE Comput. Graph. Appl. 2001, 21, 34–47. [Google Scholar] [CrossRef]
- Tsai, W.-H.S.; Tian, S.C.; Chuan, C.-H.; Li, C. Inspection or Play? A Study of How Augmented Reality Technology Can Be Utilized in Advertising. J. Interact. Advert. 2020, 20, 244–257. [Google Scholar] [CrossRef]
- Petty, R.E.; Cacioppo, J.T. Source Factors and the Elaboration Likelihood Model of Persuasion. Adv. Consum. Res. 1984, 11, 668–672. [Google Scholar]
- Cacioppo, J.T.; Petty, R.E.; Kao, C.F.; Rodriguez, R. Central and Peripheral Routes to Persuasion: An Individual Difference Perspective. J. Personal. Soc. Psychol. 1986, 51, 1032. [Google Scholar] [CrossRef]
- Bhattacherjee, A.; Sanford, C. Influence Processes for Information Technology Acceptance: An Elaboration Likelihood Model. MIS Q. 2006, 30, 805–825. [Google Scholar] [CrossRef]
- Cyr, D.; Head, M.; Lim, E.; Stibe, A. Using the Elaboration Likelihood Model to Examine Online Persuasion through Website Design. Inf. Manag. 2018, 55, 807–821. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, H.; Zhou, C.; Zheng, J.; Yang, S. Predicting Review Helpfulness in the Omnichannel Retailing Context: An Elaboration Likelihood Model Perspective. Front. Psychol. 2022, 13, 958386. [Google Scholar] [CrossRef]
- Mardhatilah, D.; Omar, A.; Septiari, E.D. A Literature Review on Persuasive Communication: Utilising Elaboration Likelihood Model to Understand Consumer Engagement on Social Media Platforms. J. Technol. Manag. Bus. 2023, 10, 87–100. [Google Scholar] [CrossRef]
- Petty, R.E.; Cacioppo, J.T. The Elaboration Likelihood Model of Persuasion. In Communication and Persuasion; Springer: New York, NY, USA, 1986; pp. 1–24. ISBN 978-1-4612-9378-1. [Google Scholar]
- Csikszentmihalyi, M.; Csikzentmihaly, M. Flow: The Psychology of Optimal Experience; Harper & Row: New York, NY, USA, 1990. [Google Scholar]
- Hoffman, D.L.; Novak, T.P. Flow Online: Lessons Learned and Future Prospects. J. Interact. Mark. 2009, 23, 23–34. [Google Scholar] [CrossRef]
- Ducoffe, R.H. How Consumers Assess the Value of Advertising. J. Curr. Issues Res. Advert. 1995, 17, 1–18. [Google Scholar] [CrossRef]
- Yahya, W.K.; Muthusamy, G.; Naseri, R.N.N.; Affendi, F.R. Exploring the Power of Visual Aesthetics in Advertising. Int. J. Art Des. 2024, 8, 57–67. [Google Scholar] [CrossRef]
- Yim, M.Y.-C.; Chu, S.-C.; Sauer, P.L. Is Augmented Reality Technology an Effective Tool for E-Commerce? An Interactivity and Vividness Perspective. J. Interact. Mark. 2017, 39, 89–103. [Google Scholar] [CrossRef]
- Javornik, A. Augmented Reality: Research Agenda for Studying the Impact of Its Media Characteristics on Consumer Behaviour. J. Retail. Consum. Serv. 2016, 30, 252–261. [Google Scholar] [CrossRef]
- Chen, J.V.; Ruangsri, S.; Ha, Q.-A.; Widjaja, A.E. An Experimental Study of Consumers’ Impulse Buying Behaviour in Augmented Reality Mobile Shopping Apps. Behav. Inf. Technol. 2022, 41, 3360–3381. [Google Scholar] [CrossRef]
- Rauschnabel, P.A.; Felix, R.; Hinsch, C. Augmented Reality Marketing: How Mobile AR-Apps Can Improve Brands through Inspiration. J. Retail. Consum. Serv. 2019, 49, 43–53. [Google Scholar] [CrossRef]
- Sung, E.; Han, D.D.; Choi, Y.K. Augmented Reality Advertising via a Mobile App. Psychol. Mark. 2022, 39, 543–558. [Google Scholar] [CrossRef]
- Saleem, M.F.; Asim, M.; Chandio, J.A. Effect of Augmented Reality Advertising on Purchase Intention. J. Mark. Strateg. 2022, 4, 157–172. [Google Scholar] [CrossRef]
- Cowan, K.; Plangger, K.; Javornik, A. Insights for Advertisers on Immersive Technologies: The Future of Ads Using VR, AR, MR and the Metaverse. J. Advert. Res. 2024, 64, 249–254. [Google Scholar]
- Pozharliev, R.; De Angelis, M.; Rossi, D. The Effect of Augmented Reality versus Traditional Advertising: A Comparison between Neurophysiological and Self-Reported Measures. Mark. Lett. 2022, 33, 113–128. [Google Scholar] [CrossRef]
- Ahn, S.J.; Kim, J.; Kim, J. The Future of Advertising Research in Virtual, Augmented, and Extended Realities. Int. J. Advert. 2023, 42, 162–170. [Google Scholar] [CrossRef]
- Hollebeek, L.D.; Glynn, M.S.; Brodie, R.J. Consumer Brand Engagement in Social Media: Conceptualization, Scale Development and Validation. J. Interact. Mark. 2014, 28, 149–165. [Google Scholar] [CrossRef]
- De Keyzer, F.; Dens, N.; De Pelsmacker, P. How and When Personalized Advertising Leads to Brand Attitude, Click, and WOM Intention. J. Advert. 2022, 51, 39–56. [Google Scholar] [CrossRef]
- Mollen, A.; Wilson, H. Engagement, Telepresence and Interactivity in Online Consumer Experience: Reconciling Scholastic and Managerial Perspectives. J. Bus. Res. 2010, 63, 919–925. [Google Scholar] [CrossRef]
- Flavián, C.; Ibáñez-Sánchez, S.; Orús, C. The Impact of Virtual, Augmented and Mixed Reality Technologies on the Customer Experience. J. Bus. Res. 2019, 100, 547–560. [Google Scholar] [CrossRef]
- Watson, A.; Alexander, B.; Salavati, L. The Impact of Experiential Augmented Reality Applications on Fashion Purchase Intention. Int. J. Retail. Distrib. Manag. 2020, 48, 433–451. [Google Scholar] [CrossRef]
- Yim, M.Y.-C.; Park, S.-Y. “I Am Not Satisfied with My Body, so I like Augmented Reality (AR)”: Consumer Responses to AR-Based Product Presentations. J. Bus. Res. 2019, 100, 581–589. [Google Scholar] [CrossRef]
- Papagiannidis, S.; Pantano, E.; See-To, E.W.; Dennis, C.; Bourlakis, M. To Immerse or Not? Experimenting with Two Virtual Retail Environments. Inf. Technol. People 2017, 30, 163–188. [Google Scholar] [CrossRef]
- Poushneh, A. Augmented Reality in Retail: A Trade-off between User’s Control of Access to Personal Information and Augmentation Quality. J. Retail. Consum. Serv. 2018, 41, 169–176. [Google Scholar] [CrossRef]
- Lin, F.-H.; Hung, Y.-F. The Value of and Attitude toward Sponsored Links for Internet Information Searchers. J. Electron. Commer. Res. 2009, 10, 235–251. [Google Scholar]
- MacKenzie, S.B.; Lutz, R.J. An Empirical Examination of the Structural Antecedents of Attitude toward the Ad in an Advertising Pretesting Context. J. Mark. 1989, 53, 48–65. [Google Scholar] [CrossRef]
- Rajesh, S.; Raj, G.; Dhuvandranand, S.; Kiran, D.-R. Factors Influencing Customers’ Attitude Towards SMS Advertisement: Evidence from Mauritius. Stud. Bus. Econ. 2019, 14, 141–159. [Google Scholar] [CrossRef]
- Kim, Y.J.; Han, J. Why Smartphone Advertising Attracts Customers: A Model of Web Advertising, Flow, and Personalization. Comput. Hum. Behav. 2014, 33, 256–269. [Google Scholar] [CrossRef]
- Martins, J.; Costa, C.; Oliveira, T.; Gonçalves, R.; Branco, F. How Smartphone Advertising Influences Consumers’ Purchase Intention. J. Bus. Res. 2019, 94, 378–387. [Google Scholar] [CrossRef]
- Ye, G.; Guan, X.; Hudders, L.; Xiao, Y.; Li, J. A Meta-Analysis of the Antecedents and Consequences of Advertising Value. J. Advert. 2025, 54, 117–138. [Google Scholar] [CrossRef]
- Gaber, H.R.; Wright, L.T.; Kooli, K. Consumer Attitudes towards Instagram Advertisements in Egypt: The Role of the Perceived Advertising Value and Personalization. Cogent Bus. Manag. 2019, 6. [Google Scholar] [CrossRef]
- Arora, T.; Agarwal, B. Empirical Study on Perceived Value and Attitude of Millennials Towards Social Media Advertising: A Structural Equation Modelling Approach. Vis. J. Bus. Perspect. 2019, 23, 56–69. [Google Scholar] [CrossRef]
- Taylor, D.G.; Lewin, J.E.; Strutton, D. Friends, Fans, and Followers: Do Ads Work on Social Networks?: How Gender and Age Shape Receptivity. J. Advert. Res. 2011, 51, 258–275. [Google Scholar] [CrossRef]
- Ducoffe, R.H. Advertising Value and Advertising on the Web. J. Advert. Res. 1996, 36, 21–35. [Google Scholar] [CrossRef]
- Yim, M.Y.-C.; Cicchirillo, V.J.; Drumwright, M.E. The Impact of Stereoscopic Three-Dimensional (3-D) Advertising. J. Advert. 2012, 41, 113–128. [Google Scholar] [CrossRef]
- Hennessey, J.E.; Anderson, S.C. The Interaction of Peripheral Cues and Message Arguments On Cognitive Responses to an Advertisement. Adv. Consum. Res. 1990, 17, 237–243. [Google Scholar]
- Lutz, R.J. Affective and Cognitive Antecedents of Attitude toward the Ad: A Conceptual Framework. In Psychological Processes and Advertising Effects; Erlbaum: Hillsdale, NJ, USA, 1985; pp. 45–64. [Google Scholar]
- Sander, F.; Föhl, U.; Walter, N.; Demmer, V. Green or Social? An Analysis of Environmental and Social Sustainability Advertising and Its Impact on Brand Personality, Credibility and Attitude. J. Brand Manag. 2021, 28, 429–445. [Google Scholar] [CrossRef]
- Nagar, K. Modeling the Effects of Green Advertising on Brand Image: Investigating the Moderating Effects of Product Involvement Using Structural Equation. J. Glob. Mark. 2015, 28, 152–171. [Google Scholar] [CrossRef]
- Ozcelik, A.B.; Varnali, K. Effectiveness of Online Behavioral Targeting: A Psychological Perspective. Electron. Commer. Res. Appl. 2019, 33, 100819. [Google Scholar] [CrossRef]
- Sharma, A.; Dwivedi, R.; Mariani, M.M.; Islam, T. Investigating the Effect of Advertising Irritation on Digital Advertising Effectiveness: A Moderated Mediation Model. Technol. Forecast. Soc. Change 2022, 180, 121731. [Google Scholar] [CrossRef]
- Zhu, Y.-Q.; Kanjanamekanant, K. No Trespassing: Exploring Privacy Boundaries in Personalized Advertisement and Its Effects on Ad Attitude and Purchase Intentions on Social Media. Inf. Manag. 2021, 58, 103314. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Danks, N.P.; Ray, S. Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook; Springer Nature: London, UK, 2021; p. 97. [Google Scholar]
- Kock, N.; Hadaya, P. Minimum Sample Size Estimation in PLS-SEM: The Inverse Square Root and Gamma-exponential Methods. Inf. Syst. J. 2018, 28, 227–261. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Baum, M.; Schäfer, M.; Kabst, R. Modeling the Impact of Advertisement-Image Congruity on Applicant Attraction. Hum. Resour. Manag. 2016, 55, 7–24. [Google Scholar] [CrossRef]
- Liu, C.-L.E.; Sinkovics, R.R.; Pezderka, N.; Haghirian, P. Determinants of Consumer Perceptions toward Mobile Advertising—A Comparison between Japan and Austria. J. Interact. Mark. 2012, 26, 21–32. [Google Scholar] [CrossRef]
- Brackett, L.K.; Carr, B.N. Cyberspace Advertising vs. Other Media: Consumer vs. Mature Student Attitudes. J. Advert. Res. 2001, 41, 23–33. [Google Scholar] [CrossRef]
- Holbrook, M.B.; Batra, R. Assessing the Role of Emotions as Mediators of Consumer Responses to Advertising. J. Consum. Res. 1987, 14, 404–420. [Google Scholar] [CrossRef]
- Spears, N.; Singh, S.N. Measuring Attitude toward the Brand and Purchase Intentions. J. Curr. Issues Res. Advert. 2004, 26, 53–66. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A New Criterion for Assessing Discriminant Validity in Variance-Based Structural Equation Modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Roemer, E.; Schuberth, F.; Henseler, J. HTMT2–an Improved Criterion for Assessing Discriminant Validity in Structural Equation Modeling. Ind. Manag. Data Syst. 2021, 121, 2637–2650. [Google Scholar] [CrossRef]
- Vaithilingam, S.; Ong, C.S.; Moisescu, O.I.; Nair, M.S. Robustness Checks in PLS-SEM: A Review of Recent Practices and Recommendations for Future Applications in Business Research. J. Bus. Res. 2024, 173, 114465. [Google Scholar] [CrossRef]
- Guenther, P.; Guenther, M.; Ringle, C.M.; Zaefarian, G.; Cartwright, S. Improving PLS-SEM Use for Business Marketing Research. Ind. Mark. Manag. 2023, 111, 127–142. [Google Scholar] [CrossRef]
- Hsu, S.H.-Y.; Tsou, H.-T.; Chen, J.-S. “Yes, We Do. Why Not Use Augmented Reality?” Customer Responses to Experiential Presentations of AR-Based Applications. J. Retail. Consum. Serv. 2021, 62, 102649. [Google Scholar] [CrossRef]
Variable | Category | Absolute Number | Percentage |
---|---|---|---|
Gender | Male | 97 | 32.4 |
Female | 202 | 67.6 | |
Age | 18–25 years | 81 | 27.1 |
26–35 years | 146 | 48.8 | |
36–50 years | 66 | 22.1 | |
51+ | 6 | 2.0 | |
Education | Junior college or less | 26 | 8.7 |
Undergraduate | 213 | 71.2 | |
Postgraduate | 58 | 19.4 | |
Doctorate or above | 2 | 0.7 |
Measure | Item | Loadings | CR | AVE | Cronbach’s α |
---|---|---|---|---|---|
Attractiveness (ATTR) | ATTR 1 | 0.873 | 0.843 | 0.728 | 0.628 |
ATTR 2 | 0.833 | ||||
Informativeness (INF) | INF 1 | 0.741 | 0.798 | 0.569 | 0.621 |
INF 2 | 0.810 | ||||
INF 3 | 0.707 | ||||
Interactivity (INT) | INT 1 | 0.793 | 0.825 | 0.611 | 0.682 |
INT 2 | 0.785 | ||||
INT 3 | 0.766 | ||||
Augmentation (AUG) | AUG 1 | 0.808 | 0.836 | 0.630 | 0.705 |
AUG 2 | 0.842 | ||||
AUG 3 | 0.727 | ||||
Flow (FL) | FL 1 | 0.828 | 0.842 | 0.728 | 0.628 |
FL 2 | 0.878 | ||||
Information Credibility (IC) | IC 1 | 0.800 | 0.836 | 0.629 | 0.706 |
IC 2 | 0.790 | ||||
IC 3 | 0.790 | ||||
Enjoyment (ENJ) | ENJ 1 | 0.717 | 0.774 | 0.533 | 0.563 |
ENJ 2 | 0.718 | ||||
ENJ 3 | 0.755 | ||||
Attitude to ad (ATTI) | ATTI 1 | 0.836 | 0.786 | 0.648 | 0.459 |
ATTI 2 | 0.772 | ||||
Purchase Intention (PI) | PI 1 | 0.898 | 0.896 | 0.812 | 0.769 |
PI 2 | 0.904 |
Construct | ATTR | INF | INT | AUG | IC | ENJ | ATTI | PI | FL |
---|---|---|---|---|---|---|---|---|---|
ATTR | 0.853 | ||||||||
INF | 0.251 | 0.754 | |||||||
INT | 0.408 | 0.197 | 0.782 | ||||||
AUG | 0.465 | 0.285 | 0.281 | 0.794 | |||||
IC | 0.378 | 0.332 | 0.429 | 0.427 | 0.793 | ||||
ENJ | 0.543 | 0.375 | 0.475 | 0.504 | 0.420 | 0.730 | |||
ATTI | 0.499 | 0.383 | 0.390 | 0.439 | 0.437 | 0.512 | 0.805 | ||
PI | 0.425 | 0.298 | 0.358 | 0.378 | 0.512 | 0.472 | 0.349 | 0.901 | |
FL | 0.377 | 0.214 | 0.314 | 0.374 | 0.325 | 0.503 | 0.482 | 0.311 | 0.853 |
Construct | ATTR | INF | INT | AUG | IC | ENJ | ATTI | PI | FL |
---|---|---|---|---|---|---|---|---|---|
ATTR | |||||||||
INF | 0.390 | ||||||||
INT | 0.619 | 0.314 | |||||||
AUG | 0.701 | 0.420 | 0.404 | ||||||
IC | 0.565 | 0.501 | 0.615 | 0.600 | |||||
ENJ | 0.906 | 0.621 | 0.765 | 0.797 | 0.655 | ||||
ATTI | 0.914 | 0.710 | 0.696 | 0.778 | 0.761 | 1.008 | |||
PI | 0.612 | 0.427 | 0.495 | 0.513 | 0.694 | 0.713 | 0.578 | ||
FL | 0.597 | 0.330 | 0.477 | 0.542 | 0.485 | 0.845 | 0.885 | 0.443 |
Path | Coefficient | p-Value | Hypothesis | Results |
---|---|---|---|---|
ATTR→IC | 0.071 | 0.239 | H1a | Not Supported |
ATTR→ENJ | 0.248 | 0.000 | H1b | Supported |
INF→IC | 0.179 | 0.001 | H2a | Supported |
INF→ENJ | 0.183 | 0.000 | H2b | Supported |
INT→IC | 0.273 | 0.000 | H3a | Supported |
INT→ENJ | 0.181 | 0.000 | H3b | Supported |
AUG→IC | 0.219 | 0.000 | H4a | Supported |
AUG→ENJ | 0.170 | 0.001 | H4b | Supported |
IC→ATTI | 0.270 | 0.000 | H5 | Supported |
ENJ→ATTI | 0.399 | 0.000 | H6 | Supported |
ATTI→PI | 0.349 | 0.000 | H7 | Supported |
Bootstrap 10,000 Times | Percentile 95% | ||||
---|---|---|---|---|---|
β | SE | T Statistics | Lower | Upper | |
ATTR→IC→ATTI | 0.019 | 0.018 | 1.078 | −0.008 | 0.050 |
INF→IC→ATTI | 0.048 | 0.017 | 2.803 ** | 0.023 | 0.080 |
INT→IC→ATTI | 0.074 | 0.020 | 3.619 *** | 0.044 | 0.110 |
AUG→IC→ATTI | 0.059 | 0.020 | 3.030 ** | 0.030 | 0.094 |
ATTR→ENJ→ATTI | 0.099 | 0.027 | 3.673 *** | 0.057 | 0.146 |
INF→ENJ→ATTI | 0.073 | 0.020 | 3.614 *** | 0.044 | 0.111 |
INT→ENJ→ATTI | 0.072 | 0.021 | 3.415 *** | 0.040 | 0.110 |
AUG→ENJ→ATTI | 0.068 | 0.023 | 2.906 ** | 0.030 | 0.106 |
ATTR→IC→ATTI→PI | 0.007 | 0.007 | 1.003 | −0.003 | 0.019 |
INF→IC→ATTI→PI | 0.017 | 0.007 | 2.335 * | 0.007 | 0.031 |
INT→IC→ATTI→PI | 0.026 | 0.009 | 2.794 ** | 0.013 | 0.043 |
AUG→IC→ATTI→PI | 0.021 | 0.008 | 2.478 * | 0.009 | 0.036 |
ATTR→ENJ→ATTI→PI | 0.034 | 0.012 | 2.868 ** | 0.017 | 0.056 |
INF→ENJ→ATTI→PI | 0.025 | 0.009 | 2.826 ** | 0.013 | 0.043 |
INT→ENJ→ATTI→PI | 0.025 | 0.009 | 2.755 ** | 0.012 | 0.042 |
AUG→ENJ→ATTI→PI | 0.024 | 0.010 | 2.382 * | 0.009 | 0.041 |
Interaction Term | Path Coefficient (β) | Hypothesis | Results |
---|---|---|---|
FL×ATTR→IC | 0.017 | H8a | Not Supported |
FL×INF→IC | −0.059 | H8b | Not Supported |
FL×ATTR→ENJ | 0.127 * | H8c | Supported |
FL×INF→ENJ | −0.061 | H8d | Not Supported |
FL×INT→IC | 0.048 | H8e | Not Supported |
FL×AUG→IC | −0.071 | H8f | Not Supported |
FL×INT→ENJ | −0.037 | H8g | Not Supported |
FL×AUG→ENJ | −0.150 * | H8h | Supported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, P.; Zhang, J. Dual-Pathway Effects of Product and Technological Attributes on Consumer Engagement in Augmented Reality Advertising. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 196. https://doi.org/10.3390/jtaer20030196
He P, Zhang J. Dual-Pathway Effects of Product and Technological Attributes on Consumer Engagement in Augmented Reality Advertising. Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(3):196. https://doi.org/10.3390/jtaer20030196
Chicago/Turabian StyleHe, Peng, and Jing Zhang. 2025. "Dual-Pathway Effects of Product and Technological Attributes on Consumer Engagement in Augmented Reality Advertising" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 3: 196. https://doi.org/10.3390/jtaer20030196
APA StyleHe, P., & Zhang, J. (2025). Dual-Pathway Effects of Product and Technological Attributes on Consumer Engagement in Augmented Reality Advertising. Journal of Theoretical and Applied Electronic Commerce Research, 20(3), 196. https://doi.org/10.3390/jtaer20030196