The Power of Interaction: Fan Growth in Livestreaming E-Commerce
Abstract
1. Introduction
2. Literature Review
2.1. Performance Research in LSE
2.2. Interactivity in LSE
2.3. Interactive Ritual Chain Theory
2.4. Dual Systems Theory of Decision-Making
3. Research Hypothesis
3.1. Interactivity and Fan Growth
3.2. The Mediating Role of User Retention
3.3. The Moderating Role of Anchors’ Facial Attractiveness
4. Research Design
4.1. Data Collection Platform
4.2. Data Collection Process and Processing
4.3. Variable Measurement
4.4. Model Setting
5. Empirical Analysis
5.1. Descriptive Statistics and Correlation Analysis
5.2. Regression Analysis
5.2.1. Baseline Regression Results
5.2.2. Regression Results of Mediating Effect and Moderating Effect
5.3. Robustness Test
5.4. Endogeneity Test
5.4.1. Propensity Score Matching (PSM)
5.4.2. Sensitivity Analysis
6. Discussion
6.1. Key Findings
6.2. Theoretical Contributions
6.3. Practical Implications
6.4. Limitations and Prospects
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Description |
LSE | Livestreaming e-commerce. |
IRCT | Interactive Ritual Chain Theory. |
DST | Dual Systems Theory. |
Douyin | One of China’s largest livestreaming e-commerce and social platforms. |
Face++ | Face++ is an open AI platform that provides developers with AI capabilities such as face recognition, portrait processing, human body recognition, text recognition, and image recognition. |
OpenCV | Open Source Computer Vision Library: an open source computer vision and machine learning software library; it provides a wealth of image processing and computer vision algorithms that can be applied to a variety of fields, such as machine vision, autonomous driving, medical image processing, and so on. |
References
- Feng, N.; Liu, X.; Wu, Y.; Jia, C.; Dong, C. Exploring Message Sidedness on Purchase Intention in Live Streaming E-Commerce: The Moderation of Live Streamer Type. Ind. Manag. Data Syst. 2025. [Google Scholar] [CrossRef]
- Zhang, W.; Xie, R.; Quan, P.; Ma, Z. Product Return Prediction in Live Streaming E-Commerce with Cross-Modal Contrastive Transformer. Decis. Support Syst. 2025, 194, 114470. [Google Scholar] [CrossRef]
- Hao, S. What Inhibits Live-Streaming Commerce from Winning Consumers? An Investigation from the Stressor-Strain-Outcome Perspective. Electron. Mark. 2025, 35, 38. [Google Scholar] [CrossRef]
- Zhao, J.; Zhou, J.; Wu, P.; Liang, K. Boosting E-Commerce Sales with Live Streaming: The Power of Barrages. Electron. Commer. Res. 2024, 1–38. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.; Goh, K.-Y.; Peng, X. Can Social Technologies Drive Purchases in E-Commerce Live Streaming? An Empirical Study of Broadcasters’ Cognitive and Affective Social Call-to-Actions. Prod. Oper. Manag. 2024, 10591478241276131. [Google Scholar] [CrossRef]
- Wang, D.; Luo, X.; Hua, Y.; Benitez, J. Big Arena, Small Potatoes: A Mixed-Methods Investigation of Atmospheric Cues in Live-Streaming e-Commerce. Decis. Support Syst. 2022, 158, 113801. [Google Scholar] [CrossRef]
- Wongkitrungrueng, A.; Assarut, N. The Role of Live Streaming in Building Consumer Trust and Engagement with Social Commerce Sellers. J. Bus. Res. 2020, 117, 543–556. [Google Scholar] [CrossRef]
- Yang, H.; Xu, X.; Wang, B. The Power of Body Language: Understanding Anchor’s Body Language and the Success of Live-Streaming e-Commerce. Nankai Bus. Rev. Int. 2025, 16, 332–358. [Google Scholar] [CrossRef]
- Li, W.; Cujilema, S.; Hu, L.; Xie, G. How Social Scene Characteristics Affect Customers’ Purchase Intention: The Role of Trust and Privacy Concerns in Live Streaming Commerce. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 85. [Google Scholar] [CrossRef]
- Xu, X.; Zeng, Q.; Na, R.; Fan, W. Unveiling the Influence of Streamer Characteristics on Sales Performance in Live Streaming Commerce. Electron. Commer. Res. Appl. 2025, 72, 101510. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S. Investigating Impulse Purchases in Live Streaming E-Commerce: A Perspective of Match-Ups. Technol. Forecast. Soc. Change 2024, 205, 123513. [Google Scholar] [CrossRef]
- Peng, L.; Zhang, N.; Huang, L. How the Source Dynamism of Streamers Affects Purchase Intention in Live Streaming E-Commerce: Considering the Moderating Effect of Chinese Consumers’ Gender. J. Retail. Consum. Serv. 2024, 81, 103949. [Google Scholar] [CrossRef]
- Cuong, D.T. Using Theory of Interpersonal Behavior to Consumers’ Online Impulse Buying Behavior in Social Commerce Live-Streaming: Perceived Price’s Moderating Role. J. Mark. Anal. 2024, 1–14. [Google Scholar] [CrossRef]
- Chen, Y.; Li, M.; Chen, A.; Lu, Y. Trust Development in Live Streaming Commerce: Interaction-Based Building Mechanisms and Trust Transfer Perspective. Ind. Manag. Data Syst. 2024, 124, 3218–3239. [Google Scholar] [CrossRef]
- Fu, J.-R.; Hsu, C.-W. Live-Streaming Shopping: The Impacts of Para-Social Interaction and Local Presence on Impulse Buying through Shopping Value. Ind. Manag. Data Syst. 2023, 123, 1861–1886. [Google Scholar] [CrossRef]
- Lang, X.; Lin, S.; Ma, X.; Li, T. Can Comments and Dialogues Make Sense? The Effect of Two-Way Interactions on Sales and Followers in Live Streaming Commerce. Decis. Support Syst. 2025, 193, 114451. [Google Scholar] [CrossRef]
- Zhao, K.; Hu, Y.; Hong, Y.; Westland, J.C. Understanding Characteristics of Popular Streamers on Live Streaming Platforms: Evidence from Twitch.Tv. J. Assoc. Inf. Syst. 2021, 22, 1076–1098. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, K.; Wang, C. Way to Success: Understanding Top Streamer’s Popularity and Influence from the Perspective of Source Characteristics. J. Retail. Consum. Serv. 2022, 64, 102786. [Google Scholar] [CrossRef]
- Sun, Y.; Bao, Z. Live Streaming Commerce: A Compulsive Buying Perspective. Manag. Decis. 2023, 61, 3278–3294. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Cai, J. How Attachment Affects User Stickiness on Live Streaming Platforms: A Socio-Technical Approach Perspective. J. Retail. Consum. Serv. 2021, 60, 102478. [Google Scholar] [CrossRef]
- Wu, D.; Wang, X.; Ye, H.J. Transparentizing the “Black Box” of Live Streaming: Impacts of Live Interactivity on Viewers’ Experience and Purchase. IEEE Trans. Eng. Manag. 2024, 71, 3820–3831. [Google Scholar] [CrossRef]
- Guan, Z.; Hou, F.; Li, B.; Phang, C.W.; Chong, A.Y. What Influences the Purchase of Virtual Gifts in Live Streaming in China? A Cultural Context-sensitive Model. Inf. Syst. J. 2022, 32, 653–689. [Google Scholar] [CrossRef]
- Meng, L.; Zhao, Y.; Jiang, Y.; Bie, Y.; Li, J. Understanding Interaction Rituals: The Impact of Interaction Ritual Chains of the Live Broadcast on People’s Wellbeing. Front. Psychol. 2022, 13, 1041059. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.; Lu, J.; Guo, L.; Li, W. The Dynamic Effect of Interactivity on Customer Engagement Behavior through Tie Strength: Evidence from Live Streaming Commerce Platforms. Int. J. Inf. Manag. 2021, 56, 102251. [Google Scholar] [CrossRef]
- Nitzan, I.; Libai, B. Social Effects on Customer Retention. J. Mark. 2011, 75, 24–38. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, Y.; Liu, X.; Li, Z. Nudging Interactive Cocreation Behaviors in Live-Streaming Travel Commerce: The Visualization of Real-Time Danmaku. J. Hosp. Tour. Manag. 2022, 52, 184–197. [Google Scholar] [CrossRef]
- Bonner, J.M. Customer Interactivity and New Product Performance: Moderating Effects of Product Newness and Product Embeddedness. Ind. Mark. Manag. 2010, 39, 485–492. [Google Scholar] [CrossRef]
- Son, J.; Lee, J.; Oh, O.; Lee, H.K.; Woo, J. Using a Heuristic-Systematic Model to Assess the Twitter User Profile’s Impact on Disaster Tweet Credibility. Int. J. Inf. Manag. 2020, 54, 102176. [Google Scholar] [CrossRef]
- Xu, Q. Should I Trust Him? The Effects of Reviewer Profile Characteristics on eWOM Credibility. Comput. Hum. Behav. 2014, 33, 136–144. [Google Scholar] [CrossRef]
- Kanazawa, S.; Still, M.C. Is There Really a Beauty Premium or an Ugliness Penalty on Earnings? J. Bus. Psychol. 2018, 33, 249–262. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Wang, Y.; Zhao, L. How to Retain Customers: Understanding the Role of Trust in Live Streaming Commerce with a Socio-Technical Perspective. Comput. Hum. Behav. 2022, 127, 107052. [Google Scholar] [CrossRef]
- Lu, B.; Chen, Z. Live Streaming Commerce and Consumers’ Purchase Intention: An Uncertainty Reduction Perspective. Inf. Manag. 2021, 58, 103509. [Google Scholar] [CrossRef]
- Chen, H.; Dou, Y.; Xiao, Y. Understanding the Role of Live Streamers in Live-Streaming e-Commerce. Electron. Commer. Res. Appl. 2023, 59, 101266. [Google Scholar] [CrossRef]
- Yang, Q.; Huo, J.; Li, H.; Xi, Y.; Liu, Y. Can Social Interaction-Oriented Content Trigger Viewers’ Purchasing and Gift-Giving Behaviors? Evidence from Live-Streaming Commerce. Internet Res. 2023, 33, 46–71. [Google Scholar] [CrossRef]
- Xiao, L.; Lin, X.; Mi, C.; Akter, S. The Effect of Dynamic Information Cues on Sales Performance in Live Streaming E-Commerce: An IFT and ELM Perspective. Electron. Commer. Res. 2023, 1–30. [Google Scholar] [CrossRef]
- Xu, W.; Cao, Y.; Chen, R. A Multimodal Analytics Framework for Product Sales Prediction with the Reputation of Anchors in Live Streaming E-Commerce. Decis. Support Syst. 2024, 177, 114104. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Wang, N. Understanding the Determinants of Gifting and Social Sharing in Live Streaming: A Dual-Attachment Perspective. Ind. Manag. Data Syst. 2024, 124, 564–582. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, C.; Luo, X.; Xu, X. Understanding the Effect of Group Emotions on Consumer Instant Order Cancellation Behavior in Livestreaming E-Commerce: Empirical Evidence from TikTok. Decis. Support Syst. 2024, 179, 114147. [Google Scholar] [CrossRef]
- Tan, S. How to Interact with Consumers to Enhance Their Purchase Intention? Evidence from China’s Agricultural Products Live Streaming Commerce. Br. Food J. 2024, 126, 2500–2521. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Zhang, T.; Chu, J. Live-Streaming Community Interaction Effects on Travel Intention: The Mediation Role of Sense of Community and Swift-Guanxi. Inf. Technol. Tour. 2022, 24, 485–509. [Google Scholar] [CrossRef]
- Vonkeman, C.; Verhagen, T.; Van Dolen, W. Role of Local Presence in Online Impulse Buying. Inf. Manag. 2017, 54, 1038–1048. [Google Scholar] [CrossRef]
- Qian, T.Y.; Seifried, C. Virtual Interactions and Sports Viewing on Social Live Streaming Platforms: The Role of Co-Creation Experiences, Platform Involvement, and Follow Status. J. Bus. Res. 2023, 162, 113884. [Google Scholar] [CrossRef]
- Hawkins, A.; Graham, C.R.; Sudweeks, R.R.; Barbour, M.K. Academic Performance, Course Completion Rates, and Student Perception of the Quality and Frequency of Interaction in a Virtual High School. Distance Educ. 2013, 34, 64–83. [Google Scholar] [CrossRef]
- Münch, R. Interaction Ritual Chains; Collins, R., Ed.; Princeton University Press: Princeton, NJ, USA, 2004; Volume 110, pp. 1531–1533. [Google Scholar] [CrossRef]
- Xiang, K.; Zhang, H.; Qiao, G. How to Create Interactive Rituals: Key Factors and Strategic Configurations for Host-Guest Interaction in Boutique Hotels. J. Hosp. Tour. Manag. 2022, 52, 428–438. [Google Scholar] [CrossRef]
- Wong, I.A.; Lin, X.; Lin, Z.; Lin, Y. Gaining Resilience through Transformative Services in Cause-Related Events: An Interaction Ritual Chain Perspective. Int. J. Contemp. Hosp. Manag. 2023, 35, 3235–3262. [Google Scholar] [CrossRef]
- Ferguson, T.W. Whose Bodies? Bringing Gender Into Interaction Ritual Chain Theory. Sociol. Relig. 2020, 81, 247–271. [Google Scholar] [CrossRef]
- Maloney, P. Online Networks and Emotional Energy: How pro-Anorexic Websites Use Interaction Ritual Chains to (Re)Form Identity. Inf. Commun. Soc. 2013, 16, 105–124. [Google Scholar] [CrossRef]
- Hofmann, W.; Friese, M.; Strack, F. Impulse and Self-Control From a Dual-Systems Perspective. Perspect. Psychol. Sci. 2009, 4, 162–176. [Google Scholar] [CrossRef]
- Evans, J.S.B.T. Dual-Processing Accounts of Reasoning, Judgment, and Social Cognition. Annu. Rev. Psychol. 2008, 59, 255–278. [Google Scholar] [CrossRef]
- Chen, Q.; Gong, Y.; Lu, Y.; Chau, P.Y.K. How Mindfulness Decreases Cyberloafing at Work: A Dual-System Theory Perspective. Eur. J. Inf. Syst. 2023, 32, 841–857. [Google Scholar] [CrossRef]
- Turel, O.; Qahri-Saremi, H. Problematic Use of Social Networking Sites: Antecedents and Consequence from a Dual-System Theory Perspective. J. Manag. Inf. Syst. 2016, 33, 1087–1116. [Google Scholar] [CrossRef]
- Ma, S.; Ling, X.; Zhang, C.; Li, Y. Does Physical Attractiveness Facilitate Customer Citizenship Behaviors? Cross-Cultural Evidence from the Peer-to-Peer Economy. Int. J. Inf. Manag. 2023, 70, 102565. [Google Scholar] [CrossRef]
- Ahmed, S.; Ranta, M.; Vähämaa, E.; Vähämaa, S. Facial Attractiveness and CEO Compensation: Evidence from the Banking Industry. J. Econ. Bus. 2023, 123, 106095. [Google Scholar] [CrossRef]
- Hu, M.; Chaudhry, S.S. Enhancing Consumer Engagement in E-Commerce Live Streaming via Relational Bonds. Internet Res. 2020, 30, 1019–1041. [Google Scholar] [CrossRef]
- Zhou, G.; Liu, Y.; Hu, J.; Cao, X. The Effect of Tourist-to-Tourist Interaction on Tourists’ Behavior: The Mediating Effects of Positive Emotions and Memorable Tourism Experiences. J. Hosp. Tour. Manag. 2023, 55, 161–168. [Google Scholar] [CrossRef]
- Hawkins, M.A.; Saleem, F.Z. Influencer Advertising: Facilitating Poor-Fitting Influencer Posts. Manag. Decis. 2024, 62, 200–218. [Google Scholar] [CrossRef]
- Pelet, J.-É.; Ettis, S.; Cowart, K. Optimal Experience of Flow Enhanced by Telepresence: Evidence from Social Media Use. Inf. Manage. 2017, 54, 115–128. [Google Scholar] [CrossRef]
- Chung, B.D.; Park, J.H.; Koh, Y.J.; Lee, S. User Satisfaction and Retention of Mobile Telecommunications Services in Korea. Int. J. Hum. Comput. Interact. 2016, 32, 532–543. [Google Scholar] [CrossRef]
- Pang, H.; Ge, Y.; He, J.; Zhang, L. Eye-Tracking Study of the Celebrity Effect on Microblogging Browsing: An Example from Sina Microblog. Behav. Inf. Technol. 2021, 40, 1564–1578. [Google Scholar] [CrossRef]
- Peng, L.; Cui, G.; Chung, Y.; Zheng, W. The Faces of Success: Beauty and Ugliness Premiums in e-Commerce Platforms. J. Mark. 2020, 84, 67–85. [Google Scholar] [CrossRef]
- Wan, L.C.; Wyer, R.S. Consumer Reactions to Attractive Service Providers: Approach or Avoid? J. Consum. Res. 2015, 42, 578–595. [Google Scholar] [CrossRef]
- Liu, L.; Fang, J.; Yang, L.; Han, L.; Hossin, M.A.; Wen, C. The Power of Talk: Exploring the Effects of Streamers’ Linguistic Styles on Sales Performance in B2B Livestreaming Commerce. Inf. Process. Manag. 2023, 60, 103259. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Z.; Chen, P.-Y. Early Bird Versus Late Owl: An Empirical Investigation of Individual Shopping Time Habits and Its Effects. MIS Q. 2021, 45, 117–162. [Google Scholar] [CrossRef]
- Gao, W.; Jiang, N.; Gu, F. Understanding the Role of Streamers in Livestreaming Commerce: A Vocal–Visual Perspective. J. Manag. Anal. 2023, 10, 247–269. [Google Scholar] [CrossRef]
- Cinelli, C.; Hazlett, C. Making Sense of Sensitivity: Extending Omitted Variable Bias. J. R. Stat. Soc. Ser. B Stat. Methodol. 2020, 82, 39–67. [Google Scholar] [CrossRef]
- Chia-An Tsai, J.; Kang, T.-C. Reciprocal Intention in Knowledge Seeking: Examining Social Exchange Theory in an Online Professional Community. Int. J. Inf. Manag. 2019, 48, 161–174. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, X. Interactivity and Live-Streaming Commerce Purchase Intention: Social Presence as a Mediator. Soc. Behav. Personal. Int. J. 2023, 51, 1–7. [Google Scholar] [CrossRef]
- Lin, S.-C.; Lee, Y.-Y. Explaining the Gift-Giving Intentions of Live-Streaming Audiences through Social Presence: The Perspective of Interactive Marketing. J. Res. Interact. Mark. 2024, 18, 945–969. [Google Scholar] [CrossRef]
- Luo, X.; Lim, W.M.; Cheah, J.-H.; Lim, X.-J.; Dwivedi, Y.K. Live Streaming Commerce: A Review and Research Agenda. J. Comput. Inf. Syst. 2025, 65, 376–399. [Google Scholar] [CrossRef]
- Lyu, W.; Qi, Y.; Liu, J. Proliferation in Live Streaming Commerce, and Key Opinion Leader Selection. Electron. Commer. Res. 2024, 24, 1153–1186. [Google Scholar] [CrossRef]
- Xi, D.; Xu, W.; Tang, L.; Han, B. The Impact of Streamer Emotions on Viewer Gifting Behavior: Evidence from Entertainment Live Streaming. Internet Res. 2024, 34, 748–783. [Google Scholar] [CrossRef]
- Du, P.; Huang, Z. Happiness Backfires: Emotion and Sales in Live Streaming. Electron. Commer. Res. 2023, 1–32. [Google Scholar] [CrossRef]
- Ming, X.; Bai, X.; Fu, J.; Yang, J. Decreasing Workplace Unethical Behavior Through Mindfulness: A Study Based on the Dual-System Theory of Ethical Decision-Making. J. Bus. Ethics 2025, 196, 189–207. [Google Scholar] [CrossRef]
- Yang, L.; Yuan, X.; Yang, X. Study of the Influencing Mechanism of User Interaction Behavior of Short Video E-Commerce Live-Streaming from the Perspective of SOR Theory and Interactive Ritual Chains. Curr. Psychol. 2024, 43, 28403–28415. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, X.; Chen, R.; Yang, Z. How Do You Say It Matters? A Multimodal Analytics Framework for Product Return Prediction in Live Streaming e-Commerce. Decis. Support Syst. 2023, 172, 113984. [Google Scholar] [CrossRef]
Variable | Description | References |
---|---|---|
Reputation | The anchor’s electronic word-of-mouth score (0–5) | [63,64,65] |
Gender | The gender of the anchor (1 for female and 0 for male) | |
Age | The age of the anchor | |
Speed | The number of Chinese words spoken by the anchor every minute | |
Commodity | The number of products sold in the LSE room | |
Price | The average price of products sold in the LSE room | |
Duration | The LSE section duration (minutes) | |
Type | With rooms hosted by independent anchors marked as 1 and those hosted by brand-affiliated anchors marked as 0 | |
Recommendation | Percentage of viewers entering the LSE room through the recommendations of Douyin video (0–1) | |
Likes | The number of likes in the LSE room |
Variable | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Fan growth | 1472 | 6.82 | 1.964 | 0 | 12.145 |
Interaction quality | 1472 | 0.666 | 0.158 | 0 | 1 |
Interaction frequency | 1472 | 3.508 | 1.863 | 0.082 | 10.375 |
Duration | 1472 | 5.399 | 0.73 | 3.086 | 8.371 |
Reputation | 1472 | 4.773 | 0.233 | 3.02 | 5 |
Commodity | 1472 | 3.69 | 0.9 | 0.693 | 6.648 |
Price | 1472 | 4.09 | 1.063 | 0.262 | 8.993 |
Likes | 1472 | 10.575 | 2.199 | 2.996 | 18.858 |
Recommendation | 1472 | 0.083 | 0.081 | 0 | 1 |
Type | 1472 | 0.454 | 0.498 | 0 | 1 |
Gender | 1472 | 0.81 | 0.393 | 0 | 1 |
Age | 1472 | 26.168 | 7.135 | 3 | 64 |
Speed | 1472 | 5.634 | 0.4 | 0.742 | 6.679 |
Facial attractiveness | 1472 | 79.838 | 7.935 | 42.838 | 97.399 |
Retention | 1472 | 4.294 | 0.754 | 2.197 | 7.051 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | (14) | (15) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(1) Fan growth | 1.000 | ||||||||||||||
(2) Interaction quality | 0.308 | 1.000 | |||||||||||||
(3) Interaction frequency | 0.656 | 0.142 | 1.000 | ||||||||||||
(4) Duration | 0.326 | 0.034 | −0.107 | 1.000 | |||||||||||
(5) Reputation | 0.146 | 0.000 | 0.154 | 0.102 | 1.000 | ||||||||||
(6) Commodity | 0.208 | −0.034 | 0.192 | 0.143 | 0.166 | 1.000 | |||||||||
(7) Price | 0.037 | 0.027 | 0.050 | 0.153 | 0.058 | −0.007 | 1.000 | ||||||||
(8) Likes | 0.704 | 0.096 | 0.724 | 0.206 | 0.200 | 0.233 | 0.051 | 1.000 | |||||||
(9) Recommendation | −0.115 | −0.041 | −0.081 | −0.069 | 0.048 | −0.049 | 0.016 | −0.108 | 1.000 | ||||||
(10) Type | 0.050 | −0.138 | 0.197 | −0.197 | 0.098 | 0.078 | −0.017 | 0.197 | 0.120 | 1.000 | |||||
(11) Gender | −0.092 | 0.013 | −0.127 | 0.033 | −0.015 | −0.046 | −0.019 | −0.185 | 0.038 | −0.076 | 1.000 | ||||
(12) Age | 0.046 | −0.090 | 0.037 | −0.049 | 0.010 | 0.059 | −0.033 | 0.124 | −0.008 | 0.074 | −0.072 | 1.000 | |||
(13) Speed | 0.130 | 0.071 | 0.021 | 0.101 | −0.017 | 0.004 | 0.017 | −0.001 | −0.024 | −0.067 | 0.031 | −0.049 | 1.000 | ||
(14) Facial attractiveness | −0.163 | −0.555 | −0.088 | 0.016 | 0.026 | 0.074 | 0.070 | −0.071 | 0.017 | 0.109 | 0.059 | −0.030 | −0.040 | 1.000 | |
(15) Retention | 0.304 | 0.968 | 0.143 | 0.035 | −0.009 | −0.055 | 0.017 | 0.101 | −0.037 | −0.149 | 0.013 | −0.094 | 0.071 | −0.586 | 1.000 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Model 1 (Fan) | Model 2 (Fan) | Model 3 (Retention) | Model 4 (Retention) | |
Interaction frequency | 0.475 *** | 0.164 *** | ||
(15.4895) | (3.9667) | |||
Interaction quality | 0.235 *** | 0.963 *** | ||
(11.8856) | (79.7437) | |||
Duration | 0.304 *** | 0.172 *** | 0.012 | −0.001 |
(17.1543) | (10.2905) | (0.3943) | (−0.0819) | |
Reputation | −0.012 | −0.002 | −0.014 | −0.008 |
(−0.7109) | (−0.1145) | (−0.4822) | (−1.1502) | |
Commodity | 0.005 | 0.042 ** | −0.078 *** | −0.024 *** |
(0.2905) | (2.3109) | (−2.8600) | (−3.8869) | |
Price | −0.050 *** | −0.029 * | −0.001 | −0.010 |
(−3.3124) | (−1.7431) | (−0.0430) | (−1.5986) | |
Likes | 0.307 *** | 0.640 *** | 0.049 | 0.022 *** |
(9.7489) | (38.0040) | (1.0733) | (3.0192) | |
Recommendation | −0.015 | −0.020 | −0.000 | 0.006 |
(−0.7334) | (−1.0423) | (−0.0175) | (0.7909) | |
Type | −0.036 ** | −0.003 | −0.170 *** | −0.018 ** |
(−2.1159) | (−0.1661) | (−6.3281) | (−2.5725) | |
Gender | 0.010 | 0.017 | 0.018 | 0.001 |
(0.6848) | (1.0718) | (0.6876) | (0.1076) | |
Age | 0.012 | −0.001 | −0.084 *** | −0.007 |
(0.6981) | (−0.0490) | (−3.3940) | (−0.9845) | |
Speed | 0.087 *** | 0.095 *** | 0.050 ** | 0.002 |
(3.3307) | (3.5690) | (2.1166) | (0.2785) | |
N | 1472 | 1472 | 1472 | 1472 |
Adj. R2 | 0.6325 | 0.5960 | 0.0630 | 0.9381 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Model 5 | Model 6 | Model 7 | Model 8 | |
Interaction frequency | 0.443 *** | 2.737 *** | ||
(14.7774) | (22.1521) | |||
Interaction quality | 0.224 ** | 1.854 *** | ||
(2.0118) | (15.2527) | |||
Retention | 0.198 *** | 0.087 * | ||
(11.1876) | (1.7951) | |||
Facial attractiveness | 0.208 *** | 0.366 *** | ||
(8.3003) | (6.4285) | |||
Interaction frequency * Facial attractiveness | −2.668 *** | |||
(−22.1925) | ||||
Interaction quality * Facial attractiveness | −0.778 *** | |||
(−7.5363) | ||||
Duration | 0.302 *** | 0.172 *** | −0.003 | 0.001 |
(17.7651) | (10.2874) | (−0.1186) | (0.2178) | |
Reputation | −0.010 | −0.002 | −0.006 | −0.006 |
(−0.5563) | (−0.1152) | (−0.2580) | (−0.8981) | |
Commodity | 0.020 | 0.042 ** | −0.054 ** | −0.020 *** |
(1.2569) | (2.3129) | (−2.3555) | (−3.4140) | |
Price | −0.049 *** | −0.029 * | 0.013 | −0.004 |
(−3.3851) | (−1.7473) | (0.5583) | (−0.6947) | |
Likes | 0.297 *** | 0.640 *** | 0.050 | 0.017 ** |
(9.7369) | (37.8592) | (1.3169) | (2.4243) | |
Recommendation | −0.015 | −0.020 | −0.020 | 0.004 |
(−0.7993) | (−1.0401) | (−0.8076) | (0.5450) | |
Type | −0.003 | −0.003 | −0.108 *** | −0.013 * |
(−0.1740) | (−0.1672) | (−4.6977) | (−1.9165) | |
Gender | 0.007 | 0.017 | 0.017 | 0.004 |
(0.4608) | (1.0718) | (0.7949) | (0.6972) | |
Age | 0.028 * | −0.001 | −0.047 ** | −0.014 ** |
(1.7508) | (−0.0497) | (−2.2622) | (−2.0129) | |
Speed | 0.077 *** | 0.095 *** | 0.031 * | 0.003 |
(3.1795) | (3.5680) | (1.6527) | (0.4896) | |
N | 1472 | 1472 | 1472 | 1472 |
Adj. R2 | 0.6689 | 0.5957 | 0.3281 | 0.9441 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Model 9 | Model 10 | Model 11 | Model 12 | |
Interaction frequency | 0.475 *** | 0.112 ** | ||
(18.8965) | (2.2884) | |||
Interaction quality | 0.235 *** | 0.521 *** | ||
(13.8617) | (26.3221) | |||
Duration | 0.304 *** | 0.172 *** | 0.007 | −0.007 |
(16.3457) | (9.6139) | (0.2363) | (−0.2799) | |
Reputation | −0.012 | −0.002 | −0.073 ** | −0.069 ** |
(−0.7492) | (−0.1368) | (−2.1952) | (−2.4280) | |
Commodity | 0.005 | 0.042 ** | −0.135 *** | −0.104 ** |
(0.3054) | (2.4283) | (−2.6767) | (−2.0923) | |
Price | −0.050 *** | −0.029 * | 0.005 | 0.001 |
(−3.1000) | (−1.7388) | (0.1837) | (0.0531) | |
Likes | 0.307 *** | 0.640 *** | −0.028 | −0.024 |
(11.6585) | (34.3125) | (−0.5611) | (−1.0565) | |
Recommendation | −0.015 | −0.020 | −0.000 | 0.003 |
(−0.9204) | (−1.1785) | (−0.0016) | (0.1650) | |
Type | −0.036 ** | −0.003 | −0.155 *** | −0.073 *** |
(−2.1646) | (−0.1647) | (−6.7551) | (−3.8477) | |
Gender | 0.010 | 0.017 | 0.043 ** | 0.034 ** |
(0.6387) | (0.9825) | (2.0774) | (2.2521) | |
Age | 0.012 | −0.001 | −0.058 *** | −0.017 |
(0.7226) | (−0.0523) | (−2.6829) | (−0.9799) | |
Speed | 0.087 *** | 0.095 *** | 0.036 | 0.011 |
(5.4779) | (5.7190) | (1.6298) | (0.5606) | |
N | 1472 | 1472 | 1472 | 1472 |
Adj. R2 | 0.0584 | 0.3131 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
---|---|---|---|---|---|---|---|---|
Model 13 | Model 14 | Model 15 | Model 16 | Model 17 | Model 18 | Model 19 | Model 20 | |
Interaction frequency | 0.478 *** | 0.163 *** | 0.445 *** | 2.772 *** | ||||
(15.3898) | (3.9509) | (14.6690) | (23.0799) | |||||
Interaction quality | 0.233 *** | 0.966 *** | 0.204 *** | 1.729 *** | ||||
(12.5223) | (93.7488) | (2.7964) | (16.1169) | |||||
Retention | 0.198 *** | 0.030 | ||||||
(11.6543) | (0.4120) | |||||||
Facial attractiveness | 0.206 *** | 0.313 *** | ||||||
(8.2904) | (6.1992) | |||||||
Interaction frequency * Facial attractiveness | −2.701 *** | |||||||
(−23.0974) | ||||||||
Interaction quality * Facial attractiveness | −0.663 *** | |||||||
(−7.4236) | ||||||||
Control | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 1472 | 1472 | 1472 | 1472 | 1472 | 1472 | 1472 | 1472 |
Adj. R2 | 0.6305 | 0.5915 | 0.0632 | 0.9438 | 0.6670 | 0.5913 | 0.3333 | 0.9481 |
(1) | (2) | |
---|---|---|
Model 21 | Model 22 | |
Interaction frequency | 0.378 *** | |
(9.0666) | ||
Interaction quality | 0.232 *** | |
(8.4640) | ||
Duration | 0.361 *** | 0.188 *** |
(8.5946) | (7.8809) | |
Reputation | −0.004 | −0.012 |
(−0.1250) | (−0.3947) | |
Commodity | 0.025 | 0.069 *** |
(0.7656) | (2.8228) | |
Price | −0.036 | −0.027 |
(−1.1739) | (−1.1372) | |
Likes | 0.225 *** | 0.622 *** |
(4.2699) | (26.5425) | |
Recommendation | −0.065 | −0.040 |
(−1.5820) | (−1.4341) | |
Type | −0.030 | 0.037 |
(−0.7975) | (1.5435) | |
Gender | 0.005 | 0.011 |
(0.1589) | (0.5437) | |
Age | −0.023 | 0.004 |
(−0.5902) | (0.1639) | |
Speed | 0.091 * | 0.140 *** |
(1.8076) | (3.3272) | |
N | 455 | 757 |
Adj. R2 | 0.4436 | 0.6064 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Wang, B. The Power of Interaction: Fan Growth in Livestreaming E-Commerce. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 203. https://doi.org/10.3390/jtaer20030203
Yang H, Wang B. The Power of Interaction: Fan Growth in Livestreaming E-Commerce. Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(3):203. https://doi.org/10.3390/jtaer20030203
Chicago/Turabian StyleYang, Hangsheng, and Bin Wang. 2025. "The Power of Interaction: Fan Growth in Livestreaming E-Commerce" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 3: 203. https://doi.org/10.3390/jtaer20030203
APA StyleYang, H., & Wang, B. (2025). The Power of Interaction: Fan Growth in Livestreaming E-Commerce. Journal of Theoretical and Applied Electronic Commerce Research, 20(3), 203. https://doi.org/10.3390/jtaer20030203