Which Factors Affect Online Video Views and Subscriptions? Reference-Dependent Consumer Preferences in the Social Media Market
Abstract
1. Introduction
2. Literature Review
2.1. Random Utility Theory and Reference-Dependent Preference
2.2. Related Works on Consumer Behavior of Digital Contents
3. Methodology
4. Empirical Analysis
4.1. Survey Design and Data
4.2. Estimation Results
4.2.1. Estimation Results for Viewing Behavior
4.2.2. Estimation Results for Subscription Behavior
5. Conclusions
5.1. Contributions and Implications
5.2. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaplan, A.M.; Haenlein, M. Users of the world, unite! The challenges and opportunities of Social Media. Bus. Horiz. 2010, 53, 59–68. [Google Scholar] [CrossRef]
- Global Media Insight. YouTube Users Statistics 2025. 2025. Available online: https://www.globalmediainsight.com/blog/youtube-users-statistics/ (accessed on 17 July 2025).
- Tankovska, H. YouTube: Hours of Video Uploaded Every Minute 2019. Statista. 2021. Available online: https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/ (accessed on 17 July 2025).
- Jiang, L.; Chen, X.; Miao, S.; Shi, C. Play it safe or leave the comfort zone? Optimal content strategies for social media influencers on streaming video platforms. Decis. Support Syst. 2024, 179, 114148. [Google Scholar] [CrossRef]
- Hussain, D.; Lasage, H. Online video advertisement avoidance: Can interactivity help? J. Appl. Bus. Res. 2014, 30, 43–50. [Google Scholar] [CrossRef]
- Campbell, C.; Mattison Thompson, F.; Grimm, P.E.; Robson, K. Understanding why consumers don’t skip pre-roll video ads. J. Advert. 2017, 46, 411–423. [Google Scholar] [CrossRef]
- Zarouali, B.; Boerman, S.C.; de Vreese, C.H. Is this recommended by an algorithm? The development and validation of the algorithmic media content awareness scale (AMCA-scale). Telemat. Inform. 2021, 62, 101607. [Google Scholar] [CrossRef]
- Chatzopoulou, G.; Sheng, C.; Faloutsos, M. A first step towards understanding popularity in YouTube. In Proceedings of the 2010 INFOCOM IEEE Conference on Computer Communications Workshops, San Diego, CA, USA, 15–19 March 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Koh, B.; Cui, F. An exploration of the relation between the visual attributes of thumbnails and the view-through of videos: The case of branded video content. Decis. Support Syst. 2022, 160, 113820. [Google Scholar] [CrossRef]
- Train, K.E. Discrete Choice Methods with Simulation; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Kahneman, D.; Tversky, A. Prospect theory: An analysis of decision under risk. In Handbook of the Fundamentals of Financial Decision Making; Part I; World Scientific Publishing: Singapore, 2013; pp. 99–127. [Google Scholar] [CrossRef]
- Tversky, A.; Kahneman, D. Loss aversion in riskless choice: A reference-dependent model. Q. J. Econ. 1991, 106, 1039–1061. [Google Scholar] [CrossRef]
- Fagan, M.; Huang, C. Spring 2018 Global Attitudes Survey; Pew Research Center: Washington, DC, USA, 2019. [Google Scholar]
- Jhang, J.H.; Park, S.K. Simulation-based prediction for 5G mobile adoption. ICT Express 2020, 6, 109–112. [Google Scholar] [CrossRef]
- Korea Creative Content Agency. 2024 Content Usage Survey. Korea Creative Content Agency. 2024. Available online: https://www.kocca.kr/kocca/bbs/view/B0000147/2007519.do?menuNo=204153&categorys=0&subcate=0&instNo=0# (accessed on 17 July 2025). (In Korean).
- Simon, H.A. Designing organizations for an information-rich world. Int. Libr. Crit. Writ. Econ. 1996, 70, 187–202. [Google Scholar]
- Davenport, T.H.; Beck, J.C. The Attention Economy; Harvard Business School Press: Boston, MA, USA, 2001. [Google Scholar]
- McFadden, D. The measurement of urban travel demand. J. Public Econ. 1974, 3, 303–328. [Google Scholar] [CrossRef]
- Baum, K.; Abramova, O.; Meißner, S.; Krasnova, H. The effects of targeted political advertising on user privacy concerns and digital product acceptance: A preference-based approach. Electron Mark. 2023, 33, 46. [Google Scholar] [CrossRef]
- McKenzie, J.; Crosby, P.; Collins, A.; Chmura, T. No such thing as a free movie? Cross-country evidence on the potential impact of AVOD streaming services. J. Cult. Econ. 2024, 1–27. [Google Scholar] [CrossRef]
- Kőszegi, B.; Rabin, M. A model of reference-dependent preferences. Q. J. Econ. 2006, 121, 1133–1165. [Google Scholar]
- Salminen, J.; Wahid, R.; Yang, Y.; Jansen, B. Engagement Patterns in TikTok: An Analysis of Short Video Ads. In Proceedings of the 35th ACM Conference on Hypertext and Social Media, Poznan, Poland, 10–13 September 2024; pp. 323–329. [Google Scholar] [CrossRef]
- Shim, D.; Lee, C.; Oh, I. Analysis of OTT Users’ Watching behavior for identifying a profitable niche. J. Theor. Appl. Electron. Commer. Res. 2022, 17, 1564–1580. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, E.; Hwang, S.; Kim, J.; Kim, S. Willingness to pay for over-the-top services in China and Korea. Telecommun. Policy 2017, 41, 197–207. [Google Scholar] [CrossRef]
- Zhou, R.; Khemmarat, S.; Gao, L. The impact of YouTube recommendation system on video views. In Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, Melbourne, Australia, 1–30 November 2010; pp. 404–410. [Google Scholar] [CrossRef]
- Martinez-Sanchez, M.; Nicolas-Sans, R.; Diaz, J.B. Analysis of the social media strategy of audio-visual OTTs in Spain: The case study of Netflix, HBO, and Amazon Prime during the implementation of Disney+. Technol. Forecast. Soc. Change 2021, 173, 121178. [Google Scholar] [CrossRef]
- Park, B.E.; Lim, G.G. A study on the impact factors of contents diffusion in YouTube using integrated content network analysis. J. Intell. Inf. Syst. 2015, 21, 19–36. [Google Scholar] [CrossRef]
- Hoiles, W.; Aprem, A.; Krishnamurthy, V. Engagement and popularity dynamics of YouTube videos and sensitivity to meta-data. IEEE Trans. Knowl. Data Eng. 2017, 29, 1426–1437. [Google Scholar] [CrossRef]
- Sahu, G.; Gaur, L.; Singh, G. Analyzing the users’ de-familiarity with thumbnails on OTT platforms to influence content streaming. In Proceedings of the 2022 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 4–5 November 2022; pp. 551–556. [Google Scholar] [CrossRef]
- Eslami, S.P.; Ghasemaghaei, M.; Hassanein, K. Understanding consumer engagement in social media: The role of product lifecycle. Decis. Support Syst. 2022, 162, 113707. [Google Scholar] [CrossRef]
- Funk, M.; YouTube Thumbnails: The Best Practice Guide. Tubics. 2020. Available online: https://www.tubics.com/blog/what-is-a-youtube-thumbnail/ (accessed on 17 July 2025).
- Van Esler, M. In plain sight: Online TV Interfaces as branding. Telev. New Media 2021, 22, 727–742. [Google Scholar] [CrossRef]
- Wang, X.; Jia, J.; Tang, J.; Wu, B.; Cai, L.; Xie, L. Modeling emotion influence in image social networks. IEEE Trans. Affect. Comput. 2015, 6, 286–297. [Google Scholar] [CrossRef]
- Tucker, C.E. Social networks, personalized advertising, and privacy controls. J. Mark. Res. 2014, 51, 546–562. [Google Scholar] [CrossRef]
- Li, H.; Edwards, S.M.; Lee, J.H. Measuring the intrusiveness of advertisements: Scale development and validation. J. Advert. 2002, 31, 37–47. [Google Scholar] [CrossRef]
- Bellman, S.; Beal, V.; Wooley, B.; Varan, D. Viewing time as a cross-media metric: Comparing viewing time for video advertising on television and online. J. Bus. Res. 2020, 120, 103–113. [Google Scholar] [CrossRef]
- Li, H.; Lo, H.Y. Do you recognize its brand? The effectiveness of online in-stream video advertisements. J. Advert. 2015, 44, 208–218. [Google Scholar] [CrossRef]
- Belanche, D.; Flavián, C.; Pérez-Rueda, A. Understanding interactive online advertising: Congruence and product involvement in highly and lowly arousing, skippable video ads. J. Interact. Mark. 2017, 37, 75–88. [Google Scholar] [CrossRef]
- Jeon, Y.A.; Son, H.; Chung, A.D.; Drumwright, M.E. Temporal certainty and skippable in-stream commercials: Effects of ad length, timer, and skip-ad button on irritation and skipping behavior. J. Interact. Mark. 2019, 47, 144–158. [Google Scholar] [CrossRef]
- Li, Y.A.; Kim, H.J.; Do, B.; Choi, J. The effect of emotion in thumbnails and titles of video clips on pre-roll advertising effectiveness. J. Bus. Res. 2022, 151, 232–243. [Google Scholar] [CrossRef]
- Kim, H.L.; Kim, Y.G.; Yoon, S.H.; Ryu, S. Effect of media context on avoidance of skippable pre-roll ads in online video platform: A mental accounting of time perspective. J. Bus. Res. 2023, 164, 113966. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.; Kim, J. Exploring the fittest choice model for consumer preference analysis on over-the-top service. Technol. Soc. 2024, 76, 102458. [Google Scholar] [CrossRef]
- Jang, M.; Baek, H.; Kim, S. Movie characteristics as determinants of download-to-own performance in the Korean video-on-demand market. Telecommun. Policy 2021, 45, 102140. [Google Scholar] [CrossRef]
- Lee, M.; Lee, H.H. Do parasocial interactions and vicarious experiences in the beauty Youtube channels promote consumer purchase intention? Int. J. Consum. Stud. 2021, 46, 235–248. [Google Scholar] [CrossRef]
- Pradhan, B.; Kishore, K.; Gokhale, N. Social media influencers and consumer engagement: A review and future research agenda. Int. J. Consum. Stud. 2023, 47, 2106–2130. [Google Scholar] [CrossRef]
- Green, P.E.; Srinivasan, V. Conjoint analysis in marketing: New developments with implications for research and practice. J. Mark. 1990, 54, 3–19. [Google Scholar] [CrossRef]
- Ministry of Culture, Sports and Tourism. Study on Fostering Personal Media Content; Ministry of Culture, Sports and Tourism: Sejong City, Republic of Korea, 2018. (In Korean) [Google Scholar]
- Statista. YouTube—Statistics & Facts. Statista. 2019. Available online: https://www.statista.com/topics/2019/youtube (accessed on 17 July 2025).
- Jung, Y.C.; Kim, Y.H. 2020 Broadcast Media Usage Behavior Survey; Korea Communications Commission: Gwacheon-si, Republic of Korea, 2020. (In Korean) [Google Scholar]
- Fishman, E.; Proof That Humans Have a Two-Minute Attention Span. Wistia. 2016. Available online: https://wistia.com/learn/marketing/optimal-video-length (accessed on 31 May 2025).
- Dahan, E.; Srinivasan, V. The predictive power of internet-based product concept testing using visual depiction and animation. J. Prod. Innov. Manag. 2000, 17, 99–109. [Google Scholar] [CrossRef]
- Bloch, P.H. Seeking the ideal form: Product design and consumer response. J. Mark. 1995, 59, 16–29. [Google Scholar] [CrossRef]
- Cao, N.; Isa, N.M.; Perumal, S. Effects of Prior Negative Experience and Personality Traits on WeChat and TikTok Ad Avoidance among Chinese Gen Y and Gen Z. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 95–115. [Google Scholar] [CrossRef]
Category | Characteristic | Respondents (n) | Percentage (%) |
---|---|---|---|
Total | 525 | 100.0 | |
Gender | Male | 271 | 51.6 |
Female | 254 | 48.4 | |
Age | 20–29 | 103 | 19.6 |
30–39 | 117 | 22.3 | |
40–49 | 118 | 22.5 | |
50–59 | 114 | 21.7 | |
60–69 | 73 | 13.9 | |
Education Level | High school or less | 81 | 15.4 |
University/college | 376 | 71.6 | |
Over graduate school | 68 | 13.0 | |
Income (unit: 10,000 KRW) | ~100 | 23 | 4.4 |
100~149 | 11 | 2.1 | |
150~199 | 25 | 4.8 | |
200~249 | 35 | 6.7 | |
250~299 | 40 | 7.6 | |
300~399 | 86 | 16.4 | |
400~499 | 108 | 20.6 | |
500~699 | 111 | 21.1 | |
700~999 | 65 | 12.4 | |
1000~ | 21 | 4.0 |
Type | Description | ||
---|---|---|---|
Respondents (n) | Ratio (%) | ||
YouTube viewing experience | 466 | 88.76 | |
Weekly average YouTube watch time | 361.7 min | ||
YouTube viewing time | 0:00–3:00 | 19 | 4.08 |
3:00–6:00 | 2 | 0.43 | |
6:00–9:00 | 9 | 1.93 | |
9:00–12:00 | 33 | 7.08 | |
12:00–15:00 | 44 | 9.44 | |
15:00–18:00 | 42 | 9.01 | |
18:00–21:00 | 127 | 27.25 | |
21:00–24:00 | 190 | 40.77 | |
Viewing place (duplicate responses) | Home | 401 | 86.05 |
School or work | 91 | 19.53 | |
On the go | 115 | 24.68 | |
Other indoors | 63 | 13.25 | |
Other outdoors | 26 | 5.58 | |
Number of subscribed channels | 13.5 | ||
Advertisements per 10 min on average (self-reported by respondents) | 2.4 | ||
Subscribing to YouTube Premium Service | 81 | 17.38 |
Genre | Preference | Genre | Preference | ||
---|---|---|---|---|---|
1st | 2nd | 1st | 2nd | ||
Entertainment | 45 | 35 | Life/V-log | 20 | 24 |
Food | 44 | 47 | Education/Knowledge | 20 | 20 |
Politics/Current events | 41 | 30 | Web series | 19 | 17 |
Music | 39 | 50 | TV series | 13 | 20 |
Games | 39 | 17 | ASMR | 12 | 4 |
News | 34 | 26 | Technology | 9 | 15 |
Hobbies | 31 | 17 | Fashion/Beauty | 8 | 16 |
Economy | 27 | 31 | Kids | 8 | 10 |
Movies | 26 | 27 | Religion | 8 | 3 |
Sports | 23 | 36 | Live streaming | 7 | 8 |
Animals | 23 | 28 | Global | 5 | 3 |
Health | 20 | 33 | Cars | 4 | 8 |
Type | Attribute | Level | Description |
---|---|---|---|
Recommended video | Thumbnail | Only subtitle | Elements in thumbnails |
Only creator | |||
Both | |||
Views | 1000 | Default units set in the YouTube user interface | |
10,000 | |||
100,000 | |||
1,000,000 | |||
10,000,000 | |||
Length | 3 min | The biggest bounce rates occur at 3, 6, and 15 min [50] | |
6 min | |||
15 min | |||
30 min | |||
Number of advertisements | 0 | Number of advertisements present in the video | |
1 | |||
2 | |||
3 | |||
Genre | 1st preference | Use of preferred genres as stated by respondents, as shown in Table 3 | |
2nd preference | |||
Others | |||
YouTube channel | Number of satisfactory videos | 1 | Determined based on preliminary survey results |
5 | |||
10 | |||
20 | |||
Number of subscribers | 1000 | Default units set in the YouTube user interface | |
10,000 | |||
100,000 | |||
1,000,000 |
Type | Attribute | Coef. | Std. Err | RI | MWTP (Up) | MWTP (Down) | ||
---|---|---|---|---|---|---|---|---|
Viewing | Thumbnail | Subtitle | 0.516 | *** | 0.037 | 14.6% | 0.22 | 0.04 |
Creator | 0.177 | *** | 0.035 | 5.0% | 0.64 | 0.12 | ||
log (Views of video) | 0.089 | *** | 0.013 | 10.1% | 1.26 | 0.23 | ||
Length of video (unit: min) | −0.010 | *** | 0.003 | 7.5% | −11.39 | −2.09 | ||
Genre | Most preferred | 0.971 | *** | 0.038 | 27.5% | 0.12 | 0.02 | |
Second preferred | 0.603 | *** | 0.037 | 0.19 | 0.03 | |||
Advertisements | More than expected | −0.113 | *** | 0.026 | 18.3% | |||
Less than expected | 0.021 | * | 0.012 | |||||
log-likelihood | −6191.37 | |||||||
Number of observations | 8400 |
Type | Attribute | Coef. | Std. Err | RI | MWTP (Up) | MWTP (Down) | ||
---|---|---|---|---|---|---|---|---|
Subscription | Thumbnail | Subtitle | 0.302 | *** | 0.056 | 6.6% | 0.15 | 0.25 |
Creator | 0.248 | *** | 0.056 | 5.4% | 0.18 | 0.30 | ||
log (Views of video) | 0.048 | ** | 0.019 | 4.1% | 0.94 | 1.57 | ||
Length of video (unit: min) | −0.020 | *** | 0.003 | 11.9% | −2.20 | −3.69 | ||
Genre | Most preferred | 1.010 | *** | 0.056 | 22.0% | 0.04 | 0.07 | |
Second preferred | 0.395 | *** | 0.055 | 0.11 | 0.19 | |||
Advertisements | More than expected | −0.044 | 0.038 | 27.2% | ||||
Less than expected | 0.074 | *** | 0.012 | |||||
Number of satisfactory videos | 0.021 | *** | 0.003 | 8.7% | 2.12 | 3.54 | ||
log (Number of subscribers) | 0.085 | *** | 0.020 | 5.5% | 0.52 | 0.88 | ||
Intercept | −1.724 | *** | 0.160 | |||||
log-likelihood | −11,686.13 | |||||||
Number of observations | 8400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, M.; Maeng, K.; Shin, J. Which Factors Affect Online Video Views and Subscriptions? Reference-Dependent Consumer Preferences in the Social Media Market. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 197. https://doi.org/10.3390/jtaer20030197
Oh M, Maeng K, Shin J. Which Factors Affect Online Video Views and Subscriptions? Reference-Dependent Consumer Preferences in the Social Media Market. Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(3):197. https://doi.org/10.3390/jtaer20030197
Chicago/Turabian StyleOh, Myoungjin, Kyuho Maeng, and Jungwoo Shin. 2025. "Which Factors Affect Online Video Views and Subscriptions? Reference-Dependent Consumer Preferences in the Social Media Market" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 3: 197. https://doi.org/10.3390/jtaer20030197
APA StyleOh, M., Maeng, K., & Shin, J. (2025). Which Factors Affect Online Video Views and Subscriptions? Reference-Dependent Consumer Preferences in the Social Media Market. Journal of Theoretical and Applied Electronic Commerce Research, 20(3), 197. https://doi.org/10.3390/jtaer20030197