Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 901 KiB  
Review
What Are the Best Biocompatible Materials for Extracorporeal Membrane Oxygenation
by Junya Hagiwara, Jeffrey D. DellaVolpe and Yuichi Matsuzaki
J. Funct. Biomater. 2025, 16(6), 226; https://doi.org/10.3390/jfb16060226 - 19 Jun 2025
Viewed by 654
Abstract
Extracorporeal membrane oxygenation (ECMO) is a crucial life support therapy for patients with severe cardiac and respiratory failure. However, the complications associated with venoarterial ECMO (VA-ECMO), including thrombus formation, bleeding, and hemolysis, remain significant challenges that impact patient outcomes and healthcare costs. These [...] Read more.
Extracorporeal membrane oxygenation (ECMO) is a crucial life support therapy for patients with severe cardiac and respiratory failure. However, the complications associated with venoarterial ECMO (VA-ECMO), including thrombus formation, bleeding, and hemolysis, remain significant challenges that impact patient outcomes and healthcare costs. These complications primarily arise from blood–material interactions within the ECMO circuit, necessitating the development of biocompatible materials to optimize hemocompatibility. This review provides an updated overview of the latest advancements in VA-ECMO materials, focusing on cannula, oxygenators, and centrifugal pumps. Various surface modifications, such as heparin coatings, nitric oxide-releasing polymers, phosphorylcholine (PC)-based coatings, and emerging omniphobic surfaces, have been explored to mitigate thrombosis and bleeding risks. Additionally, novel oxygenator membrane technologies, including zwitterionic polymers and endothelial-mimicking coatings, offer promising strategies to enhance biocompatibility and reduce inflammatory responses. In centrifugal pumps, magnetic levitation systems and hybrid polymer-composite impellers have been introduced to minimize shear stress and thrombogenicity. Despite these advancements, no single material has fully addressed all complications, and further research is needed to refine surface engineering strategies. This review highlights the current progress in ECMO biomaterials and discusses future directions in developing more effective and durable solutions to improve patient safety and clinical outcomes. Full article
(This article belongs to the Special Issue Cardiovascular Tissue Engineering: Current Status and Advances)
Show Figures

Figure 1

24 pages, 7602 KiB  
Article
Developing Bioengineered 3D-Printed Composite Scaffolds with Antimicrobial Potential for Bone Tissue Regeneration
by Andreea Trifan, Eduard Liciu, Cristina Busuioc, Izabela-Cristina Stancu, Adela Banciu, Carmen Nicolae, Mihai Dragomir, Doru-Daniel Cristea, Rosina-Elena Sabău, David-Andrei Nițulescu and Alexandru Paraschiv
J. Funct. Biomater. 2025, 16(6), 227; https://doi.org/10.3390/jfb16060227 - 19 Jun 2025
Viewed by 612
Abstract
This research activity proposes to produce composite hydrogel–bioactive glass. The primary purpose of this research is to develop and optimize 3D-printed scaffolds using doped bioglass, aimed at enhancing bone regeneration in bone defects. The bioglass, a bioactive material known for its bone-bonding ability [...] Read more.
This research activity proposes to produce composite hydrogel–bioactive glass. The primary purpose of this research is to develop and optimize 3D-printed scaffolds using doped bioglass, aimed at enhancing bone regeneration in bone defects. The bioglass, a bioactive material known for its bone-bonding ability (SiO2–P2O5–CaO–Na2O), co-doped with europium and silver was synthesized and doped to improve its biological properties. This doped bioglass was then combined with a biocompatible hydrogel, chosen for its adequate cellular response and printability. The composite material was printed to form a scaffold, providing a structure that not only supports the damaged bone but also encourages osteogenesis. A variety of methods were employed to assess the rheological, compositional, and morphological characteristics of the samples: Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS). Additionally, simulated body fluid (SBF) immersion for bioactivity monitoring and immunocytochemistry for cell viability were used to evaluate the biological response of the scaffolds. Full article
Show Figures

Figure 1

16 pages, 1024 KiB  
Systematic Review
Potential Applications of PRP-Enhanced Polybutylene Succinate Graft as Vascular Access for Chemotherapy in Oncological Patients: A Systematic Review
by Andrea Gottardo, Giulia Bonventre, Tancredi Didier Bazan Russo, Pietro Zanatta, Giulia Lo Monte, Valerio Gristina, Antonio Galvano, Antonio Russo and Attilio Ignazio Lo Monte
J. Funct. Biomater. 2025, 16(6), 228; https://doi.org/10.3390/jfb16060228 - 19 Jun 2025
Viewed by 515
Abstract
This systematic review aimed to evaluate the potential of combining platelet-rich plasma (PRP) and polybutylene succinate (PBS) for the development of vascular grafts in patients undergoing chemotherapy. Relevant articles published in English or Italian were selected through a comprehensive search of MEDLINE (via [...] Read more.
This systematic review aimed to evaluate the potential of combining platelet-rich plasma (PRP) and polybutylene succinate (PBS) for the development of vascular grafts in patients undergoing chemotherapy. Relevant articles published in English or Italian were selected through a comprehensive search of MEDLINE (via PubMed) and the Cochrane Library. A total of ten screened articles and two additional relevant studies were included. The synthesis of results was conducted using digital tools, thoroughly reviewed by the authors. The quality assessment of the included studies revealed a medium-to-high risk of bias, with frequent limitations such as small sample sizes, experimental designs, and overall moderate to low methodological quality. Despite the heterogeneity of the findings, the available evidence suggests that radiocephalic graft placement and the use of PBS as a scaffold material, in combination with the growth factors contained in PRP, may improve clinical outcomes and reduce complications related to arteriovenous graft implantation. While promising, the current literature on this topic remains scarce and fragmented, underscoring the need for additional preclinical and clinical research. The proposed approach appears to hold potential for improving vascular access in oncology, but further in vivo validation is essential. This study received no external funding. Registration: PROSPERO ID CRD42025646724. Full article
(This article belongs to the Section Biomaterials for Cancer Therapies)
Show Figures

Graphical abstract

19 pages, 5532 KiB  
Article
In Vitro Biological Properties Assessment of 3D-Printed Hydroxyapatite–Polylactic Acid Scaffolds Intended for Bone Regeneration
by Eddy Shan, Cristina Chamorro, Ana Ferrández-Montero, Rosa M. Martin-Rodriguez, Begoña Ferrari, Antonio Javier Sanchez-Herencia, Leire Virto, María José Marín, Elena Figuero and Mariano Sanz
J. Funct. Biomater. 2025, 16(6), 218; https://doi.org/10.3390/jfb16060218 - 12 Jun 2025
Viewed by 606
Abstract
This study evaluated the biological performance in vitro of two 3D-printed hydroxyapatite (HA) and polylactic acid (PLA) composite scaffolds with two different infill densities (50% [HA-PLA50] and 70% [HA-PLA70]). Comparative analysis using MG-63 cell cultures evaluated the following: (1) integrity after exposure to [...] Read more.
This study evaluated the biological performance in vitro of two 3D-printed hydroxyapatite (HA) and polylactic acid (PLA) composite scaffolds with two different infill densities (50% [HA-PLA50] and 70% [HA-PLA70]). Comparative analysis using MG-63 cell cultures evaluated the following: (1) integrity after exposure to various sterilization methods; (2) cell viability; (3) morphological characteristics; (4) cell proliferation; (5) cytotoxicity; (6) gene expression; and (7) protein synthesis. Ultraviolet radiation was the preferred sterilization method. Both scaffolds maintained adequate cell viability and proliferation over 7 days without significant differences in cytotoxicity. Notably, HA-PLA50 scaffolds demonstrated superior osteogenic potential, showing a significantly higher expression of collagen type I (COL1A1) and an increased synthesis of interleukins 6 and 8 (IL-6, IL-8) compared to HA-PLA70 scaffolds. While both scaffold types supported robust cell growth, the HA-PLA50 formulation exhibited enhanced bioactivity, suggesting a potential advantage for bone tissue engineering applications. These findings provide important insights for optimizing 3D-printed bone graft substitutes. Full article
(This article belongs to the Special Issue Functional Biomaterial for Bone Regeneration)
Show Figures

Figure 1

23 pages, 4339 KiB  
Article
Electrospinning of Bovine Split Hide Collagen and Collagen/Glycosaminoglycan for a Study of Stem Cell Adhesion and Proliferation on the Mats: Influence of Composition and Structural Morphology
by Todorka G. Vladkova, Dilyana N. Gospodinova, Peter D. Dineff, Milena Keremidarska-Markova, Kamelia Hristova-Panusheva and Natalia Krasteva
J. Funct. Biomater. 2025, 16(6), 219; https://doi.org/10.3390/jfb16060219 - 12 Jun 2025
Viewed by 623
Abstract
Electrospun collagen-based fibrous mats are of increasing interest for cell culture, regenerative medicine, and tissue engineering. The focus of this investigation is on the assessment of the electrospinning ability of bovine split hide collagen (BSHC), the effect of glycosaminoglycan (GAG) incorporation on the [...] Read more.
Electrospun collagen-based fibrous mats are of increasing interest for cell culture, regenerative medicine, and tissue engineering. The focus of this investigation is on the assessment of the electrospinning ability of bovine split hide collagen (BSHC), the effect of glycosaminoglycan (GAG) incorporation on the mats’ structural morphology, and the impact on the adhesion and proliferation of human adipose-derived mesenchymal stem cells (hAD-MSCs). Electrospun mats were prepared using benign and fluoroalcohol solutions of BSHC and BSHC/GAGs under varied operation conditions. SEM observations and analysis were employed to characterize the structural morphology of the mats. Several parameters were used to evaluate the hAD-MSC behavior: cytotoxicity, cell morphology, cell number and spreading area, cytoskeleton, focal adhesion contacts, and cell proliferation. Electrospinning using benign solvents was impossible. However, fiber mats were successfully prepared from hexafluoropropanol (HFP) solutions. Different structural morphologies and fiber diameters of the electrospun mats were observed depending on the composition and concentration of the electrospinning solutions. Both BSHC and BSHC/GAG mats supported the in vitro adhesion, growth, and differentiation of hAD-MSCs, with some variations based on their composition and structural morphology. The absence of cytotoxicity and the good hAD-MSC adhesiveness make them promising substrates for cell adhesion, proliferation, and further stem cell differentiation. Full article
Show Figures

Figure 1

18 pages, 5355 KiB  
Article
Transparent 3-Layered Bacterial Nanocellulose as a Multicompartment and Biomimetic Scaffold for Co-Culturing Cells
by Karla Pollyanna Vieira de Oliveira, Michael Yilma Yitayew, Ana Paula Almeida Bastos, Stefanie Cristine Nied Mandrik, Luismar Marques Porto and Maryam Tabrizian
J. Funct. Biomater. 2025, 16(6), 208; https://doi.org/10.3390/jfb16060208 - 3 Jun 2025
Viewed by 749
Abstract
Three-dimensional (3D) cell culture models are widely used to provide a more physiologically relevant microenvironment in which to host and study desired cell types. These models vary in complexity and cost, ranging from simple and inexpensive to highly sophisticated and costly systems. In [...] Read more.
Three-dimensional (3D) cell culture models are widely used to provide a more physiologically relevant microenvironment in which to host and study desired cell types. These models vary in complexity and cost, ranging from simple and inexpensive to highly sophisticated and costly systems. In this study, we introduce a novel translucent multi-compartmentalized stacked multilayered nanocellulose scaffold and describe its fabrication, characterization, and potential application for co-culturing multiple cell types. The scaffold consists of bacterial nanocellulose (BNC) layers separated by interlayers of a lower density of nanocellulose fibers. Using this system, we co-cultured the MDA-MB-231 cell line with two tumor-associated cell types, namely BC-CAFs and M2 macrophages, to simulate the tumor microenvironment (TME). Cells remained viable and metabolically active for up to 15 days. Confocal microscopy showed no signs of cell invasion. However, BC-CAFs and MDA-MB-231 cells were frequently observed within the same layer. The expression of breast cancer-related genes was analyzed to assess the downstream functionality of the cells. We found that the E-cadherin expression was 20% lower in cancer cells co-cultured in the multi-compartmentalized scaffold than in those cultured in 2D plates. Since E-cadherin plays a critical role in preventing the initial dissociation of epithelial cells from the primary tumor mass and is often downregulated in the tumor microenvironment in vivo, this finding suggests that our scaffold more effectively recapitulates the complexity of a tumor microenvironment. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

13 pages, 3526 KiB  
Article
Development of a Sustainable Bone Regeneration Material Using Apatite Paste Derived from Eggshell Waste
by Masatsugu Hirota, Chihiro Mochizuki, Toshitsugu Sakurai, Hiroyuki Mishima, Chikahiro Ohkubo and Takatsugu Yamamoto
J. Funct. Biomater. 2025, 16(6), 201; https://doi.org/10.3390/jfb16060201 - 1 Jun 2025
Viewed by 580
Abstract
Apatite pastes derived from eggshell waste (BAp) were implanted onto the calvarial bone of rats, and bone formation was evaluated using X-ray μ-computed tomography (CT) and histological evaluation. BAp was mixed with distilled water to prepare a paste. Monoclinic hydroxyapatite of mineral resources [...] Read more.
Apatite pastes derived from eggshell waste (BAp) were implanted onto the calvarial bone of rats, and bone formation was evaluated using X-ray μ-computed tomography (CT) and histological evaluation. BAp was mixed with distilled water to prepare a paste. Monoclinic hydroxyapatite of mineral resources (HAp) was used as a control. A 5 mm diameter PTFE (polytetrafluoroethylene) tube was filled with apatite pastes and implanted in the calvarial bone of 9-week-old Sprague Dawley rats for 8 weeks. A larger radiopaque area, similar to that of native bone, was observed in the BAp paste-implanted specimens than that of HAp paste. The bone mineral density (BMD) value of the BAp paste was significantly higher than that of the HAp paste (p < 0.05). In the histological evaluation, new bone formation was noticed from the calvarial side for both apatite specimens, and HAp remained in the PTFE unlike BAp. The bone mass (BM) value of the BAp paste was significantly higher than that of the HAp paste (p < 0.05). SEM and XRD analyses revealed that BAp was microcrystalline and poorly crystalline. The promotion of new bone formation may contribute to the crystallinity and Mg content of BAp. BAp was found to be useful as a bone regeneration material. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Graphical abstract

20 pages, 9010 KiB  
Article
Polycaprolactone/Doped Bioactive Glass Composite Scaffolds for Bone Regeneration
by Ana Sofia Pádua, Manuel Pedro Fernandes Graça and Jorge Carvalho Silva
J. Funct. Biomater. 2025, 16(6), 200; https://doi.org/10.3390/jfb16060200 - 1 Jun 2025
Viewed by 639
Abstract
Critical-size bone defects do not heal spontaneously and require external support, making bone regeneration a central challenge in tissue engineering. Polymeric/ceramic composite scaffolds offer a promising approach to mimic the structural and biological properties of bone. In this study, we aimed to evaluate [...] Read more.
Critical-size bone defects do not heal spontaneously and require external support, making bone regeneration a central challenge in tissue engineering. Polymeric/ceramic composite scaffolds offer a promising approach to mimic the structural and biological properties of bone. In this study, we aimed to evaluate the effect of different doping oxides in bioactive glass (BG) on the performance of polycaprolactone (PCL)-based composite scaffolds for bone tissue engineering applications. Composite scaffolds were fabricated using solvent casting, hot pressing, and salt-leaching techniques, combining PCL with 25 wt% of BG or doped BG containing 4 mol% of tantalum, zinc, magnesium, or niobium oxides, and 1 mol% of copper oxide. The scaffolds were characterized in terms of morphology, mechanical properties, and in vitro biological performance. All scaffolds exhibited a highly porous, interconnected structure. Mechanical compression tests indicated that elastic modulus increased with ceramic content, while doping had no measurable effect. Cytotoxicity assays confirmed biocompatibility across all scaffolds. Among the tested materials, the Zn-doped BG/PCL scaffold uniquely supported cell adhesion and proliferation and significantly enhanced alkaline phosphatase (ALP) activity—an early marker of osteogenic differentiation—alongside the Nb-doped scaffold. These results highlight the Zn-doped BG/PCL composite as a promising candidate for bone regeneration applications. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

18 pages, 6890 KiB  
Article
Synthesis of ε-Fe2–3N Particles for Magnetic Hyperthermia
by Soichiro Usuki, Tomoyuki Ogawa, Masaya Shimabukuro, Taishi Yokoi and Masakazu Kawashita
J. Funct. Biomater. 2025, 16(6), 203; https://doi.org/10.3390/jfb16060203 - 1 Jun 2025
Viewed by 654
Abstract
Little research has focused on using iron nitride as thermoseed particles in magnetic hyperthermia, although magnetite (Fe3O4) is commonly used for this purpose. In the present study, we focus on iron nitride, especially ε-Fe2–3N. ε-Fe2–3N [...] Read more.
Little research has focused on using iron nitride as thermoseed particles in magnetic hyperthermia, although magnetite (Fe3O4) is commonly used for this purpose. In the present study, we focus on iron nitride, especially ε-Fe2–3N. ε-Fe2–3N particles were synthesized from hematite (α-Fe2O3) and sodium amide (NaNH2) under various synthesis conditions, and the heat-generation properties of the particles were investigated to reveal the synthesis conditions that lead to particles with notable heat-generation performance. The particles synthesized at 250 °C for 12 h increased the temperature of an agar phantom by approximately 20 °C under an alternating magnetic field (100 kHz, 125 Oe, 600 s), suggesting that ε-Fe2–3N particles can be used for magnetic hyperthermia. The analysis results for the particles synthesized under different conditions suggest that the heat-generation properties of ε-Fe2–3N were affected by several factors, including the nitrogen content, particle size, crystallite size, saturation magnetization, and coercive force. Full article
(This article belongs to the Special Issue Magnetic Materials for Medical Use)
Show Figures

Graphical abstract

19 pages, 40479 KiB  
Article
Caddisfly Silk-Polycaprolactone Foams: Physicochemical and Biological Properties of Nature-Inspired Biomaterials
by Mateusz M. Urbaniak, Mariusz Tszydel, Konrad Szustakiewicz, Aleksandra Szwed-Georgiou, Bartłomiej Kryszak, Marcin Włodarczyk, Sylwia Michlewska, Piotr Jóźwiak, Tomislav Ivankovic, Mikołaj K. Cybulski and Karolina Rudnicka
J. Funct. Biomater. 2025, 16(6), 199; https://doi.org/10.3390/jfb16060199 - 29 May 2025
Viewed by 581
Abstract
The unique properties of insect silk have attracted attention for years to develop scaffolds for tissue engineering. Combining natural silks with synthetic polymers may benefit biocompatibility, mechanical strength, and elasticity. Silk-modified biomaterials are a promising choice for tissue engineering due to their versatility, [...] Read more.
The unique properties of insect silk have attracted attention for years to develop scaffolds for tissue engineering. Combining natural silks with synthetic polymers may benefit biocompatibility, mechanical strength, and elasticity. Silk-modified biomaterials are a promising choice for tissue engineering due to their versatility, biocompatibility, and many processing methods. This study investigated the physicochemical and biological properties of biocomposites formed by combining caddisfly silk (Hydropsyche angustipennis) and polycaprolactone (PCL). The PCL foams modified with caddisfly silk demonstrated full cytocompatibility and enhanced fibroblast adhesion and proliferation compared to unmodified PCL. These silk-modified PCL foams also induced NF-κB signaling, which is crucial for initiating tissue regeneration. Notably, the antimicrobial properties of the silk-modified PCL foams remained consistent with those of unmodified PCL, suggesting that the addition of silk did not alter this aspect of performance. The findings suggest that caddisfly silk-modified PCL foams present a promising solution for future medical and dental applications, emphasizing the potential of alternative silk sources in tissue engineering. Full article
Show Figures

Graphical abstract

25 pages, 1292 KiB  
Review
Nano/Micro-Enabled Modification and Innovation of Conventional Adjuvants for Next-Generation Vaccines
by Xingchi Liu, Xu Yang, Lu Tao, Xuanchen Li, Guoqiang Chen and Qi Liu
J. Funct. Biomater. 2025, 16(5), 185; https://doi.org/10.3390/jfb16050185 - 19 May 2025
Viewed by 1090
Abstract
The global spread of infectious diseases has raised public awareness of vaccines, highlighting their essential role in protecting public health. Among the components of modern vaccines, adjuvants have received increasing attention for boosting immune responses and enhancing efficacy. Recent advancements in adjuvant research, [...] Read more.
The global spread of infectious diseases has raised public awareness of vaccines, highlighting their essential role in protecting public health. Among the components of modern vaccines, adjuvants have received increasing attention for boosting immune responses and enhancing efficacy. Recent advancements in adjuvant research, particularly nanodelivery systems, have paved the way for developing more effective and safer adjuvants. This review outlines the properties, progress, and mechanisms of FDA-approved conventional adjuvants, focusing on their contributions to and challenges in vaccine success. Despite these advancements, conventional adjuvants still face suboptimal immunomodulatory effects, potential side effects, and limitations in targeting specific immune pathways. Nanodelivery systems have emerged as a transformative approach in adjuvant design, offering unique advantages such as enhancing vaccine stability, enabling controlled antigen release, and inducing specific immune responses. By addressing these limitations, nanocarriers improve the safety and efficacy of conventional adjuvants and drive the development of next-generation adjuvants for complex diseases. This review also explores strategies for incorporating nanodelivery systems into adjuvant development, emphasizing its role in optimizing vaccine formulations. By summarizing current challenges and recent advances, this review aims to provide valuable insights guiding future efforts in designing innovative adjuvants that meet the evolving needs of global immunization programs. Full article
(This article belongs to the Special Issue 15th Anniversary of JFB—Advanced Biomaterials for Drug Delivery)
Show Figures

Figure 1

13 pages, 5872 KiB  
Article
In Vivo Cell Migration and Growth Within Electrospun Porous Nanofibrous Scaffolds with Different Pore Sizes in a Mouse Pouch Model
by David C. Markel, Therese Bou-Akl, Bin Wu, Pawla Pawlitz, Xiaowei Yu, Liang Chen, Tong Shi and Weiping Ren
J. Funct. Biomater. 2025, 16(5), 181; https://doi.org/10.3390/jfb16050181 - 14 May 2025
Viewed by 537
Abstract
Cellular infiltration into traditional electrospun nanofibers (NFs) is limited due to their dense structures. We were able to obtain polycaprolactone (PCL) NFs with variable and defined pore sizes and thicknesses by using a customized programmed NF collector that controls the moving speed during [...] Read more.
Cellular infiltration into traditional electrospun nanofibers (NFs) is limited due to their dense structures. We were able to obtain polycaprolactone (PCL) NFs with variable and defined pore sizes and thicknesses by using a customized programmed NF collector that controls the moving speed during electrospinning. NFs obtained by this method were tested in vitro and have shown better cell proliferation within the NFs with larger pore sizes. This study investigated in vivo host cell migration and neovascularization within implanted porous PCL NF discs using a mouse pouch model. Four types of PCL NFs were prepared and classified based on the electrospinning speed: NF-zero (static control), NF-low (0.085 mm/min), NF-mid (0.158 mm/min) and NF-high (0.232 mm/min) groups. With the increase in the speed, we observed an increase in the pore area; NF-zero (11.6 ± 6.2 μm2), NF-low (37.4 ± 28.6 μm2), NF-mid (67.6 ± 54.8 μm2), and NF-high (292.3 ± 286.5 μm2) groups. The NFs were implanted into air pouches of BALB/cJ mice. Mice without NFs served as control. Animals were sacrificed at 7 and 28 days after the implantation. Pouch tissues with implanted NFs were collected for histology (n = three per group and time point). The efficiency of the tissue penetration into PCL NF sheets was closely linked to the pore size and area. NFs with the highest pore area had more efficient tissue migration and new blood vessel formation compared to those with a smaller pore area. No newly formed blood vessels were observed in NF-zero sheets up to 28 days. We believe that a porous NF scaffold with a controllable pore size and thickness has great potential for tissue repair/regeneration and for other healthcare applications. Full article
Show Figures

Figure 1

14 pages, 2882 KiB  
Article
Wharton’s Jelly Bioscaffolds Improve Cardiac Repair with Bone Marrow Mononuclear Stem Cells in Rats
by Luize Kremer Gamba, Laiza Kremer Gamba, Camila da Costa, Aline Luri Takejima, Rossana Baggio Simeoni, Isabella Cristina Mendes Rossa, Anna Clara Faidiga Silva, Julia Letícia de Bortolo, Marcos Antônio Denk, Seigo Nagashima, Carlos de Almeida Barbosa, Paulo Cesar Lock Silveira, Júlio César Francisco and Luiz César Guarita-Souza
J. Funct. Biomater. 2025, 16(5), 175; https://doi.org/10.3390/jfb16050175 - 12 May 2025
Viewed by 419
Abstract
This study assessed the impact of implanting mononuclear stem cells and Wharton’s Jelly (WJ), either separately or together, on left ventricular dysfunction following myocardial infarction in Wistar rats. Functional and histopathological parameters were analyzed, and a rat model of left anterior descending coronary [...] Read more.
This study assessed the impact of implanting mononuclear stem cells and Wharton’s Jelly (WJ), either separately or together, on left ventricular dysfunction following myocardial infarction in Wistar rats. Functional and histopathological parameters were analyzed, and a rat model of left anterior descending coronary artery ligation was used. Treatments included an intramyocardial injection of 0.9% sodium chloride (control, n = 14), decellularized WJ (n = 12), bone marrow-derived mononuclear cells (BMMC) (n = 12), and bone marrow-derived mononuclear cells (BMMC) combined with WJ (n = 15). Echocardiography assessed the left ventricular function and ejection fraction over four weeks. Histological and immunohistochemical analyses with anti-factor VIII evaluated angiogenesis and collagen types I and III. The results showed no statistically significant effect on ventricular remodeling 30 days post-acute myocardial infarction (AMI). Moreover, the infarct area was significantly smaller in the BMMC + WJ group compared to the control group, suggesting a potential benefit in reducing myocardial scarring. BMMC + WJ therapy demonstrated potential for functional improvement and infarct size reduction 30 days post-infarction. Further studies are needed to confirm its therapeutic benefits. Full article
(This article belongs to the Collection Feature Papers in Biomaterials for Healthcare Applications)
Show Figures

Figure 1

15 pages, 3256 KiB  
Article
Effect of Hyaluronan in Collagen Biomaterials on Human Macrophages and Fibroblasts In Vitro
by Nancy Avila-Martinez, Maren Pfirrmann, Madalena L. N. P. Gomes, Roman Krymchenko, Elly M. M. Versteeg, Marcel Vlig, Martijn Verdoes, Toin H. van Kuppevelt, Bouke K. H. L. Boekema and Willeke F. Daamen
J. Funct. Biomater. 2025, 16(5), 167; https://doi.org/10.3390/jfb16050167 - 8 May 2025
Viewed by 957
Abstract
In adults, scars are formed after deep skin wound injuries like burns. However, the fetal microenvironment allows for scarless skin regeneration. One component that is abundantly present in the fetal extracellular matrix is hyaluronan (HA). To study whether biomaterials with HA improve wound [...] Read more.
In adults, scars are formed after deep skin wound injuries like burns. However, the fetal microenvironment allows for scarless skin regeneration. One component that is abundantly present in the fetal extracellular matrix is hyaluronan (HA). To study whether biomaterials with HA improve wound healing, type I collagen scaffolds with and without HA were prepared and characterized. Their immune effect was tested using macrophages and their phenotypes were analyzed through cell surface markers and cytokine expression after 48 h. Since fibroblasts are the main cellular component in the dermis, adult, fetal and eschar-derived cells were cultured on scaffolds for 14 days and evaluated using histology, gene and protein expression analyses. Biochemical assays demonstrated that HA was successfully incorporated and evenly distributed throughout the scaffolds. Macrophages (M0) cultured on Col I+HA scaffolds exhibited a profile resembling the M2c-like phenotype (CD206high, CD163high and IL10high). HA did not significantly affect gene expression in adult and fetal fibroblasts, but significantly reduced scarring-related genes, such as transforming growth factor beta 1 (TGFB1) and type X collagen alpha 1 chain (COL10A1), in myofibroblast-like eschar cells. These findings highlight the potential of incorporating HA into collagen-based skin substitutes to improve the wound healing response. Full article
Show Figures

Graphical abstract

33 pages, 10568 KiB  
Review
Emerging Trends in Microfluidic Biomaterials: From Functional Design to Applications
by Jiaqi Lin, Lijuan Cui, Xiaokun Shi and Shuping Wu
J. Funct. Biomater. 2025, 16(5), 166; https://doi.org/10.3390/jfb16050166 - 8 May 2025
Viewed by 1373
Abstract
The rapid development of microfluidics has driven innovations in material engineering, particularly through its ability to precisely manipulate fluids and cells at microscopic scales. Microfluidic biomaterials, a cutting-edge interdisciplinary field integrating microfluidic technology with biomaterials science, are revolutionizing biomedical research. This review focuses [...] Read more.
The rapid development of microfluidics has driven innovations in material engineering, particularly through its ability to precisely manipulate fluids and cells at microscopic scales. Microfluidic biomaterials, a cutting-edge interdisciplinary field integrating microfluidic technology with biomaterials science, are revolutionizing biomedical research. This review focuses on the functional design and fabrication of organ-on-a-chip (OoAC) platforms via 3D bioprinting, explores the applications of biomaterials in drug delivery, cell culture, and tissue engineering, and evaluates the potential of microfluidic systems in advancing personalized healthcare. We systematically analyze the evolution of microfluidic materials—from silicon and glass to polymers and paper—and highlight the advantages of 3D bioprinting over traditional fabrication methods. Currently, despite significant advances in microfluidics in medicine, challenges in scalability, stability, and clinical translation remain. The future of microfluidic biomaterials will depend on combining 3D bioprinting with dynamic functional design, developing hybrid strategies that combine traditional molds with bio-printed structures, and using artificial intelligence to monitor drug delivery or tissue response in real time. We believe that interdisciplinary collaborations between materials science, micromachining, and clinical medicine will accelerate the translation of organ-on-a-chip platforms into personalized therapies and high-throughput drug screening tools. Full article
(This article belongs to the Section Biomaterials and Devices for Healthcare Applications)
Show Figures

Graphical abstract

45 pages, 18946 KiB  
Review
Advancements in Musculoskeletal Tissue Engineering: The Role of Melt Electrowriting in 3D-Printed Scaffold Fabrication
by Kunal Ranat, Hong Phan, Suhaib Ellythy, Mitchell Kenter and Adil Akkouch
J. Funct. Biomater. 2025, 16(5), 163; https://doi.org/10.3390/jfb16050163 - 7 May 2025
Viewed by 816
Abstract
Musculoskeletal tissue injuries of the bone, cartilage, ligaments, tendons, and skeletal muscles are among the most common injuries experienced in medicine and become increasingly problematic in cases of significant tissue damage, such as nonunion bone defects and volumetric muscle loss. Current gold standard [...] Read more.
Musculoskeletal tissue injuries of the bone, cartilage, ligaments, tendons, and skeletal muscles are among the most common injuries experienced in medicine and become increasingly problematic in cases of significant tissue damage, such as nonunion bone defects and volumetric muscle loss. Current gold standard treatment options for musculoskeletal injuries, although effective, have limited capability to fully restore native tissue structure and function. To overcome this challenge, three-dimensional (3D) printing techniques have emerged as promising therapeutic options for tissue regeneration. Melt electrowriting (MEW), a recently developed advanced 3D printing technique, has gained significant traction in the field of tissue regeneration because of its ability to fabricate complex customizable scaffolds via high-precision microfiber deposition. The tailorability at microscale levels offered by MEW allows for enhanced recapitulation of the tissue microenvironment. Here, we survey the recent contributions of MEW in advancing musculoskeletal tissue engineering. More specifically, we briefly discuss the principles and technical aspects of MEW, provide an overview of current printers on the market, review in-depth the latest biomedical applications in musculoskeletal tissue regeneration, and, lastly, examine the limitations of MEW and offer future perspectives. Full article
(This article belongs to the Special Issue Recent Advances in 3D Printing of Biomaterials)
Show Figures

Graphical abstract

20 pages, 13885 KiB  
Article
Biodegradable Double-Layer Hydrogels with Sequential Drug Release for Multi-Phase Collaborative Regulation in Scar-Free Wound Healing
by Xinyu Zhang, Qianhe Zu, Chunlin Deng, Xin Gao, Hongxu Liu, Yi Jin, Xinjian Yang and Enjun Wang
J. Funct. Biomater. 2025, 16(5), 164; https://doi.org/10.3390/jfb16050164 - 7 May 2025
Cited by 1 | Viewed by 872
Abstract
Scarring is a prevalent and often undesirable outcome of the wound healing process, impacting millions worldwide. The complex and dynamic nature of wound healing, including hemostasis, inflammation, proliferation, and remodeling, necessitates precise, making it hard for stage-specific interventions to prevent pathological scarring. This [...] Read more.
Scarring is a prevalent and often undesirable outcome of the wound healing process, impacting millions worldwide. The complex and dynamic nature of wound healing, including hemostasis, inflammation, proliferation, and remodeling, necessitates precise, making it hard for stage-specific interventions to prevent pathological scarring. This study introduces a double-layer hydrogel system designed for sequential drug release, aligning with the stage-specific need for wound healing. The lower layer, containing curcumin-loaded chitosan nanoparticles, shows early anti-inflammatory and antioxidant effects, while the upper layer, with pirfenidone-encapsulated gelatin microspheres, presents late-stage anti-fibrotic activity. The hydrogel’s unique design, with varying degradation rates and mechanical properties in each layer, facilitates cascade drug release in synchrony with wound healing stages. Rapid release of curcumin from the lower layer promotes proliferation by mitigating inflammation and oxidative stress, while the sustained release of pirfenidone from the upper layer inhibits excessive fibrillation during late proliferation and remodeling. In a rat model of full-thickness skin defect, treatment with a double-layer hydrogel drug delivery system accelerated the wound closure, improved scar quality, and promoted the formation of hair follicles. Therefore, this innovative approach lays a promising foundation for future clinical applications in anti-scar therapies, offering a significant advancement in wound care and regenerative medicine. Full article
(This article belongs to the Special Issue Biomaterials for Wound Healing and Tissue Repair)
Show Figures

Figure 1

15 pages, 3084 KiB  
Article
Tumor-Treating Fields Alter Nanomechanical Properties of Pancreatic Ductal Adenocarcinoma Cells Co-Cultured with Extracellular Matrix
by Tanmay Kulkarni, Sreya Banik, Debabrata Mukhopadhyay, Hani Babiker and Santanu Bhattacharya
J. Funct. Biomater. 2025, 16(5), 160; https://doi.org/10.3390/jfb16050160 - 3 May 2025
Viewed by 608
Abstract
Tumor-Treating Fields (TTFields), a novel therapeutic avenue, is approved for therapy in Glioblastoma multiforme, malignant pleural mesothelioma, and metastatic non-small cell lung cancer (NSCLC). In pancreatic ductal adenocarcinoma (PDAC), several clinical trials are underway to improve outcomes, yet a significant knowledge gap prevails [...] Read more.
Tumor-Treating Fields (TTFields), a novel therapeutic avenue, is approved for therapy in Glioblastoma multiforme, malignant pleural mesothelioma, and metastatic non-small cell lung cancer (NSCLC). In pancreatic ductal adenocarcinoma (PDAC), several clinical trials are underway to improve outcomes, yet a significant knowledge gap prevails involving the cell-extracellular matrix (ECM) crosstalk. Herein, we hypothesized that treatment with TTFields influence this crosstalk, which is reflected by the dynamic alteration in nanomechanical properties (NMPs) of cells and the ECM in a co-culture system. We employed an ECM gel comprising collagen, fibronectin, and laminin mixed in 100:1:1 stoichiometry to co-culture of Panc1 and AsPC1 individually. This ECM mixture mimics the in vivo tumor microenvironment closely when compared to the individual ECM components studied before. A comprehensive frequency-dependent study revealed the optimal TTFields frequency to be 150 kHz. We also observed that irrespective of the ECM’s presence, TTFields increase cell membrane stiffness and decrease deformation several-folds in both Panc1 and AsPC1 cells at both 48 h and 72 h. Although adhesion for AsPC1 decreased at 48 h, at 72 h it was observed to increase irrespective of ECM’s presence. Moreover, it significantly alters the NMPs of ECM gels when co-cultured with PDAC cell lines. However, AsPC1 cells were observed to be more detrimental to these changes. Lastly, we attribute the stiffness changes in Panc1 cells to the membrane F-actin reorganization in the presence of TTFields. This study paves a path to study complex PDAC TME as well as the effect of various chemotherapeutic agents on such TME with TTFields in the future. Full article
(This article belongs to the Section Biomaterials for Cancer Therapies)
Show Figures

Figure 1

17 pages, 1502 KiB  
Review
Peripheral Nerve Protection Strategies: Recent Advances and Potential Clinical Applications
by Weronika Radecka, Wiktoria Nogalska and Maria Siemionow
J. Funct. Biomater. 2025, 16(5), 153; https://doi.org/10.3390/jfb16050153 - 24 Apr 2025
Cited by 1 | Viewed by 1091
Abstract
Peripheral nerve injuries (PNIs) are a significant clinical challenge, often resulting in persistent sensory and motor deficits despite surgical repair. Autologous nerve grafts remain the gold standard for repair; however, outcomes are frequently suboptimal due to donor site morbidity and inconsistent functional recovery. [...] Read more.
Peripheral nerve injuries (PNIs) are a significant clinical challenge, often resulting in persistent sensory and motor deficits despite surgical repair. Autologous nerve grafts remain the gold standard for repair; however, outcomes are frequently suboptimal due to donor site morbidity and inconsistent functional recovery. A major obstacle in nerve regeneration is the formation of postoperative adhesions and fibrosis, which impede healing and necessitate revision surgeries. Nerve protectors from biological, synthetic, and hybrid materials offer a promising tissue engineering strategy to enhance nerve regeneration. These protectors are applied as a protective barrier when a nerve is severed without the gap, allowing for direct repair. They provide mechanical support and reduce scarring. Biocompatible biological wraps, including vascularized fat flaps, vein wraps, collagen-based materials, human amniotic membrane (hAM), porcine small intestinal submucosa (PSIS), and chitosan, modulate immune responses and promote vascularization. Synthetic alternatives, like polycaprolactone (PCL), provide mechanical stability with controlled degradation. Hybrid wraps, such as PCL-amnion, combine the benefits of both. Despite optimistic results, the heterogeneity of study methodologies hinders direct comparisons and standardization. This review highlights the latest developments in nerve wraps, their clinical applications, limitations, and future potential, guiding clinicians in selecting the most appropriate materials for peripheral nerve repair. Full article
Show Figures

Figure 1

51 pages, 12197 KiB  
Review
Recent Trends in the Application of Cellulose-Based Hemostatic and Wound Healing Dressings
by Clemence Futila Bukatuka, Bricard Mbituyimana, Lin Xiao, Abeer Ahmed Qaed Ahmed, Fuyu Qi, Manjilla Adhikari, Zhijun Shi and Guang Yang
J. Funct. Biomater. 2025, 16(5), 151; https://doi.org/10.3390/jfb16050151 - 23 Apr 2025
Cited by 1 | Viewed by 1812
Abstract
Rapid hemostasis and wound healing are crucial severe trauma treatment. Natural mechanisms often prove insufficient, spurring research for innovative biomaterials. This review focuses on cellulose-based materials, which are promising due to their absorbency, biocompatibility, and processability. The novelty lies in exploring how these [...] Read more.
Rapid hemostasis and wound healing are crucial severe trauma treatment. Natural mechanisms often prove insufficient, spurring research for innovative biomaterials. This review focuses on cellulose-based materials, which are promising due to their absorbency, biocompatibility, and processability. The novelty lies in exploring how these materials promote clotting and tissue regeneration. They operate via extrinsic and intrinsic mechanisms. Extrinsically, they create a matrix at the wound to activate coagulation; intrinsically, they maintain clotting factors. Additionally, they aid healing through physical, chemical, and biological means, such as maintaining moisture, incorporating antimicrobial agents, and stimulating cell activity. The innovative fabrication strategies include material selection and chemical modification. Techniques like oxidation enhance performance. Structural engineering methods like freeze-drying and 3D printing optimize porosity and alignment. Cellulose-based dressings are versatile and effective in various forms. They address different wound needs and show benefits like rapid coagulation and tissue repair. This review also covers challenges and future trends, emphasizing the need to enhance mechanical properties and biodegradability. Further, new technologies offer potential improvements to the nanocomposites. Overall, continued research on cellulose-based dressing is vital, and unlocking their potential could revolutionize wound care, providing suitable solutions for trauma management. Full article
(This article belongs to the Special Issue Recent Studies on Biomaterials for Tissue Repair and Regeneration)
Show Figures

Figure 1

26 pages, 5083 KiB  
Review
Injectable Stem Cell-Based Therapies for Myocardial Regeneration: A Review of the Literature
by Marissa Guo, Tatsuya Watanabe and Toshiharu Shinoka
J. Funct. Biomater. 2025, 16(5), 152; https://doi.org/10.3390/jfb16050152 - 23 Apr 2025
Viewed by 807
Abstract
Stem cell-based therapies are an emerging treatment modality aimed at replenishing lost cardiomyocytes and improving myocardial function after cardiac injury. This review examines the current state of research on injectable stem cell therapies in the setting of cardiovascular disease given their relative simplicity [...] Read more.
Stem cell-based therapies are an emerging treatment modality aimed at replenishing lost cardiomyocytes and improving myocardial function after cardiac injury. This review examines the current state of research on injectable stem cell therapies in the setting of cardiovascular disease given their relative simplicity and ability for deep myocardial tissue penetration. Various methods of cell delivery, ranging in level of invasiveness and procedural complexity, have been developed, and numerous cell types have been studied as potential sources of stem cells, each with distinct advantages and disadvantages. We discuss key challenges associated with this approach, including low stem cell retention after transplantation and the innovative biomolecular strategies that have been explored to address this issue. Overall, investigations into the application of stem cells toward cardiac regeneration remain predominantly in the preclinical stage with a number of small, early-phase clinical trials. However, continued scientific advancements in stem cell technology may provide transformative treatment options for patients with heart failure, offering improved survival and quality of life. Full article
(This article belongs to the Special Issue Cardiovascular Tissue Engineering: Current Status and Advances)
Show Figures

Figure 1

15 pages, 4954 KiB  
Article
Evaluation of the Characteristics of Digital Light Processing 3D-Printed Magnesium Calcium Phosphate for Bone Regeneration
by Peng Zhang, Meiling Zhang, Yoo-Na Jung, Seong-Won Choi, Yong-Seok Lee, Geelsu Hwang and Kwi-Dug Yun
J. Funct. Biomater. 2025, 16(4), 139; https://doi.org/10.3390/jfb16040139 - 14 Apr 2025
Viewed by 777
Abstract
Recent advancements in three-dimensional (3D) printing technology, particularly digital light processing (DLP) 3D printing, have enabled the customization of bone substitutes with specific shapes that match bone defect sizes and geometries. Magnesium calcium phosphate (MCP) has gained considerable attention due to its strong [...] Read more.
Recent advancements in three-dimensional (3D) printing technology, particularly digital light processing (DLP) 3D printing, have enabled the customization of bone substitutes with specific shapes that match bone defect sizes and geometries. Magnesium calcium phosphate (MCP) has gained considerable attention due to its strong mechanical properties, degradability, and ability to promote bone regeneration. In this study, we prepared MCP samples with five different molar ratios via DLP 3D printing. We analyzed the physicochemical properties of these five groups, including phase compositions and microstructures, which were examined using X-ray diffraction and scanning electron microscopy, respectively. Additionally, we assessed the effects of MCP on material density and shrinkage. Biaxial flexural strength and degradation rate were evaluated; biological properties were examined through WST-8 analysis and alkaline phosphatase activity assays. Among the tested samples, MCP1/1 exhibited the highest strength. A higher proportion of magnesium phosphate in MCP corresponded to an increased degradation rate. Cell response observations in the WST-8 assay indicated that cell proliferation was better in the MCP1/1 group than in the other groups on days 4 and 7 of culturing. Alkaline phosphatase activity assays demonstrated that MCP1/1 exhibited higher activity than calcium phosphate. Our findings suggest that MCP1/1 can be used effectively in bone-tissue-engineering applications. Full article
Show Figures

Figure 1

16 pages, 2252 KiB  
Article
Impact of Vitamin D3 Functionalization on the Osteogenic Capacity of Bioinspired 3D Scaffolds Based on Ce-Doped Bioactive Glass and Spongia Agaricina
by Ana-Maria Seciu-Grama, Sorana Elena Lazăr, Simona Petrescu, Oana Cătălina Mocioiu, Oana Crăciunescu and Irina Atkinson
J. Funct. Biomater. 2025, 16(4), 141; https://doi.org/10.3390/jfb16040141 - 14 Apr 2025
Viewed by 716
Abstract
Reconstruction of extensive bone defects due to age, trauma, or post-illness conditions remains challenging. Biomimetic scaffolds with osteogenic capabilities have been proposed as an alternative to the classical autograft and allograft implants. Three-dimensional scaffolds were obtained based on Ce-doped mesoporous bioactive glass (MBG) [...] Read more.
Reconstruction of extensive bone defects due to age, trauma, or post-illness conditions remains challenging. Biomimetic scaffolds with osteogenic capabilities have been proposed as an alternative to the classical autograft and allograft implants. Three-dimensional scaffolds were obtained based on Ce-doped mesoporous bioactive glass (MBG) and Spongia agaricina (SA) as sacrificial templates functionalized with vitamin D3. The study aimed to investigate the effect of vitamin D3 functionalization on the optimal variant of a 3D scaffold doped with 3 mol% ceria, selected in our previous work based on its biological and physicochemical properties. Scanning electron microscopy (SEM) images of the non-functionalized/functionalized scaffolds revealed a porous structure with interconnected pores ranging from 100 to 350 μm. Fourier transform infrared spectroscopy (FTIR) and SEM analysis confirmed the surface functionalization. Cytotoxicity evaluation showed that all investigated scaffolds do not exhibit cytotoxicity and genotoxicity toward the Saos-2 osteosarcoma cell line. Moreover, the study demonstrated that functionalization with vitamin D3 enhanced osteogenic activity in dental pulp stem cells (DPSCs) by increasing calcium deposition and osteocalcin secretion, as determined by Alizarin red stain and a colorimetric ELISA kit, as a result of its synergistic action with cerium ions. The results showed that the Ce-doped MBG scaffold functionalized with vitamin D3 had the potential for applications in bone regeneration. Full article
(This article belongs to the Special Issue Functional Biomaterial for Bone Regeneration)
Show Figures

Graphical abstract

21 pages, 2270 KiB  
Review
Role of Endophytic Fungi in the Biosynthesis of Metal Nanoparticles and Their Potential as Nanomedicines
by Hanadi Sawalha, Simon E. Moulton, Andreas Winkel, Meike Stiesch and Bita Zaferanloo
J. Funct. Biomater. 2025, 16(4), 129; https://doi.org/10.3390/jfb16040129 - 3 Apr 2025
Viewed by 1009
Abstract
Metal nanoparticles (MNPs) produced through biosynthesis approaches have shown favourable physical, chemical, and antimicrobial characteristics. The significance of biological agents in the synthesis of MNPs has been acknowledged as a promising alternative to conventional approaches such as physical and chemical methods, which are [...] Read more.
Metal nanoparticles (MNPs) produced through biosynthesis approaches have shown favourable physical, chemical, and antimicrobial characteristics. The significance of biological agents in the synthesis of MNPs has been acknowledged as a promising alternative to conventional approaches such as physical and chemical methods, which are confronted with certain challenges. To meet these challenges, the use of endophytic fungi as nano-factories for the synthesis of MNPs has become increasingly popular worldwide in recent times. This review provides an overview of the synthesis of MNPs using endophytic fungi, the mechanisms involved, and their important biomedical applications. A special focus on different biomedical applications of MNPs mediated endophytic fungi involved their antibacterial, antifungal, antiviral, and anticancer applications and their potential as drug delivery agents. Furthermore, this review highlights the significance of the use of endophytic fungi for the green synthesis of MNPs and discusses the benefits, challenges, and prospects in this field. Full article
(This article belongs to the Collection Feature Papers in Antibacterial Biomaterials)
Show Figures

Figure 1

16 pages, 748 KiB  
Article
Fabrication of a 3D Corneal Model Using Collagen Bioink and Human Corneal Stromal Cells
by Alexander J. Choi, Brenna S. Hefley, Hannah A. Strobel, Sarah M. Moss, James B. Hoying, Sarah E. Nicholas, Shadi Moshayedi, Jayoung Kim and Dimitrios Karamichos
J. Funct. Biomater. 2025, 16(4), 118; https://doi.org/10.3390/jfb16040118 - 28 Mar 2025
Viewed by 819
Abstract
Corneal transplantation remains a critical treatment option for individuals with corneal disorders, but it faces challenges such as rejection, high associated medical costs, and donor scarcity. A promising alternative for corneal replacement involves fabricating artificial cornea from a patient’s own cells. Our study [...] Read more.
Corneal transplantation remains a critical treatment option for individuals with corneal disorders, but it faces challenges such as rejection, high associated medical costs, and donor scarcity. A promising alternative for corneal replacement involves fabricating artificial cornea from a patient’s own cells. Our study aimed to leverage bioprinting to develop a corneal model using human corneal stromal cells embedded in a collagen-based bioink. We generated both cellular and acellular collagen I (COL I) constructs. Cellular constructs were cultured for up to 4 weeks, and gene expression analysis was performed to assess extracellular matrix (ECM) remodeling and fibrotic markers. Our results demonstrated a significant decrease in the expression of COL I, collagen III (COL III), vimentin (VIM), and vinculin (VCL), indicating a dynamic remodeling process towards a more physiologically relevant corneal ECM. Overall, our study provides a foundational framework for developing customizable, corneal replacements using bioprinting technology. Further research is necessary to optimize the bioink composition and evaluate the functional and biomechanical properties of these bioengineered corneas. Full article
(This article belongs to the Collection Feature Papers in Biomaterials for Healthcare Applications)
Show Figures

Figure 1

30 pages, 4468 KiB  
Review
Piezoelectric Nanomaterials for Cancer Therapy: Current Research and Future Perspectives on Glioblastoma
by Zayne Knight, Amalia Ruiz and Jacobo Elies
J. Funct. Biomater. 2025, 16(4), 114; https://doi.org/10.3390/jfb16040114 - 24 Mar 2025
Cited by 4 | Viewed by 1498
Abstract
Cancer significantly impacts human quality of life and life expectancy, with an estimated 20 million new cases and 10 million cancer-related deaths worldwide every year. Standard treatments including chemotherapy, radiotherapy, and surgical removal, for aggressive cancers, such as glioblastoma, are often ineffective in [...] Read more.
Cancer significantly impacts human quality of life and life expectancy, with an estimated 20 million new cases and 10 million cancer-related deaths worldwide every year. Standard treatments including chemotherapy, radiotherapy, and surgical removal, for aggressive cancers, such as glioblastoma, are often ineffective in late stages. Glioblastoma, for example, is known for its poor prognosis post-diagnosis, with a median survival time of approximately 15 months. Novel therapies using local electric fields have shown anti-tumour effects in glioblastoma by disrupting mitotic spindle assembly and inhibiting cell growth. However, constant application poses risks like patient burns. Wireless stimulation via piezoelectric nanomaterials offers a safer alternative, requiring ultrasound activation to induce therapeutic effects, such as altering voltage-gated ion channel conductance by depolarising membrane potentials. This review highlights the piezoelectric mechanism, drug delivery, ion channel activation, and current technologies in cancer therapy, emphasising the need for further research to address limitations like biocompatibility in whole systems. The goal is to underscore these areas to inspire new avenues of research and overcome barriers to developing piezoelectric nanoparticle-based cancer therapies. Full article
(This article belongs to the Special Issue Medical Application of Functional Biomaterials (2nd Edition))
Show Figures

Figure 1

36 pages, 3511 KiB  
Review
Three-Dimensional Bioprinting for Intervertebral Disc Regeneration
by Md Amit Hasan Tanvir, Md Abdul Khaleque, Junhee Lee, Jong-Beom Park, Ga-Hyun Kim, Hwan-Hee Lee and Young-Yul Kim
J. Funct. Biomater. 2025, 16(3), 105; https://doi.org/10.3390/jfb16030105 - 14 Mar 2025
Viewed by 1506
Abstract
The rising demand for organ transplants and the need for precise tissue models have positioned the in vitro biomanufacturing of tissues and organs as a pivotal area in regenerative treatment. Considerable development has been achieved in growing tissue-engineered intervertebral disc (IVD) scaffolds, designed [...] Read more.
The rising demand for organ transplants and the need for precise tissue models have positioned the in vitro biomanufacturing of tissues and organs as a pivotal area in regenerative treatment. Considerable development has been achieved in growing tissue-engineered intervertebral disc (IVD) scaffolds, designed to meet stringent mechanical and biological compatibility criteria. Among the cutting-edge approaches, 3D bioprinting stands out due to its unparalleled capacity to organize biomaterials, bioactive molecules, and living cells with high precision. Despite these advancements, polymer-based scaffolds still encounter limitations in replicating the extracellular matrix (ECM)-like environment, which is fundamental for optimal cellular activities. To overcome these challenges, integrating polymers with hydrogels has been recommended as a promising solution. This combination enables the advancement of porous scaffolds that nurture cell adhesion, proliferation, as well as differentiation. Additionally, bioinks derived from the decellularized extracellular matrix (dECM) have exhibited potential in replicating biologically relevant microenvironments, enhancing cell viability, differentiation, and motility. Hydrogels, whether derived from natural sources involving collagen and alginate or synthesized chemically, are highly valued for their ECM-like properties and superior biocompatibility. This review will explore recent advancements in techniques and technologies for IVD regeneration. Emphasis will be placed on identifying research gaps and proposing strategies to bridge them, with the goal of accelerating the translation of IVDs into clinical applications. Full article
(This article belongs to the Special Issue Three-Dimensional-Printable Biomaterials for Bone Regeneration)
Show Figures

Figure 1

22 pages, 4851 KiB  
Article
Porous Hydrogels Prepared by Two-Step Gelation Method for Bone Regeneration
by Yongzhi Li, Jiangshan Liu, Jiawei Wei, Li Yuan, Jiaxin Hu, Siluo Dai, Yubao Li and Jidong Li
J. Funct. Biomater. 2025, 16(3), 100; https://doi.org/10.3390/jfb16030100 - 13 Mar 2025
Cited by 1 | Viewed by 1080
Abstract
Hierarchical porous hydrogels possess advantageous characteristics that facilitate cell adhesion, promote tissue growth, and enhance angiogenesis and osteogenesis. In this study, porous composite hydrogels were successfully prepared by a two-step gelation method with sodium alginate (SA), gelatin (GEL), and calcium hydrogen phosphate (DCP) [...] Read more.
Hierarchical porous hydrogels possess advantageous characteristics that facilitate cell adhesion, promote tissue growth, and enhance angiogenesis and osteogenesis. In this study, porous composite hydrogels were successfully prepared by a two-step gelation method with sodium alginate (SA), gelatin (GEL), and calcium hydrogen phosphate (DCP) as the main components. The fabricated porous hydrogels initially featured small pores (approximately 60 μm), and gradually evolved to large pores (exceeding 250 μm) during the gradual degradation in the cellular microenvironment. In vitro cell culture experiments indicated that these hydrogels could enhance the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells due to the hierarchical porous structure and the incorporation of DCP. Subcutaneous implantation and cranial defect repair experiments in Sprague−Dawley rats further confirmed that the small initial pore size of hydrogel scaffolds can provide more sites for cell adhesion. Additionally, the gradual degradation to form large pores was conducive to cell/tissue growth and blood vessel formation, ultimately being beneficial for vascularized bone regeneration. In summary, this study proposes an innovative strategy for developing porous hydrogels with gradual degradation for functional bone regeneration. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

25 pages, 10472 KiB  
Article
Nanoparticle-Enhanced Collagen Hydrogels for Chronic Wound Management
by Alexandra Cătălina Bîrcă, Mihai Alexandru Minculescu, Adelina-Gabriela Niculescu, Ariana Hudiță, Alina Maria Holban, Adina Alberts and Alexandru Mihai Grumezescu
J. Funct. Biomater. 2025, 16(3), 91; https://doi.org/10.3390/jfb16030091 - 5 Mar 2025
Cited by 8 | Viewed by 2388
Abstract
Chronic wound infections present a persistent medical challenge; however, advancements in wound dressings and antimicrobial nanomaterials offer promising solutions for improving healing outcomes. This study introduces a hydrothermal synthesis approach for producing zinc oxide (ZnO) and copper oxide (CuO) nanoparticles, subsequently incorporated into [...] Read more.
Chronic wound infections present a persistent medical challenge; however, advancements in wound dressings and antimicrobial nanomaterials offer promising solutions for improving healing outcomes. This study introduces a hydrothermal synthesis approach for producing zinc oxide (ZnO) and copper oxide (CuO) nanoparticles, subsequently incorporated into PLGA microspheres and embedded within collagen hydrogels. The nanoparticles’ physicochemical properties were characterized using X-ray diffraction (XRD) to confirm crystalline structure, scanning electron microscopy (SEM) for surface morphology, and Fourier-transform infrared spectroscopy (FT-IR) to verify functional groups and successful hydrogel integration. The hydrogels were tested for antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, which are key pathogens in chronic wounds. Biocompatibility was assessed using the human HaCat keratinocyte cell line. Both ZnO- and CuO-loaded hydrogels exhibited broad-spectrum antimicrobial efficacy. Cytocompatibility tests demonstrated that both ZnO- and CuO-loaded hydrogels sustain cell viability and proliferation, highlighting their biocompatibility and suitability for chronic wound healing applications, with superior biological performance of ZnO-loaded hydrogels. Furthermore, the distinct antimicrobial profiles of ZnO and CuO hydrogels suggest their tailored use based on wound microbial composition, with CuO hydrogels excelling in antibacterial applications and ZnO hydrogels showing potential for antifungal treatments. These results underscore the potential of nanoparticle-based collagen hydrogels as innovative therapeutic tools for managing chronic wounds. Full article
(This article belongs to the Special Issue Active Biomedical Materials and Their Applications, 2nd Edition)
Show Figures

Figure 1

23 pages, 9992 KiB  
Article
Electrospun Polycaprolactone–Gelatin Fibrils Enabled 3D Hydrogel Microcapsules for Biomedical Applications
by Felix Tettey-Engmann, Thakur Sapkota, Sita Shrestha, Narayan Bhattarai and Salil Desai
J. Funct. Biomater. 2025, 16(3), 85; https://doi.org/10.3390/jfb16030085 - 2 Mar 2025
Viewed by 1028
Abstract
Microcapsules provide a microenvironment by improving the protection and delivery of cells and drugs to specific tissue areas, promoting cell integration and tissue regeneration. Effective microcapsules must not only be permeable for micronutrient diffusion but mechanically stable. Alginate hydrogel is one of the [...] Read more.
Microcapsules provide a microenvironment by improving the protection and delivery of cells and drugs to specific tissue areas, promoting cell integration and tissue regeneration. Effective microcapsules must not only be permeable for micronutrient diffusion but mechanically stable. Alginate hydrogel is one of the commonly used biomaterials for fabricating microcapsules due to its gel-forming ability and low toxicity. However, its mechanical instability, inertness, and excessive porosity have impeded its use. Embedding nanofibrils in the alginate hydrogel microcapsules improves their biological and mechanical properties. In this research, electrospun composite nanofibers of PCL–gelatin (PG) were first fabricated, characterized, and cryoground. The filtered and cryoground powder solution was mixed with the alginate solution and through electrospray, fabricated into microcapsules. Parameters such as flow rate, voltage, and hydrogel composition, which are critical in the electrostatic encapsulation process, were optimized. The microcapsules were further immersed in different solvent environments (DI water, complete media, and PBS), which were observed and compared for their morphology, size distribution, and mechanical stability properties. The average diameters of the PG nanofibers ranged between 0.2 and 2 μm, with an average porosity between 58 and 73%. The average size of the microcapsules varied between 300 and 900 μm, depending on the solvent environment. Overall, results showed an improved alginate 3D hydrogel network suitable for biomedical applications. Full article
Show Figures

Figure 1

16 pages, 8845 KiB  
Article
Cu-MOF-Decorated 3D-Printed Scaffolds for Infection Control and Bone Regeneration
by Ting Zhu, Qi Ni, Wenjie Wang, Dongdong Guo, Yixiao Li, Tianyu Chen, Dongyang Zhao, Xingyu Ma and Xiaojun Zhang
J. Funct. Biomater. 2025, 16(3), 83; https://doi.org/10.3390/jfb16030083 - 1 Mar 2025
Cited by 1 | Viewed by 1436
Abstract
Infection control and bone regeneration remain critical challenges in bone defect treatment. We developed a 3D-printed scaffold incorporating copper-based metal–organic framework-74 (Cu-MOF-74) within a polycaprolactone/hydroxyapatite composite. The synthesized Cu-MOF-74 exhibited a well-defined crystalline structure and rod-like morphology, as confirmed by TEM, EDS, FTIR, [...] Read more.
Infection control and bone regeneration remain critical challenges in bone defect treatment. We developed a 3D-printed scaffold incorporating copper-based metal–organic framework-74 (Cu-MOF-74) within a polycaprolactone/hydroxyapatite composite. The synthesized Cu-MOF-74 exhibited a well-defined crystalline structure and rod-like morphology, as confirmed by TEM, EDS, FTIR, and XRD analyses. The scaffolds exhibited hierarchical pores (100–200 μm) and demonstrated tunable hydrophilicity, as evidenced by the water contact angles decreasing from 103.3 ± 2.02° (0% Cu-MOF-74) to 63.60 ± 1.93° (1% Cu-MOF-74). A biphasic Cu2+ release profile was observed from the scaffolds, reaching cumulative concentrations of 98.97 ± 3.10 ppm by day 28. Antimicrobial assays showed concentration-dependent efficacy, with 1% Cu-MOF-74 scaffolds achieving 90.07 ± 1.94% and 80.03 ± 2.17% inhibition against Staphylococcus aureus and Escherichia coli, respectively. Biocompatibility assessments using bone marrow-derived mesenchymal stem cells revealed enhanced cell proliferation at Cu-MOF-74 concentrations ≤ 0.2%, while concentrations ≥ 0.5% induced cytotoxicity. Osteogenic differentiation studies highlighted elevated alkaline phosphatase activity and mineralization in scaffolds with 0.05–0.2% Cu-MOF-74 scaffolds, particularly at 0.05% Cu-MOF-74 scaffolds, which exhibited the highest calcium deposition and upregulation of bone sialoprotein and osteopontin expression. These findings demonstrate the dual functional efficacy of Cu-MOF-74/PCL/HAp scaffolds in promoting both infection control and bone regeneration. These optimized Cu-MOF-74 concentrations (0.05–0.2%) effectively balance antimicrobial and osteogenic properties, presenting a promising strategy for bone defect repair in clinical applications. Full article
(This article belongs to the Special Issue Functional Biomaterial for Bone Regeneration)
Show Figures

Figure 1

55 pages, 4225 KiB  
Systematic Review
Blood Plasma, Fibrinogen or Fibrin Biomaterial for the Manufacturing of Skin Tissue-Engineered Products and Other Dermatological Treatments: A Systematic Review
by Álvaro Sierra-Sánchez, Raquel Sanabria-de la Torre, Ana Ubago-Rodríguez, María I. Quiñones-Vico, Trinidad Montero-Vílchez, Manuel Sánchez-Díaz and Salvador Arias-Santiago
J. Funct. Biomater. 2025, 16(3), 79; https://doi.org/10.3390/jfb16030079 - 22 Feb 2025
Cited by 1 | Viewed by 1914
Abstract
The use of blood plasma, fibrinogen or fibrin, a natural biomaterial, has been widely studied for the development of different skin tissue-engineered products and other dermatological treatments. This systematic review reports the preclinical and clinical studies which use it alone or combined with [...] Read more.
The use of blood plasma, fibrinogen or fibrin, a natural biomaterial, has been widely studied for the development of different skin tissue-engineered products and other dermatological treatments. This systematic review reports the preclinical and clinical studies which use it alone or combined with other biomaterials and/or cells for the treatment of several dermatological conditions. Following the PRISMA 2020 Guidelines, 147 preclinical studies have revealed that the use of this biomaterial as a wound dressing or as a monolayer (one cell type) skin substitute are the preferred strategies, mainly for the treatment of excisional or surgical wounds. Moreover, blood plasma is mainly used alone although its combination with other biomaterials such as agarose, polyethylene glycol or collagen has also been reported to increase its wound healing potential. However, most of the 17 clinical reviewed evaluated its use for the treatment of severely burned patients as a wound dressing or bilayer (two cell types) skin substitute. Although the number of preclinical studies evaluating the use of blood plasma as a dermatological treatment has increased during the last fifteen years, this has not been correlated with a wide variety of clinical studies. Its safety and wound healing potential have been proved; however, the lack of a standard model and the presence of several approaches have meant that its translation to a clinical environment is still limited. A higher number of clinical studies should be carried out in the coming years to set a standard wound healing strategy for each dermatological disease. Full article
(This article belongs to the Special Issue Novel Biomaterials for Tissue Engineering)
Show Figures

Figure 1

14 pages, 4619 KiB  
Article
Cobalt-Incorporated Hydroxyapatite Conditioned Media Promotes In Vitro Scratch Wound Healing and Mesenchymal Stem Cell Migration
by Weerapat Leelasangsai, Krongrat Thummachot, Puttita Thammasarnsophon, Autcharaporn Srion, Jintamai Suwanprateeb and Somying Patntirapong
J. Funct. Biomater. 2025, 16(3), 72; https://doi.org/10.3390/jfb16030072 - 20 Feb 2025
Viewed by 1104
Abstract
Cell migration of mesenchymal stem cells (MSCs) is critical for bone healing and remodeling. Cobalt is a well-known hypoxia mimic, which can enhance MSC migration. Therefore, the objective of this study was to investigate the migratory response of MSCs to a developed cobalt-incorporated [...] Read more.
Cell migration of mesenchymal stem cells (MSCs) is critical for bone healing and remodeling. Cobalt is a well-known hypoxia mimic, which can enhance MSC migration. Therefore, the objective of this study was to investigate the migratory response of MSCs to a developed cobalt-incorporated hydroxyapatite (HACo) material. HACo was fabricated by a simple ion exchange procedure at concentrations ranging from 40 to 8000 μM into disc shape. HACo discs were incubated in the media and conditioned media (CM; HACoCM) were collected for MSC culture. HACM served as a control. MSCs were cultured until reaching 90% confluence before the wound was generated by scraping. Time-lapse imaging of wound migration was monitored, recorded, and assessed. Statistical analysis was performed by one-way ANOVA followed by a Dunnett’s test. The wound area gradually declined from 0 to 40 h for all samples. HACoCM at 40 µM (HACo40CM) promoted wound closure at the early period of wound healing. Both HACo40CM and HACo8000CM enhanced the distance and velocity of individual cell migration. However, only HACo40CM affected cell persistence and direction at the early period of cell migration. Exposure to HACoCM accelerated the speed of MSC migration, which is necessary for wound healing. The migratory ability of individual cells could help the rate of wound healing. Therefore, HACo materials may serve as potential biomaterials for enhanced bone healing. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

22 pages, 6166 KiB  
Article
Schiff Base-Crosslinked Tetra-PEG-BSA Hydrogel: Design, Properties, and Multifunctional Functions
by Yuanyuan Qu, Jinlong Li, Xin Jia and Lijun Yin
J. Funct. Biomater. 2025, 16(2), 69; https://doi.org/10.3390/jfb16020069 - 18 Feb 2025
Cited by 1 | Viewed by 1493
Abstract
Hydrogel network structures play a crucial role in determining mechanical properties and have broad applications in biomedical and industrial fields. Therefore, their rational design is essential. Herein, we developed a Schiff base-crosslinked hydrogel through the reaction of Tetra-armed polyethylene glycol with aldehyde end [...] Read more.
Hydrogel network structures play a crucial role in determining mechanical properties and have broad applications in biomedical and industrial fields. Therefore, their rational design is essential. Herein, we developed a Schiff base-crosslinked hydrogel through the reaction of Tetra-armed polyethylene glycol with aldehyde end groups (Tetra-PEG-CHO) and bovine serum albumin (BSA) under alkaline conditions. In addition, the Tetra-PEG-BSA hydrogel showed a rapid gelation time of around 11 s, much faster than that of the GLU-BSA, HT-BSA, and GDL-BSA hydrogels. It had high optical transmittance (92.92% at 600 nm) and swelling ratios superior to the other gels in different solutions, maintaining structural integrity even in denaturing environments such as guanidine hydrochloride and SDS. Mechanical tests showed superior strain at break (84.12 ± 0.76%), rupture stress (28.64 ± 1.21 kPa), and energy dissipation ability (468.0 ± 34.9 kJ·m−3), surpassing all control group hydrogels. MTT cytotoxicity assays indicated that cell viability remained >80% at lower concentrations, confirming excellent biocompatibility. These findings suggest that Tetra-PEG-BSA hydrogels may serve as effective materials for drug delivery, tissue engineering, and 3D printing. Full article
(This article belongs to the Section Synthesis of Biomaterials via Advanced Technologies)
Show Figures

Figure 1

19 pages, 10575 KiB  
Article
In Vitro Bacterial Growth on Titanium Surfaces Treated with Nanosized Hydroxyapatite
by Maria Holmström, Sonia Esko, Karin Danielsson and Per Kjellin
J. Funct. Biomater. 2025, 16(2), 66; https://doi.org/10.3390/jfb16020066 - 16 Feb 2025
Viewed by 1076
Abstract
Bacterial growth on implant surfaces poses a significant obstacle to the long-term success of dental and orthopedic implants. There is a need for implants that promote osseointegration while at the same time decreasing or preventing bacterial growth. In this study, the existing methods [...] Read more.
Bacterial growth on implant surfaces poses a significant obstacle to the long-term success of dental and orthopedic implants. There is a need for implants that promote osseointegration while at the same time decreasing or preventing bacterial growth. In this study, the existing methods for the measurement of bacterial biofilms were adapted so that they were suitable for measuring the bacterial growth on implant surfaces. Two different strains of bacteria, Pseudomonas aeruginosa and Staphylococcus epidermidis, were used, and the in vitro effect of bacterial growth on titanium surfaces coated with an ultrathin (20–40 nm thick) layer of nanosized hydroxyapatite (nHA) was investigated. After 2 h of biofilm growth, there was a 33% reduction in both S. epidermidis and P. aeruginosa bacteria on nHA compared to Ti. For a more mature 24 h biofilm, there was a 46% reduction in S. epidermidis and a 43% reduction in P. aeruginosa on nHA compared to Ti. This shows that coating nHA onto implants could be of benefit in reducing implant-related infections. Full article
Show Figures

Graphical abstract

13 pages, 2817 KiB  
Article
Epigallocatechin-3-Gallate (EGCG)-Loaded Hyaluronic Acid Hydrogel Seems to Be Effective in a Rat Model of Collagenase-Induced Achilles Tendinopathy
by Hwa Jun Kang, Sivakumar Allur Subramanian, Si Young Song, Jihyun Hwang, Collin Lee and Sung Jae Kim
J. Funct. Biomater. 2025, 16(2), 55; https://doi.org/10.3390/jfb16020055 - 10 Feb 2025
Viewed by 1283
Abstract
Tendon injuries account for 45% of musculoskeletal injuries. However, research on the occurrence and pathogenesis of tendinopathy is insufficient, and there is still much debate regarding treatment methods. It is important to understand the molecular mechanisms of oxidative stress and inflammatory responses because [...] Read more.
Tendon injuries account for 45% of musculoskeletal injuries. However, research on the occurrence and pathogenesis of tendinopathy is insufficient, and there is still much debate regarding treatment methods. It is important to understand the molecular mechanisms of oxidative stress and inflammatory responses because oxidative stress in tendon tissue is induced by various factors, including inflammatory cytokines, drug exposure, and metabolic abnormalities. In this study, 28 rats were divided into four groups (7 rats assigned to each group): control group (CON), collagenase injection group (CL), collagenase injection and hyaluronic acid injection group (CL + HA), and collagenase injection and EGCG-loaded hyaluronic acid injection group (CL + HA + EGCG). Seven weeks after the start of the study, all rats underwent histochemical analysis, immunofluorescence staining, and Western blot. The results showed increased inflammatory cells, disarray of collagen matrix, and degradation of the collagen matrix in the CL group. However, in the EGCG-treated group, there was a significant increase in type I collagen expression and a significant decrease in type III collagen expression, compared to the CL group. Additionally, there was an increase in the expression of antioxidant markers SOD (Superoxide Dismutase) and CAT (Catalase), tenogenic markers COLL-1 (collagen type I), and SCX (Scleraxis), and a downregulated expression of apoptosis markers cas-3 and cas-7. Our findings suggest that EGCG-loaded hyaluronic acid hydrogel exhibits potential in preventing tendon damage and promoting the regeneration process in a rat model of Achilles tendinopathy. The insights gained from our histological and molecular investigations highlight the future potential for testing novel tendinopathy treatments in human subjects. Full article
(This article belongs to the Special Issue Novel Biomaterials for Tissue Engineering)
Show Figures

Figure 1

18 pages, 2192 KiB  
Article
Next-Generation Biomaterials for Wound Healing: Development and Evaluation of Collagen Scaffolds Functionalized with a Heparan Sulfate Mimic and Fibroblast Growth Factor 2
by Merel Gansevoort, Sabine Wentholt, Gaia Li Vecchi, Marjolein de Vries, Elly M. M. Versteeg, Bouke K. H. L. Boekema, Agnes Choppin, Denis Barritault, Franck Chiappini, Toin H. van Kuppevelt and Willeke F. Daamen
J. Funct. Biomater. 2025, 16(2), 51; https://doi.org/10.3390/jfb16020051 - 7 Feb 2025
Cited by 1 | Viewed by 1807
Abstract
Fibrosis after full-thickness wound healing—especially after severe burn wounds—remains a clinically relevant problem. Biomaterials that mimic the lost dermal extracellular matrix have shown promise but cannot completely prevent scar formation. We present a novel approach where porous type I collagen scaffolds were covalently [...] Read more.
Fibrosis after full-thickness wound healing—especially after severe burn wounds—remains a clinically relevant problem. Biomaterials that mimic the lost dermal extracellular matrix have shown promise but cannot completely prevent scar formation. We present a novel approach where porous type I collagen scaffolds were covalently functionalized with ReGeneRating Agent (RGTA®) OTR4120. RGTA® is a glycanase-resistant heparan sulfate mimetic that promotes regeneration when applied topically to chronic wounds. OTR4120 is able to capture fibroblast growth factor 2 (FGF-2), a heparan/heparin-binding growth factor that inhibits the activity of fibrosis-driving myofibroblasts. Scaffolds with various concentrations and distributions of OTR4120 were produced. When loaded with FGF-2, collagen–OTR4120 scaffolds demonstrated sustained release of FGF-2 compared to collagen–heparin scaffolds. Their anti-fibrotic potential was investigated in vitro by seeding primary human dermal fibroblasts on the scaffolds followed by stimulation with transforming growth factor β1 (TGF-β1) to induce myofibroblast differentiation. Collagen–OTR4120(-FGF-2) scaffolds diminished the gene expression levels of several myofibroblast markers. In absence of FGF-2 the collagen–OTR4120 scaffolds displayed an inherent anti-fibrotic effect, as the expression of two fibrotic markers (TGF-β1 and type I collagen) was diminished. This work highlights the potential of collagen–OTR4120 scaffolds as biomaterials to improve skin wound healing. Full article
(This article belongs to the Special Issue Biomaterials for Wound Healing and Tissue Repair)
Show Figures

Graphical abstract

38 pages, 3106 KiB  
Review
Exploring the Properties and Indications of Chairside CAD/CAM Materials in Restorative Dentistry
by Codruţa-Eliza Ille, Anca Jivănescu, Daniel Pop, Eniko Tunde Stoica, Razvan Flueras, Ioana-Cristina Talpoş-Niculescu, Raluca Mioara Cosoroabă, Ramona-Amina Popovici and Iustin Olariu
J. Funct. Biomater. 2025, 16(2), 46; https://doi.org/10.3390/jfb16020046 - 1 Feb 2025
Cited by 3 | Viewed by 2756
Abstract
The present review provides an up-to-date overview of chairside CAD/CAM materials used in restorative dentistry, focusing on their classification, properties, and clinical applications. If CAD/CAM technology was only an aspiration in the past, a higher proportion of clinics are employing it nowadays. The [...] Read more.
The present review provides an up-to-date overview of chairside CAD/CAM materials used in restorative dentistry, focusing on their classification, properties, and clinical applications. If CAD/CAM technology was only an aspiration in the past, a higher proportion of clinics are employing it nowadays. The market is overflowing with biomaterials, and these materials are constantly evolving, making it challenging for practitioners to choose the most appropriate one, especially in correlation with patients’ medical diseases. The evolution of CAD/CAM technology has revolutionized dental practice, enabling the efficient fabrication of high-quality restorations in a single appointment. The main categories of chairside CAD/CAM materials include feldspathic ceramics, leucite-reinforced ceramics, lithium disilicate, zirconia, hybrid ceramics, and acrylic resins. The mechanical, physical, and aesthetic properties of these materials are discussed, along with their advantages and limitations for different clinical scenarios. Factors influencing material selection, such as strength, aesthetics, and ease of use, are also assessed. Ultimately, the guiding principle of dentistry is minimally invasive treatment following the particularity of the clinical case to obtain the envisioned result. Correlating all these factors, a simple, up-to-date classification is required to begin an individualized treatment. By synthesizing current evidence, this comprehensive review aims to guide clinicians in selecting appropriate chairside CAD/CAM materials to achieve optimal functional and aesthetic outcomes in restorative procedures. The integration of digital workflows and continued development of novel materials promise to further enhance the capabilities of chairside CAD/CAM systems in modern dental practice. Full article
(This article belongs to the Special Issue State-of-the-Art Dental Adhesives and Restorative Composites)
Show Figures

Figure 1

18 pages, 1206 KiB  
Review
Recent Advancements in Chitosan-Based Biomaterials for Wound Healing
by Jahnavi Shah, Dhruv Patel, Dnyaneshwari Rananavare, Dev Hudson, Maxwell Tran, Rene Schloss, Noshir Langrana, Francois Berthiaume and Suneel Kumar
J. Funct. Biomater. 2025, 16(2), 45; https://doi.org/10.3390/jfb16020045 - 30 Jan 2025
Cited by 9 | Viewed by 3616
Abstract
Chitosan is a positively charged natural polymer with several properties conducive to wound-healing applications, such as biodegradability, structural integrity, hydrophilicity, adhesiveness to tissue, and bacteriostatic potential. Along with other mechanical properties, some of the properties discussed in this review are antibacterial properties, mucoadhesive [...] Read more.
Chitosan is a positively charged natural polymer with several properties conducive to wound-healing applications, such as biodegradability, structural integrity, hydrophilicity, adhesiveness to tissue, and bacteriostatic potential. Along with other mechanical properties, some of the properties discussed in this review are antibacterial properties, mucoadhesive properties, biocompatibility, high fluid absorption capacity, and anti-inflammatory response. Chitosan forms stable complexes with oppositely charged polymers, arising from electrostatic interactions between (+) amino groups of chitosan and (−) groups of other polymers. These polyelectrolyte complexes (PECs) can be manufactured using various materials and methods, which brings a diversity of formulations and properties that can be optimized for specific wound healing as well as other applications. For example, chitosan-based PEC can be made into dressings/films, hydrogels, and membranes. There are various pros and cons associated with manufacturing the dressings; for instance, a layer-by-layer casting technique can optimize the nanoparticle release and affect the mechanical strength due to the formation of a heterostructure. Furthermore, chitosan’s molecular weight and degree of deacetylation, as well as the nature of the negatively charged biomaterial with which it is cross-linked, are major factors that govern the mechanical properties and biodegradation kinetics of the PEC dressing. The use of chitosan in wound care products is forecasted to drive the growth of the global chitosan market, which is expected to increase by approximately 14.3% within the next decade. This growth is driven by products such as chitoderm-containing ointments, which provide scaffolding for skin cell regeneration. Despite significant advancements, there remains a critical gap in translating chitosan-based biomaterials from research to clinical applications. Full article
(This article belongs to the Special Issue Functional Biomaterials for Skin Wound Healing)
Show Figures

Figure 1

19 pages, 3130 KiB  
Article
Development and Characterization of a Gelatin-Based Photoactive Hydrogel for Biomedical Application
by Antanas Straksys, Adei Abouhagger, Monika Kirsnytė-Šniokė, Tatjana Kavleiskaja, Arunas Stirke and Wanessa C. M. A. Melo
J. Funct. Biomater. 2025, 16(2), 43; https://doi.org/10.3390/jfb16020043 - 29 Jan 2025
Cited by 1 | Viewed by 1571
Abstract
Photoactive hydrogels facilitate light-triggered photochemical processes, positioning them as innovative solutions in biomedical applications, especially in antimicrobial photodynamic therapy. This study presents a novel methylene blue-based photoactive hydrogel designed as a topical gel solution to overcome the limitations of traditional pad-based systems by [...] Read more.
Photoactive hydrogels facilitate light-triggered photochemical processes, positioning them as innovative solutions in biomedical applications, especially in antimicrobial photodynamic therapy. This study presents a novel methylene blue-based photoactive hydrogel designed as a topical gel solution to overcome the limitations of traditional pad-based systems by offering enhanced adaptability to irregular wound surfaces, uniform photosensitizer distribution, and deeper therapeutic light penetration. This study investigated the development of hydrogels by cross-linking gelatin with glutaraldehyde (GA) and incorporating methylene blue (MB) to investigate the effects of cross-linking density, network structure, and small molecule inclusion on hydrogel properties. The results showed that while glutaraldehyde concentration influenced swelling behavior and network structure, the inclusion of MB altered these properties, particularly reducing swelling and MB retention at higher GA concentrations. Rheological and thermal analyses confirmed that higher GA concentrations made the hydrogels more rigid, with MB influencing both mechanical and thermal properties. Additionally, the hydrogels exhibited enhanced antimicrobial properties through increased reactive oxygen species production, particularly in light-activated conditions, demonstrating the potential of MB-based photoactive hydrogels for improving antimicrobial efficacy, especially against S. aureus, E. coli, and C. albicans, offering as a possible alternative to traditional antimicrobial treatments. Full article
(This article belongs to the Special Issue Functional Hydrogels for Drug Delivery Applications)
Show Figures

Figure 1

14 pages, 2975 KiB  
Article
Modulated-Diameter Zirconia Nanotubes for Controlled Drug Release—Bye to the Burst
by Gabriel Onyenso, Swathi Naidu Vakamulla Raghu, Patrick Hartwich and Manuela Sonja Killian
J. Funct. Biomater. 2025, 16(2), 37; https://doi.org/10.3390/jfb16020037 - 21 Jan 2025
Cited by 3 | Viewed by 2677
Abstract
The performance of an orthopedic procedure depends on several tandem functionalities. Such characteristics include materials’ surface properties and subsequent responses. Implant surfaces are typically roughened; this roughness can further be optimized to a specific morphology such as nanotubular roughness (ZrNTs) and the surfaces [...] Read more.
The performance of an orthopedic procedure depends on several tandem functionalities. Such characteristics include materials’ surface properties and subsequent responses. Implant surfaces are typically roughened; this roughness can further be optimized to a specific morphology such as nanotubular roughness (ZrNTs) and the surfaces can further be used as static drug reservoirs. ZrNTs coatings are attracting interest due to their potential to improve the success rate of implant systems, by means of better physical affixation and also micro/nano physio-chemical interaction with the extracellular matrix (ECM). Effective control over the drug release properties from such coatings has been the subject of several published reports. In this study, a novel and simple approach to extending drug release time and limiting the undesirable burst release from zirconia nanotubes (ZrNTs) via structural modification was demonstrated. The latter involved fabricating a double-layered structure with a modulated diameter and was achieved by varying the voltage and time during electrochemical anodization. The structurally modified ZrNTs and their homogenous equivalents were characterized via SEM and ToF-SIMS, and their drug release properties were monitored and compared using UV–Vis spectroscopy. We report a significant reduction in the initial burst release phenomenon and enhanced overall release time. The simple structural modification of ZrNTs can successfully enhance drug release performance, allowing for flexibility in designing drug delivery coatings for specific implant challenges, and offering a new horizon for smart biomaterials based on metal oxide nanostructures. Full article
(This article belongs to the Section Biomaterials for Drug Delivery)
Show Figures

Graphical abstract

24 pages, 30692 KiB  
Article
Sacrificing Alginate in Decellularized Extracellular Matrix Scaffolds for Implantable Artificial Livers
by Chanh-Trung Nguyen, Van Phu Le, Thi Huong Le, Jeong Sook Kim, Sung Hoon Back and Kyo-in Koo
J. Funct. Biomater. 2025, 16(1), 35; https://doi.org/10.3390/jfb16010035 - 19 Jan 2025
Viewed by 2016
Abstract
This research introduced a strategy to fabricate sub-millimeter-diameter artificial liver tissue by extruding a combination of a liver decellularized extracellular matrix (dECM), alginate, endothelial cells, and hepatocytes. Vascularization remains a critical challenge in liver tissue engineering, as replicating the liver’s intricate vascular network [...] Read more.
This research introduced a strategy to fabricate sub-millimeter-diameter artificial liver tissue by extruding a combination of a liver decellularized extracellular matrix (dECM), alginate, endothelial cells, and hepatocytes. Vascularization remains a critical challenge in liver tissue engineering, as replicating the liver’s intricate vascular network is essential for sustaining cellular function and viability. Seven scaffold groups were evaluated, incorporating different cell compositions, scaffold materials, and structural configurations. The hepatocyte and endothelial cell scaffold treated with alginate lyase demonstrated the highest diffusion rate, along with enhanced albumin secretion (2.8 µg/mL) and urea synthesis (220 µg/mL) during the same period by day 10. A dense and interconnected endothelial cell network was observed as early as day 4 in the lyased coculture group. Furthermore, three-week implantation studies in rats showed a stable integration to the host with no adverse effects. This approach offers significant potential for advancing functional liver tissue replacements, combining accelerated diffusion, enhanced albumin secretion, improved urea synthesis, dense vascular network formation, and stable implantation outcomes. Full article
(This article belongs to the Special Issue Advanced Functional Biomaterials in Regenerative Medicine)
Show Figures

Figure 1

20 pages, 5255 KiB  
Article
Virus-Mimicking Polymer Nanocomplexes Co-Assembling HCV E1E2 and Core Proteins with TLR 7/8 Agonist—Synthesis, Characterization, and In Vivo Activity
by Thomas R. Fuerst, Alexander Marin, Sarah Jeong, Liudmila Kulakova, Raman Hlushko, Katrina Gorga, Eric A. Toth, Nevil J. Singh and Alexander K. Andrianov
J. Funct. Biomater. 2025, 16(1), 34; https://doi.org/10.3390/jfb16010034 - 19 Jan 2025
Cited by 1 | Viewed by 1722
Abstract
Hepatitis C virus (HCV) is a major public health concern, and the development of an effective HCV vaccine plays an important role in the effort to prevent new infections. Supramolecular co-assembly and co-presentation of the HCV envelope E1E2 heterodimer complex and core protein [...] Read more.
Hepatitis C virus (HCV) is a major public health concern, and the development of an effective HCV vaccine plays an important role in the effort to prevent new infections. Supramolecular co-assembly and co-presentation of the HCV envelope E1E2 heterodimer complex and core protein presents an attractive vaccine design strategy for achieving effective humoral and cellular immunity. With this objective, the two antigens were non-covalently assembled with an immunostimulant (TLR 7/8 agonist) into virus-mimicking polymer nanocomplexes (VMPNs) using a biodegradable synthetic polyphosphazene delivery vehicle. The resulting assemblies were characterized using dynamic light scattering and asymmetric flow field-flow fractionation methods and directly visualized in their vitrified state by cryogenic electron microscopy. The in vivo superiority of VMPNs over the individual components and an Alum-formulated vaccine manifests in higher neutralizing antibody titers, the promotion of a balanced IgG response, and the induction of a cellular immunity—CD4+ T cell responses to core proteins. The aqueous-based spontaneous co-assembly of antigens and immunopotentiating molecules enabled by a synthetic biodegradable carrier offers a simple and effective pathway to the development of polymer-based supramolecular nanovaccine systems. Full article
(This article belongs to the Special Issue Synthesis, Biomanufacturing, and Bio-Application of Advanced Polymers)
Show Figures

Graphical abstract

20 pages, 4622 KiB  
Article
Effects of Microstructured and Anti-Inflammatory-Coated Cochlear Implant Electrodes on Fibrous Tissue Growth and Neuronal Survival
by Lennart Fibranz, Wiebke Behrends, Katharina Wulf, Stefan Raggl, Lisa Kötter, Thomas Eickner, Soeren Schilp, Thomas Lenarz and Gerrit Paasche
J. Funct. Biomater. 2025, 16(1), 33; https://doi.org/10.3390/jfb16010033 - 18 Jan 2025
Cited by 1 | Viewed by 1320
Abstract
Cochlear implants are well established devices for treating severe hearing loss. However, due to the trauma caused by the insertion of the electrode and the subsequent formation of connective tissue, their clinical effectiveness varies. The aim of the current study was to achieve [...] Read more.
Cochlear implants are well established devices for treating severe hearing loss. However, due to the trauma caused by the insertion of the electrode and the subsequent formation of connective tissue, their clinical effectiveness varies. The aim of the current study was to achieve a long-term reduction in connective tissue growth and impedance by combining surface patterns on the electrode array with a poly-L-lactide coating containing 20% diclofenac. Three groups of six guinea pigs each (control, structure, structure with diclofenac in the coating) were implanted for four weeks. The hearing thresholds were measured before implantation and after 28 days, and impedances were monitored over time. After histological preparation, connective tissue growth and spiral ganglion neuron (SGN) survival were quantified. The hearing thresholds and impedances increased over time in all groups, showing no significant differences. The treatment groups showed increased damage in the cochlea, which appeared to be caused by the elevated parts of the microstructures. This seems to be amplified by the trauma model used in the current study. The impedances correlated with connective tissue growth near the electrode contacts. In addition, SGN survival was negatively correlated with the presence of connective tissue, both of which highlight the importance of successfully reducing connective tissue formation after cochlear implantation. Full article
(This article belongs to the Special Issue Recent Advances in Functional Coatings and Biomaterials Surfaces)
Show Figures

Figure 1

17 pages, 8139 KiB  
Article
Long-Term Stability and Osteogenic Activity of Recycled Polysulfone-Calcium Silicate Bone Implants In Vitro
by Chi-Nan Chang, Yun-Ru Huang and Shinn-Jyh Ding
J. Funct. Biomater. 2025, 16(1), 31; https://doi.org/10.3390/jfb16010031 - 17 Jan 2025
Cited by 1 | Viewed by 1105
Abstract
Environmental protection issues have received widespread attention, making material recycling increasingly important. The upcycling of polysulfone (PSF) medical waste, recognized as a high-performance plastic with excellent mechanical properties, deserves promotion. While PSF is suitable for use as an orthopedic implant material, such as [...] Read more.
Environmental protection issues have received widespread attention, making material recycling increasingly important. The upcycling of polysulfone (PSF) medical waste, recognized as a high-performance plastic with excellent mechanical properties, deserves promotion. While PSF is suitable for use as an orthopedic implant material, such as internal fixation, its osteogenesis capabilities must be enhanced. Mechanical stability, particularly over the long term, is a significant concern for bone implants in load-bearing applications. This study recycled PSF medical waste to create bone composites by incorporating osteogenic calcium silicate (CaSi) at three different contents: 10%, 20%, and 30%. We evaluated the phase, morphology, weight loss, and three-point bending strength of the PSF-based composites after they were soaked in dynamic simulated body fluid (SBF) at pH levels of 7.4 and 5.0 for up to 12 months. Human mesenchymal stem cells (hMSCs) were utilized to assess the osteogenic activity of these composites. Our findings revealed that, while the bending strength of PSF-based composites declined with prolonged exposure to SBF, the dissolution of CaSi particles led to a manageable weight loss of about 4% after 12 months, regardless of pH 7.4 or 5.0. Importantly, the incorporation of CaSi into the PSF matrix exhibited a positive effect on the attachment and proliferation of hMSCs. The levels of alkaline phosphatase (ALP) and calcium deposits directly correlated with the CaSi content, indicating superior osteogenic activity. Considering biostability and osteogenic ability, the 20% CaSi-PSF composite demonstrated promise as a candidate for load-bearing implant applications. Full article
(This article belongs to the Collection Feature Papers in Bone Biomaterials)
Show Figures

Figure 1

13 pages, 12554 KiB  
Article
Comparative In Vitro Study of Sol–Gel-Derived Bioactive Glasses Incorporated into Dentin Adhesives: Effects on Remineralization and Mechanical Properties of Dentin
by In-Seong Park, Hyun-Jung Kim, Jiyoung Kwon and Duck-Su Kim
J. Funct. Biomater. 2025, 16(1), 29; https://doi.org/10.3390/jfb16010029 - 16 Jan 2025
Cited by 2 | Viewed by 1646
Abstract
To overcome limitations of dentin bonding due to collagen degradation at a bonded interface, incorporating bioactive glass (BAG) into dentin adhesives has been proposed to enhance remineralization and improve bonding durability. This study evaluated sol–gel-derived BAGs (BAG79, BAG87, BAG91, and BAG79F) and conventional [...] Read more.
To overcome limitations of dentin bonding due to collagen degradation at a bonded interface, incorporating bioactive glass (BAG) into dentin adhesives has been proposed to enhance remineralization and improve bonding durability. This study evaluated sol–gel-derived BAGs (BAG79, BAG87, BAG91, and BAG79F) and conventional melt-quenched BAG (BAG45) incorporated into dentin adhesive to assess their remineralization and mechanical properties. The BAGs were characterized by using field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy for surface morphology. The surface area was measured by the Brunauer–Emmett–Teller method. X-ray diffraction (XRD) analysis was performed to determine the crystalline structure of the BAGs. Adhesive surface analysis was performed after approximating each experimental dentin adhesive and demineralized dentin by using FE-SEM. The elastic modulus of the treated dentin was measured after BAG-containing dentin adhesive application. The sol–gel-derived BAGs exhibited larger surface areas (by 400–600 times) than conventional BAG, with BAG87 displaying the largest surface area. XRD analysis indicated more pronounced and rapid formation of hydroxyapatite in the sol–gel BAGs. Dentin with BAG87-containing adhesive exhibited the highest elastic modulus. The incorporation of sol–gel-derived BAGs, especially BAG87, into dentin adhesives enhances the remineralization and mechanical properties of adhesive–dentin interfaces. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

38 pages, 3519 KiB  
Review
Biodegradable and Stimuli-Responsive Nanomaterials for Targeted Drug Delivery in Autoimmune Diseases
by Nargish Parvin, Sang Woo Joo and Tapas K. Mandal
J. Funct. Biomater. 2025, 16(1), 24; https://doi.org/10.3390/jfb16010024 - 14 Jan 2025
Cited by 10 | Viewed by 2699
Abstract
Autoimmune diseases present complex therapeutic challenges due to their chronic nature, systemic impact, and requirement for precise immunomodulation to avoid adverse side effects. Recent advancements in biodegradable and stimuli-responsive nanomaterials have opened new avenues for targeted drug delivery systems capable of addressing these [...] Read more.
Autoimmune diseases present complex therapeutic challenges due to their chronic nature, systemic impact, and requirement for precise immunomodulation to avoid adverse side effects. Recent advancements in biodegradable and stimuli-responsive nanomaterials have opened new avenues for targeted drug delivery systems capable of addressing these challenges. This review provides a comprehensive analysis of state-of-the-art biodegradable nanocarriers such as polymeric nanoparticles, liposomes, and hydrogels engineered for targeted delivery in autoimmune therapies. These nanomaterials are designed to degrade safely in the body while releasing therapeutic agents in response to specific stimuli, including pH, temperature, redox conditions, and enzymatic activity. By achieving localized and controlled release of anti-inflammatory and immunosuppressive agents, these systems minimize systemic toxicity and enhance therapeutic efficacy. We discuss the underlying mechanisms of stimuli-responsive nanomaterials, recent applications in treating diseases such as rheumatoid arthritis, multiple sclerosis, and inflammatory bowel disease, and the design considerations essential for clinical translation. Additionally, we address current challenges, including biocompatibility, scalability, and regulatory hurdles, as well as future directions for integrating advanced nanotechnology with personalized medicine in autoimmune treatment. This review highlights the transformative potential of biodegradable and stimuli-responsive nanomaterials, presenting them as a promising strategy to advance precision medicine and improve patient outcomes in autoimmune disease management. Full article
(This article belongs to the Special Issue Emerging Trends of Nanomaterials in Biology)
Show Figures

Figure 1

15 pages, 5609 KiB  
Article
The Effect of Surface Functionalization of Magnesium Alloy on Degradability, Bioactivity, Cytotoxicity, and Antibiofilm Activity
by Morena Nocchetti, Michela Piccinini, Donatella Pietrella, Cinzia Antognelli, Maurizio Ricci, Alessandro Di Michele, Layla Jalaoui and Valeria Ambrogi
J. Funct. Biomater. 2025, 16(1), 22; https://doi.org/10.3390/jfb16010022 - 12 Jan 2025
Cited by 2 | Viewed by 1210
Abstract
Magnesium alloys are promising biomaterials to be used as temporary implants due to their biocompatibility and biodegradability. The main limitation in the use of these alloys is their rapid biodegradation. Moreover, the risk of microbial infections, often following the implant surgery and hard [...] Read more.
Magnesium alloys are promising biomaterials to be used as temporary implants due to their biocompatibility and biodegradability. The main limitation in the use of these alloys is their rapid biodegradation. Moreover, the risk of microbial infections, often following the implant surgery and hard to eradicate, is another challenge. Thus, with the aim of reducing biodegradability and conferring antibiofilm activity, sheets of the magnesium alloy AZ31 were properly modified with the introduction of hydroxy (polyethyleneoxy)propyl silane (PEG) and quaternary ammonium silane chains (QAS). The derivatized sheets were characterized by ATR-FTIR spectroscopy and their performances as concerns their stability, Mg2+ in vitro release, and in vitro bioactivity were evaluated as well. The results showed an increased stability with a reduction in corrosion, a slower Mg2+ ion release, and the formation of hydroxyapatite in the sheets’ surface. In addition, cytotoxicity evaluations were carried out on human gingival fibroblasts showing that the AZ31 and AZ31-PEG plates had good cytocompatibility. Finally, the antibiofilm activity on Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa was carried out by evaluating the capacity of inhibition of biofilm adhesion and formation. The results demonstrated a significant reduction in biofilm formation by Staphylococcus epidermidis on AZ31-QAS. Full article
(This article belongs to the Special Issue Advances in Biomedical Alloys and Surface Modification)
Show Figures

Figure 1

23 pages, 3417 KiB  
Review
Natural Protein Films from Textile Waste for Wound Healing and Wound Dressing Applications
by Livia Ottaviano, Sara Buoso, Roberto Zamboni, Giovanna Sotgiu and Tamara Posati
J. Funct. Biomater. 2025, 16(1), 20; https://doi.org/10.3390/jfb16010020 - 10 Jan 2025
Cited by 3 | Viewed by 1946
Abstract
In recent years, several studies have focused on the development of sustainable, biocompatible, and biodegradable films with potential applications in wound healing and wound dressing systems. Natural macromolecules, particularly proteins, have emerged as attractive alternatives to synthetic polymers due to their biocompatibility, biodegradability, [...] Read more.
In recent years, several studies have focused on the development of sustainable, biocompatible, and biodegradable films with potential applications in wound healing and wound dressing systems. Natural macromolecules, particularly proteins, have emerged as attractive alternatives to synthetic polymers due to their biocompatibility, biodegradability, low immunogenicity, and adaptability. Among these proteins, keratin, extracted from waste wool, and fibroin, derived from Bombyx mori cocoons, exhibit exceptional properties such as mechanical strength, cell adhesion capabilities, and suitability for various fabrication methods. These proteins can also be functionalized with antimicrobial, antioxidant, and anti-inflammatory compounds, making them highly versatile for biomedical applications. This review highlights the promising potential of keratin- and fibroin-based films as innovative platforms for wound healing, emphasizing their advantages and the prospects they offer in creating next-generation wound dressing devices. Full article
(This article belongs to the Special Issue Natural Product-Based Biomaterials for Advanced Wound Dressings)
Show Figures

Figure 1

16 pages, 7192 KiB  
Article
Osteoblastic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells on P3HT Thin Polymer Film
by Paola Campione, Maria Giovanna Rizzo, Luana Vittoria Bauso, Ileana Ielo, Grazia Maria Lucia Messina and Giovanna Calabrese
J. Funct. Biomater. 2025, 16(1), 10; https://doi.org/10.3390/jfb16010010 - 2 Jan 2025
Cited by 1 | Viewed by 4144
Abstract
Bone defects restoration has always been an arduous challenge in the orthopedic field due to the limitations of conventional grafts. Bone tissue engineering offers an alternative approach by using biomimetic materials, stem cells, and growth factors that are able to improve the regeneration [...] Read more.
Bone defects restoration has always been an arduous challenge in the orthopedic field due to the limitations of conventional grafts. Bone tissue engineering offers an alternative approach by using biomimetic materials, stem cells, and growth factors that are able to improve the regeneration of bone tissue. Different biomaterials have attracted great interest in BTE applications, including the poly(3-hexylthiofene) (P3HT) conductive polymer, whose primary advantage is its capability to provide a native extracellular matrix-like environment. Based on this evidence, in this study, we evaluated the biological response of human adipose-derived mesenchymal stem cells cultured on P3HT thin polymer film for 14 days. Our results suggest that P3HT represents a good substrate to induce osteogenic differentiation of osteoprogenitor cells, even in the absence of specific inductive growth factors, thus representing a promising strategy for bone regenerative medicine. Therefore, the system provided may offer an innovative platform for next-generation biocompatible materials for regenerative medicine. Full article
(This article belongs to the Special Issue Mesoporous Nanomaterials for Bone Tissue Engineering)
Show Figures

Figure 1

Back to TopTop