Editor's Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

Article
Safe-by-Design Antibacterial Peroxide-Substituted Biomimetic Apatites: Proof of Concept in Tropical Dentistry
J. Funct. Biomater. 2022, 13(3), 144; https://doi.org/10.3390/jfb13030144 - 07 Sep 2022
Viewed by 846
Abstract
Bone infections are a key health challenge with dramatic consequences for affected patients. In dentistry, periodontitis is a medically compromised condition for efficient dental care and bone grafting, the success of which depends on whether the surgical site is infected or not. Present [...] Read more.
Bone infections are a key health challenge with dramatic consequences for affected patients. In dentistry, periodontitis is a medically compromised condition for efficient dental care and bone grafting, the success of which depends on whether the surgical site is infected or not. Present treatments involve antibiotics associated with massive bacterial resistance effects, urging for the development of alternative antibacterial strategies. In this work, we established a safe-by-design bone substitute approach by combining bone-like apatite to peroxide ions close to natural in vivo oxygenated species aimed at fighting pathogens. In parallel, bone-like apatites doped with Ag+ or co-doped Ag+/peroxide were also prepared for comparative purposes. The compounds were thoroughly characterized by chemical titrations, FTIR, XRD, SEM, and EDX analyses. All doped apatites demonstrated significant antibacterial properties toward four major pathogenic bacteria involved in periodontitis and bone infection, namely Porphyromonas gingivalis (P. gingivalis), Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans), Fusobacterium nucleatum (F. nucleatum), and S. aureus. By way of complementary tests to assess protein adsorption, osteoblast cell adhesion, viability and IC50 values, the samples were also shown to be highly biocompatible. In particular, peroxidated apatite was the safest material tested, with the lowest IC50 value toward osteoblast cells. We then demonstrated the possibility to associate such doped apatites with two biocompatible polymers, namely gelatin and poly(lactic-co-glycolic) acid PLGA, to prepare, respectively, composite 2D membranes and 3D scaffolds. The spatial distribution of the apatite particles and polymers was scrutinized by SEM and µCT analyses, and their relevance to the field of bone regeneration was underlined. Such bio-inspired antibacterial apatite compounds, whether pure or associated with (bio)polymers are thus promising candidates in dentistry and orthopedics while providing an alternative to antibiotherapy. Full article
(This article belongs to the Special Issue Functionalized Biomimetic Calcium Phosphates 2.0)
Show Figures

Graphical abstract

Article
Effects of Different Titanium Surface Treatments on Adhesion, Proliferation and Differentiation of Bone Cells: An In Vitro Study
J. Funct. Biomater. 2022, 13(3), 143; https://doi.org/10.3390/jfb13030143 - 05 Sep 2022
Viewed by 757
Abstract
The objective of this study was to evaluate the impacts of different sandblasting procedures in acid etching of Ti6Al4V surfaces on osteoblast cell behavior, regarding various physicochemical and topographical parameters. Furthermore, differences in osteoblast cell behavior between cpTi and Ti6Al4V SA surfaces were [...] Read more.
The objective of this study was to evaluate the impacts of different sandblasting procedures in acid etching of Ti6Al4V surfaces on osteoblast cell behavior, regarding various physicochemical and topographical parameters. Furthermore, differences in osteoblast cell behavior between cpTi and Ti6Al4V SA surfaces were evaluated. Sandblasting and subsequent acid etching of cpTi and Ti6Al4V discs was performed with Al2O3 grains of different sizes and with varying blasting pressures. The micro- and nano-roughness of the experimental SA surfaces were analyzed via confocal, atomic force and scanning electron microscopy. Surface free energy and friction coefficients were determined. hFOB 1.19 cells were seeded to evaluate adhesion, proliferation and osteoblastic differentiation for up to 12 d via crystal violet assays, MTT assays, ALP activity assays and Alizarin Red staining assays. Differences in blasting procedures had significant impacts on surface macro- and micro-topography. The crystal violet assay revealed a significant inverse relationship between blasting grain size and hFOB cell growth after 7 days. This trend was also visible in the Alizarin Red assays staining after 12 d: there was significantly higher biomineralization visible in the group that was sandblasted with smaller grains (F180) when compared to standard-grain-size groups (F70). SA samples treated with reduced blasting pressure exhibited lower hFOB adhesion and growth capabilities at initial (2 h) and later time points for up to 7 days, when compared to the standard SA surface, even though micro-roughness and other relevant surface parameters were similar. Overall, etched-only surfaces consistently exhibited equivalent or higher adhesion, proliferation and differentiation capabilities when compared to all other sandblasted and etched surfaces. No differences were found between cpTi and Ti6Al4V SA surfaces. Subtle modifications in the blasting protocol for Ti6Al4V SA surfaces significantly affect the proliferative and differentiation behavior of human osteoblasts. Surface roughness parameters are not sufficient to predict osteoblast behavior on etched Ti6Al4V surfaces. Full article
(This article belongs to the Special Issue Advanced Biomaterials and Oral Implantology)
Show Figures

Figure 1

Article
Evaluation of the Antibacterial Properties of Iron Oxide, Polyethylene Glycol, and Gentamicin Conjugated Nanoparticles against Some Multidrug-Resistant Bacteria
J. Funct. Biomater. 2022, 13(3), 138; https://doi.org/10.3390/jfb13030138 - 02 Sep 2022
Viewed by 762
Abstract
Antibacterial resistance is observed as a public health issue around the world. Every day, new resistance mechanisms appear and spread over the world. For that reason, it is imperative to improve the treatment schemes that have been developed to treat infections caused by [...] Read more.
Antibacterial resistance is observed as a public health issue around the world. Every day, new resistance mechanisms appear and spread over the world. For that reason, it is imperative to improve the treatment schemes that have been developed to treat infections caused by wound infections, for instance, Staphylococcus epidermidis (S. epidermidis), Proteus mirabilis (P. mirabilis), and Acinetobacter baumannii (A. baumannii). In this case, we proposed a method that involves mixing the Gentamicin (Gen) with iron oxide nanoparticles (Fe3O4 NPs) and a polymer (polyethylene glycol (PEG)) with Fe3O4 NPs. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), scanning electron microscope (SEM), and transmission electron microscope (TEM) were used to characterize Fe3O4 NPs. Zeta potential and dynamic light scattering (DLS) were also assessed. The antibacterial activity of Fe3O4 NPs, Fe3O4 NPs+PEG, Fe3O4 NPs+Gen, and Fe3O4 NPs+PEG+Gen composites was investigated. The results showed a significant improvement in the antibacterial activity of nanoparticles against bacterial isolates, especially for the Fe3O4 NPs+PEG+Gen as the diameter of the inhibition zone reached 26.33 ± 0.57 mm for A. baumannii, 25.66 ± 0.57 mm for P. mirabilis, and 23.66 ± 0.57 mm for S. epidermidis. The Fe3O4 NPs, Fe3O4 NPs+PEG, Fe3O4+Gen, and Fe3O4+PEG+Gen also showed effectiveness against the biofilm produced by these isolated bacteria. The minimum inhibitory concentration (MIC) of Fe3O4 NPs for S. epidermidis was 25 µg mL−1 and for P. mirabilis and A. baumannii was 50 µg mL−1. The findings suggest that the prepared nanoparticles could be potential therapeutic options for treating wound infections caused by S. epidermidis, P. mirabilis, and A. baumannii. Full article
Show Figures

Figure 1

Article
Antimicrobial Fibrous Bandage-like Scaffolds Using Clove Bud Oil
J. Funct. Biomater. 2022, 13(3), 136; https://doi.org/10.3390/jfb13030136 - 30 Aug 2022
Viewed by 953
Abstract
Wounds are characterised by an anatomical disruption of the skin; this leaves the body exposed to opportunistic pathogens which contribute to infections. Current wound healing bandages do little to protect against this and when they do, they can often utilise harmful additions. Historically, [...] Read more.
Wounds are characterised by an anatomical disruption of the skin; this leaves the body exposed to opportunistic pathogens which contribute to infections. Current wound healing bandages do little to protect against this and when they do, they can often utilise harmful additions. Historically, plant-based constituents have been extensively used for wound treatment and are proven beneficial in such environments. In this work, the essential oil of clove bud (Syzygium aromaticum) was incorporated in a polycaprolactone (PCL) solution, and 44.4% (v/v) oil-containing fibres were produced through pressurised gyration. The antimicrobial activity of these bandage-like fibres was analysed using in vitro disk diffusion and the physical fibre properties were also assessed. The work showed that advantageous fibre morphologies were achieved with diameters of 10.90 ± 4.99 μm. The clove bud oil fibres demonstrated good antimicrobial properties. They exhibited inhibition zone diameters of 30, 18, 11, and 20 mm against microbial colonies of C. albicans, E. coli, S. aureus, and S. pyogenes, respectively. These microbial species are commonly problematic in environments where the skin barrier is compromised. The outcomes of this study are thus very promising and suggest that clove bud oil is highly suitable to be applied as a natural sustainable alternative to modern medicine. Full article
(This article belongs to the Special Issue Biomaterials Sourced from Nature)
Show Figures

Figure 1

Article
The Effect of an Er, Cr: YSGG Laser Combined with Implantoplasty Treatment on Implant Surface Roughness and Morphologic Analysis: A Pilot In Vitro Study
J. Funct. Biomater. 2022, 13(3), 133; https://doi.org/10.3390/jfb13030133 - 29 Aug 2022
Viewed by 902
Abstract
Although laser irradiation and implantoplasty (IP) are both treatment options for peri-implantitis, no studies have yet combined these two treatment solutions. The aim of this study was to identify the effect of an Er, Cr: YSGG laser on the IP surface. In experiment [...] Read more.
Although laser irradiation and implantoplasty (IP) are both treatment options for peri-implantitis, no studies have yet combined these two treatment solutions. The aim of this study was to identify the effect of an Er, Cr: YSGG laser on the IP surface. In experiment 1, TiUnite anodized surface implants were treated with an Er, Cr: YSGG laser at 0.5 to 2 W on the panel energy setting and 20 Hz under water irrigation. In experiment 2, all implant surfaces were treated with the IP procedure first, then irradiated with the Er, Cr: YSGG laser. All samples were analyzed by stereomicroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and surface topography. Stereomicroscopy and SEM revealed no obvious surface change at any energy setting once the surface was polished with the IP procedure, whereas damage was caused to the TiUnite original implant surface when the Er, Cr: YSGG laser panel energy was set at 1 W or higher. EDS showed no significant difference in element composition once the surface was polished with the IP procedure, while a compositional change was detected when the Er, Cr: YSGG laser panel energy was set to 0.5 W or higher to irradiate the original TiUnite surface. Surface roughness may be related to laser irradiation energy, but no significant changes occurred following IP. These results indicated that the Er, Cr: YSGG laser may have little effect on the post-IP surface compared with the virgin TiUnite surface. Full article
Show Figures

Figure 1

Article
Biological Activities of Glass Ionomer Cement Supplemented with Fortilin on Human Dental Pulp Stem Cells
J. Funct. Biomater. 2022, 13(3), 132; https://doi.org/10.3390/jfb13030132 - 28 Aug 2022
Viewed by 719
Abstract
This study aimed to determine the most suitable recombinant fortilin and evaluate the biological activities of glass ionomer cement (GIC) incorporated with fortilin on human dental pulp stem cells (hDPSCs). Full-length and three fragments of Penaeus merguiensis fortilin were cloned and examined for [...] Read more.
This study aimed to determine the most suitable recombinant fortilin and evaluate the biological activities of glass ionomer cement (GIC) incorporated with fortilin on human dental pulp stem cells (hDPSCs). Full-length and three fragments of Penaeus merguiensis fortilin were cloned and examined for their proliferative and cytoprotective effects on hDPSCs by MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. Human DPSCs were cultured with GIC supplemented with fortilin, tricalcium phosphate, or a combination of tricalcium phosphate and fortilin, designated as GIC + FL, GIC + TCP, and GIC + TCP + FL, respectively (n = 4 for each group). At given time points, hDPSCs were harvested and analyzed by MTT, quantitative reverse transcription polymerase chain reaction, alkaline phosphatase activity, and Alizarin Red assays. The full-length fortilin promoted cell proliferation and significantly increased cell survival. This protein was subsequently added into the GIC along with tricalcium phosphate to investigate the biological activities. All experimental groups showed reduced cell viability after treatment with modified GICs on days 1 and 3. The GIC + TCP + FL group significantly promoted odontoblastic differentiation at particular time points. In addition, alkaline phosphatase activity and calcium phosphate deposit were markedly increased in the GIC + TCP + FL group. Among all experimental groups, the GIC incorporated with fortilin and tricalcium phosphate demonstrated the best results on odontogenic differentiation and mineral deposition in hDPSCs. Full article
(This article belongs to the Special Issue Feature Papers in Dental Biomaterials)
Show Figures

Figure 1

Article
Polyelectrolyte Multilayers Composed of Polyethyleneimine-Grafted Chitosan and Polyacrylic Acid for Controlled-Drug-Delivery Applications
J. Funct. Biomater. 2022, 13(3), 131; https://doi.org/10.3390/jfb13030131 - 28 Aug 2022
Viewed by 658
Abstract
In this work, polyethyleneimine (PEI)-grafted chitosan (Chi-g-PEI) was prepared for the fabrication of layer-by-layer (LBL) films for use in sustained-drug-delivery applications. Chi-g-PEI and polyacrylic acid (PAA) multilayer films were formed using the LBL technique. Methylene blue (MB) was used as a model drug [...] Read more.
In this work, polyethyleneimine (PEI)-grafted chitosan (Chi-g-PEI) was prepared for the fabrication of layer-by-layer (LBL) films for use in sustained-drug-delivery applications. Chi-g-PEI and polyacrylic acid (PAA) multilayer films were formed using the LBL technique. Methylene blue (MB) was used as a model drug for the investigation of loading and release capabilities of the LBL films. Characterizations of the synthesized copolymer were performed using Fourier-transform infrared spectroscopy (FTIR), Nuclear magnetic resonance spectroscopy (NMR), Thermogravimetric analysis (TGA), and X-ray Powder Diffraction (XRD) techniques, and the thickness of the LBL films was measured using Atomic force microscopy (AFM). The drug-loading and -release behaviors of the LBL films were assessed using a UV–visible spectrophotometer. The results showed that the loading capacity and release rate of MB were affected by ionic strength and pH. In addition, it was demonstrated that PEI-grafted chitosan is a good candidate for the assembling of LBL films for drug-delivery applications. Full article
(This article belongs to the Special Issue Biomaterials for Drug Delivery)
Show Figures

Figure 1

Article
Bioactive Silicon Nitride Implant Surfaces with Maintained Antibacterial Properties
J. Funct. Biomater. 2022, 13(3), 129; https://doi.org/10.3390/jfb13030129 - 27 Aug 2022
Viewed by 889
Abstract
Silicon nitride (Si3N4) is a promising biomaterial, currently used in spinal fusion implants. Such implants should result in high vertebral union rates without major complications. However, pseudarthrosis remains an important complication that could lead to a need for implant [...] Read more.
Silicon nitride (Si3N4) is a promising biomaterial, currently used in spinal fusion implants. Such implants should result in high vertebral union rates without major complications. However, pseudarthrosis remains an important complication that could lead to a need for implant replacement. Making silicon nitride implants more bioactive could lead to higher fusion rates, and reduce the incidence of pseudarthrosis. In this study, it was hypothesized that creating a highly negatively charged Si3N4 surface would enhance its bioactivity without affecting the antibacterial nature of the material. To this end, samples were thermally, chemically, and thermochemically treated. Apatite formation was examined for a 21-day immersion period as an in-vitro estimate of bioactivity. Staphylococcus aureus bacteria were inoculated on the surface of the samples, and their viability was investigated. It was found that the thermochemically and chemically treated samples exhibited enhanced bioactivity, as demonstrated by the increased spontaneous formation of apatite on their surface. All modified samples showed a reduction in the bacterial population; however, no statistically significant differences were noticed between groups. This study successfully demonstrated a simple method to improve the in vitro bioactivity of Si3N4 implants while maintaining the bacteriostatic properties. Full article
(This article belongs to the Special Issue Advances in Biomaterials Engineering)
Show Figures

Figure 1

Article
Improve Dentin Bonding Performance Using a Hydrolytically Stable, Ether-Based Primer
J. Funct. Biomater. 2022, 13(3), 128; https://doi.org/10.3390/jfb13030128 - 26 Aug 2022
Viewed by 746
Abstract
The objective of this study is to replace a traditional methacrylate-based primer (glycine, N-(2-hydroxy-3-(2-methyl-1-oxo-2-propenyl)propyl)-N-(4-methylphenyl) monosodium salt, NTG-GMA) with a hydrolytically stable ether-based primer (glycine, N-2-hydroxy-3-(4-vinylbenzyloxy)-propyl-N-(4-methylphenyl), monosodium salt, NTG-VBGE). The performance and durability of bonding composites to detin of two primers combined with methacrylate-based [...] Read more.
The objective of this study is to replace a traditional methacrylate-based primer (glycine, N-(2-hydroxy-3-(2-methyl-1-oxo-2-propenyl)propyl)-N-(4-methylphenyl) monosodium salt, NTG-GMA) with a hydrolytically stable ether-based primer (glycine, N-2-hydroxy-3-(4-vinylbenzyloxy)-propyl-N-(4-methylphenyl), monosodium salt, NTG-VBGE). The performance and durability of bonding composites to detin of two primers combined with methacrylate-based or ether-based adhesives were evaluated using shear bond strength (SBS) and micro-tensile bond strength (μTBS) combined with thermal cycling. The hydrolysis resistance of NTG-VBGE against hydrolysis was tested by challenging primed hydroxyapatite crystals with an esterase. The hydrophilicity of the primers and the resin spreading kinetics of adhesives on primed dentin were characterized by water contact angle measurements. The new primer NTG-VBGE was found to be compatible with both methacrylate-based adhesives and ether-based adhesives. The highest μTBS values were found in the test group of NTG-VBGE and ether-based adhesive, which was consistent with the resin spreading kinetics results. The more hydrophobic and hydrolytically stable primer/adhesive achieved improved dentin infiltration and bonding strength, suggesting significant potential for further developing dental restorative materials with extended service life. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

Article
Evaluation of a New Porcine Bone Graft on the Repair of Surgically Created Critical Bone Defects in Rat Calvaria: Histomorphometric and Microtomographic Study
J. Funct. Biomater. 2022, 13(3), 124; https://doi.org/10.3390/jfb13030124 - 23 Aug 2022
Viewed by 671
Abstract
The aim of this study was to evaluate the use of a new porcine bone graft in rat calvaria bone defects. Critical defects were surgically created in 24 rats that were divided into four experimental groups according to defect filling (n = [...] Read more.
The aim of this study was to evaluate the use of a new porcine bone graft in rat calvaria bone defects. Critical defects were surgically created in 24 rats that were divided into four experimental groups according to defect filling (n = 6): Control Group (CG)—blood clot; Porcine Bone Group (PG)—porcine-derived bone substitute; (BG): Bio-Oss Group (BG)–chemically and heat-treated bovine graft; Bonefill Group (BFG)—chemically treated bovine bone substitute. Euthanasia of the animals occurred 30 days after the surgery, and the area of the original surgical defect and the surrounding tissues were removed for micro-CT and histomorphometric analysis. In the micro-CT evaluation, the PG presented statistically significant differences (p < 0.05) in comparison to the CG, BG and BFG, for the parameters percentage of Bone Volume (BV/TV), Surface Bone Density (BS/TV), Number of Trabeculae (Tb.N) and Bone Connectivity (Conn), but not for Total Porosity (Po.tot) and Trabecular Thickness (Tb.Th). The histomorphometric analysis showed that the PG presented similar results to the BG regarding newly formed bone extension and to the BG and BFG regarding newly formed bone area. The porcine-derived graft presented superior microtomographic and histomorphometric results when compared to the two bovine bone substitutes. Full article
Show Figures

Figure 1

Article
Evaluation of Bone Response to a Nano HA Implant Surface on Sinus Lifting Procedures: Study in Rabbits
J. Funct. Biomater. 2022, 13(3), 122; https://doi.org/10.3390/jfb13030122 - 21 Aug 2022
Viewed by 814
Abstract
The aim of this study was to evaluate the bone response to two different implant surfaces on sinus lift procedures in rabbits. Bilateral sinus lifting with inorganic bovine bone associated with collagen membrane and immediate implantation were performed in 16 rabbits. Custom mini-implants [...] Read more.
The aim of this study was to evaluate the bone response to two different implant surfaces on sinus lift procedures in rabbits. Bilateral sinus lifting with inorganic bovine bone associated with collagen membrane and immediate implantation were performed in 16 rabbits. Custom mini-implants were randomly installed in the prepared sites: one side received a double acid-etched (DAE) surface and the other a nano-hydroxyapatite (NHA) surface. The animals were euthanized 30 and 60 days after surgery, and biopsies were collected for microtomographic and histomorphometric analysis. After 30 days, no intra- and inter-group statistical differences were observed in microtomographic analysis, while at 60 days, bone analysis showed statistically significant differences between groups (p < 0.05) for all the evaluated parameters. Histomorphometric analysis showed, after 30 days, mean % of Bone-to-Implant Contact (BIC) for DAE and NHA of 31.70 ± 10.42% vs. 40.60 ± 10.22% (p > 0.05), respectively; for % of Bone Area Fraction Occupancy (BAFO), mean values were 45.43 ± 3.597% for DAE and 57.04 ± 5.537% for NHA (p < 0.05). After 60 days, mean %BIC and %BAFO for DAE and NHA implants were statistically significant (p < 0.05). The NHA surface showed superior biological features compared to the DAE treatment, promoting higher bone formation around the implants in an experimental model of bone repair in a grafted area. Full article
Show Figures

Figure 1

Article
Application of Injectable, Crosslinked, Fibrin-Containing Hyaluronic Acid Scaffolds for In Vivo Remodeling
J. Funct. Biomater. 2022, 13(3), 119; https://doi.org/10.3390/jfb13030119 - 13 Aug 2022
Viewed by 765
Abstract
The present research aimed to characterize soft tissue implants that were prepared with the use of crosslinked hyaluronic acid (HA) using two different crosslinkers and multiple reagent concentrations, alone or in combination with fibrin. The effect of the implants was evaluated in an [...] Read more.
The present research aimed to characterize soft tissue implants that were prepared with the use of crosslinked hyaluronic acid (HA) using two different crosslinkers and multiple reagent concentrations, alone or in combination with fibrin. The effect of the implants was evaluated in an in vivo mouse model, after 4 weeks in one group and after 12 weeks in the other. The explants were compared using analytical methods, evaluating microscopic images, and a histology analysis. The kinetics of the degradation and remodeling of explants were found to be greatly dependent on the concentration and type of crosslinker; generally, divinyl sulfone (DVS) resists degradation more effectively compared to butanediol diglycidyl ether (BDDE). The presence of fibrin enhances the formation of blood vessels, and the infiltration of cells and extracellular matrix. In summary, if the aim is to create a soft tissue implant with easier degradation of the HA content, then the use of 2–5% BDDE is found to be optimal. For a longer degradation time, 5% DVS is the more suitable crosslinker. The use of fibrin was found to support the biological process of remodeling, while keeping the advances of HA in void filling, enabling the parallel degradation and remodeling processes. Full article
Show Figures

Figure 1

Article
Trilateral Multi-Functional Polyamide 12 Nanocomposites with Binary Inclusions for Medical Grade Material Extrusion 3D Printing: The Effect of Titanium Nitride in Mechanical Reinforcement and Copper/Cuprous Oxide as Antibacterial Agents
J. Funct. Biomater. 2022, 13(3), 115; https://doi.org/10.3390/jfb13030115 - 04 Aug 2022
Cited by 2 | Viewed by 994
Abstract
In this work, for the first time, polyamide 12 (PA12) nanocomposites with binary inclusions in material extrusion (MEX) 3D printing were developed. The aim was to achieve an enhanced mechanical response with the addition of titanium nitride (TiN) and antibacterial performance with the [...] Read more.
In this work, for the first time, polyamide 12 (PA12) nanocomposites with binary inclusions in material extrusion (MEX) 3D printing were developed. The aim was to achieve an enhanced mechanical response with the addition of titanium nitride (TiN) and antibacterial performance with the addition of copper (Cu) or cuprous oxide (Cu2O), towards the development of multi-functional nanocomposite materials, exploiting the 3D printing process benefits. The prepared nanocomposites were fully characterized for their mechanical properties. The thermal properties were also investigated. Morphological characterization was performed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). The antibacterial performance was investigated with an agar-well diffusion screening process. Overall, the introduction of these nanofillers induced antibacterial performance in the PA12 matrix materials, while at the same time, the mechanical performance was significantly increased. The results of the study show high potential for expanding the areas in which 3D printing can be used. Full article
Show Figures

Figure 1

Article
Dentin Sealing of Calcium Silicate-Based Sealers in Root Canal Retreatment: A Confocal Laser Microscopy Study
J. Funct. Biomater. 2022, 13(3), 114; https://doi.org/10.3390/jfb13030114 - 04 Aug 2022
Viewed by 942
Abstract
The aim of the present in vitro study was to evaluate the intratubular penetration of three bioceramic sealers in root canal retreatment. Here, 30 single-rooted human teeth were instrumented with the Protaper Universal system and filled with gutta-percha and the epoxy-resin-based sealer AH [...] Read more.
The aim of the present in vitro study was to evaluate the intratubular penetration of three bioceramic sealers in root canal retreatment. Here, 30 single-rooted human teeth were instrumented with the Protaper Universal system and filled with gutta-percha and the epoxy-resin-based sealer AH Plus mixed with rhodamine B. After two weeks in a humid environment, they were re-instrumented with Reciproc Blue and divided into three groups according to the endodontic sealer to be used in the re-filling (n = 10): G1: CeraSeal, G2: TotalFill BC Sealer, G3: TotalFill BC Sealer HiFlow. For the filling, a single cone technique was used, and the respective sealers were mixed with fluorescein. The roots were then sectioned at 2, 5, and 8 mm (apical, medial, and coronal measurement points, respectively) from the apex, and the dentinal tubule penetration depth and percentage of penetration around the canal perimeter were evaluated by means of confocal laser scanning microscopy (CLSM). Penetration between groups was compared using the Kruskal−Wallis test, and within each group using the Wilcoxon test. Statistical significance was established at p < 0.05. A non-significant reduction was found in the penetration depths and in a percentage of penetration around the canal perimeter between AH Plus and the tested calcium-silicate-based sealers (p > 0.05). Consequently, this reduction may not affect the three-dimensional seal of the root canal system in a negative manner. The penetration depth and percentage of penetration around the canal perimeter at both the root canal treatment and retreatment were significantly reduced from the coronal to apical points in all groups (p < 0.05). Full article
(This article belongs to the Special Issue Endodontic Biomaterials)
Show Figures

Figure 1

Article
PLGA Nanoparticles Uptake in Stem Cells from Human Exfoliated Deciduous Teeth and Oral Keratinocyte Stem Cells
J. Funct. Biomater. 2022, 13(3), 109; https://doi.org/10.3390/jfb13030109 - 31 Jul 2022
Cited by 1 | Viewed by 913
Abstract
Polymeric nanoparticles have been introduced as a delivery vehicle for active compounds in a broad range of medical applications due to their biocompatibility, stability, controlled release of active compounds, and reduced toxicity. The oral route is the most used approach for delivery of [...] Read more.
Polymeric nanoparticles have been introduced as a delivery vehicle for active compounds in a broad range of medical applications due to their biocompatibility, stability, controlled release of active compounds, and reduced toxicity. The oral route is the most used approach for delivery of biologics to the body. The homeostasis and function of oral cavity tissues are dependent on the activity of stem cells. The present work focuses, for the first time, on the interaction between two types of polymeric nanoparticles, poly (lactic-co-glycolic acid) or PLGA and PLGA/chitosan, and two stem cell populations, oral keratinocyte stem cells (OKSCs) and stem cells from human exfoliated deciduous teeth (SHEDs). The main results show that statistical significance was observed in OKSCs uptake when compared with normal keratinocytes and transit amplifying cells after 24 h of incubation with 5 and 10 µg/mL PLGA/chitosan. The CD117+ SHED subpopulation incorporated more PLGA/chitosan nanoparticles than nonseparated SHED. The uptake for PLGA/chitosan particles was better than for PLGA particles with longer incubation times, yielding better results in both cell types. The present results demonstrate that nanoparticle uptake depends on stem cell type, incubation time, particle concentration, and surface properties. Full article
(This article belongs to the Special Issue Medical Application of Functional Biomaterials)
Show Figures

Figure 1

Article
In Vivo Evaluation of the Effects of B-Doped Strontium Apatite Nanoparticles Produced by Hydrothermal Method on Bone Repair
J. Funct. Biomater. 2022, 13(3), 110; https://doi.org/10.3390/jfb13030110 - 31 Jul 2022
Cited by 1 | Viewed by 968
Abstract
In the present study, the structural, morphological, and in vivo biocompatibility of un-doped and boron (B)-doped strontium apatite (SrAp) nanoparticles were investigated. Biomaterials were fabricated using the hydrothermal process. The structural and morphological characterizations of the fabricated nanoparticles were performed by XRD, FT-IR, [...] Read more.
In the present study, the structural, morphological, and in vivo biocompatibility of un-doped and boron (B)-doped strontium apatite (SrAp) nanoparticles were investigated. Biomaterials were fabricated using the hydrothermal process. The structural and morphological characterizations of the fabricated nanoparticles were performed by XRD, FT-IR, FE-SEM, and EDX. Their biocompatibility was investigated by placing them in defects in rat tibiae in vivo. The un-doped and B-doped SrAp nanoparticles were successfully fabricated. The produced nanoparticles were in the shape of nano-rods, and the dimensions of the nano-rods decreased as the B ratio increased. It was observed that the structural and morphological properties of strontium apatite nanoparticles were affected by the contribution of B. A stoichiometric Sr/P ratio of 1.67 was reached in the 5% B-doped sample (1.68). The average crystallite sizes were 34.94 nm, 39.70 nm, 44.93 nm, and 48.23 nm in un-doped, 1% B-doped, 5% B-doped, and 10% B-doped samples, respectively. The results of the in vivo experiment revealed that the new bone formation and osteoblast density were higher in the groups with SrAp nanoparticles doped with different concentrations of B than in the control group, in which the open defects were untreated. It was observed that this biocompatibility and the new bone formation were especially elevated in the B groups, which added high levels of strontium were added. The osteoblast density was higher in the group in which the strontium element was placed in the opened bone defect compared with the control group. However, although new bone formation was slightly higher in the strontium group than in the control group, the difference was not statistically significant. Furthermore, the strontium group had the highest amount of fibrotic tissue formation. The produced nanoparticles can be used in dental and orthopedic applications as biomaterials. Full article
(This article belongs to the Special Issue Frontiers in Biodegradable Materials and Their Processing)
Show Figures

Figure 1

Article
Anti-Inflammatory and Mineralization Effects of an ASP/PLGA-ASP/ACP/PLLA-PLGA Composite Membrane as a Dental Pulp Capping Agent
J. Funct. Biomater. 2022, 13(3), 106; https://doi.org/10.3390/jfb13030106 - 29 Jul 2022
Cited by 1 | Viewed by 1166
Abstract
Dental pulp is essential for the development and long-term preservation of teeth. Dental trauma and caries often lead to pulp inflammation. Vital pulp therapy using dental pulp-capping materials is an approach to preserving the vitality of injured dental pulp. Most pulp-capping materials used [...] Read more.
Dental pulp is essential for the development and long-term preservation of teeth. Dental trauma and caries often lead to pulp inflammation. Vital pulp therapy using dental pulp-capping materials is an approach to preserving the vitality of injured dental pulp. Most pulp-capping materials used in clinics have good biocompatibility to promote mineralization, but their anti-inflammatory effect is weak. Therefore, the failure rate will increase when dental pulp inflammation is severe. The present study developed an amorphous calcium phosphate/poly (L-lactic acid)-poly (lactic-co-glycolic acid) membrane compounded with aspirin (hereafter known as ASP/PLGA-ASP/ACP/PLLA-PLGA). The composite membrane, used as a pulp-capping material, effectively achieved the rapid release of high concentrations of the anti-inflammatory drug aspirin during the early stages as well as the long-term release of low concentrations of aspirin and calcium/phosphorus ions during the later stages, which could repair inflamed dental pulp and promote mineralization. Meanwhile, the composite membrane promoted the proliferation of inflamed dental pulp stem cells, downregulated the expression of inflammatory markers, upregulated the expression of mineralization-related markers, and induced the formation of stronger reparative dentin in the rat pulpitis model. These findings indicate that this material may be suitable for use as a pulp-capping material in clinical applications. Full article
Show Figures

Figure 1

Article
Angiogenic Potential of Co-Cultured Human Umbilical Vein Endothelial Cells and Adipose Stromal Cells in Customizable 3D Engineered Collagen Sheets
J. Funct. Biomater. 2022, 13(3), 107; https://doi.org/10.3390/jfb13030107 - 29 Jul 2022
Viewed by 1004
Abstract
The wound healing process is much more complex than just the four phases of hemostasis, inflammation, proliferation, and maturation. Three-dimensional (3D) scaffolds made of biopolymers or ECM molecules using bioprinting can be used to promote the wound healing process, especially for complex 3D [...] Read more.
The wound healing process is much more complex than just the four phases of hemostasis, inflammation, proliferation, and maturation. Three-dimensional (3D) scaffolds made of biopolymers or ECM molecules using bioprinting can be used to promote the wound healing process, especially for complex 3D tissue lesions like chronic wounds. Here, a 3D-printed mold has been designed to produce customizable collagen type-I sheets containing human umbilical vein endothelial cells (HUVECs) and adipose stromal cells (ASCs) for the first time. In these 3D collagen sheets, the cellular activity leads to a restructuring of the collagen matrix. The upregulation of the growth factors Serpin E1 and TIMP-1 could be demonstrated in the 3D scaffolds with ACSs and HUVECs in co-culture. Both growth factors play a key role in the wound healing process. The capillary-like tube formation of HUVECs treated with supernatant from the collagen sheets revealed the secretion of angiogenic growth factors. Altogether, this demonstrates that collagen type I combined with the co-cultivation of HUVECs and ACSs has the potential to accelerate the process of angiogenesis and, thereby, might promote wound healing. Full article
(This article belongs to the Special Issue Smart Biomaterials for Soft and Hard Tissue Repair and Regeneration)
Show Figures

Graphical abstract

Article
Effect of Alumina Particles on the Osteogenic Ability of Osteoblasts
J. Funct. Biomater. 2022, 13(3), 105; https://doi.org/10.3390/jfb13030105 - 28 Jul 2022
Cited by 1 | Viewed by 861
Abstract
Biomaterials are used as implants for bone and dental disabilities. However, wear particles from the implants cause osteolysis following total joint arthroplasty (TJA). Ceramic implants are considered safe and elicit a minimal response to cause periprosthetic osteolysis. However, few reports have highlighted the [...] Read more.
Biomaterials are used as implants for bone and dental disabilities. However, wear particles from the implants cause osteolysis following total joint arthroplasty (TJA). Ceramic implants are considered safe and elicit a minimal response to cause periprosthetic osteolysis. However, few reports have highlighted the adverse effect of ceramic particles such as alumina (Al2O3) on various cell types. Hence, we aimed to investigate the effect of Al2O3 particles on osteoprogenitors. A comparative treatment of Al2O3, Ti, and UHMWPE particles to osteoprogenitors at a similar concentration of 200 μg/mL showed that only Al2O3 particles were able to suppress the early and late differentiation markers of osteoprogenitors, including collagen synthesis, alkaline phosphatase (ALP) activity and mRNA expression of Runx2, OSX, Col1α, and OCN. Al2O3 particles even induced inflammation and activated the NFkB signaling pathway in osteoprogenitors. Moreover, bone-forming signals such as the WNT/β-catenin signaling pathway were inhibited by the Al2O3 particles. Al2O3 particles were found to induce the mRNA expression of WNT/β-catenin signaling antagonists such as DKK2, WIF, and sFRP1 several times in osteoprogenitors. Taken together, this study highlights a mechanistic view of the effect of Al2O3 particles on osteoprogenitors and suggests therapeutic targets such as NFĸB and WNT signaling pathways for ceramic particle-induced osteolysis. Full article
(This article belongs to the Special Issue Biocompatibility of Functional Biomaterials)
Show Figures

Figure 1

Article
Geometry-Based Computational Fluid Dynamic Model for Predicting the Biological Behavior of Bone Tissue Engineering Scaffolds
J. Funct. Biomater. 2022, 13(3), 104; https://doi.org/10.3390/jfb13030104 - 27 Jul 2022
Viewed by 1025
Abstract
The use of biocompatible and biodegradable porous scaffolds produced via additive manufacturing is one of the most common approaches in tissue engineering. The geometric design of tissue engineering scaffolds (e.g., pore size, pore shape, and pore distribution) has a significant impact on their [...] Read more.
The use of biocompatible and biodegradable porous scaffolds produced via additive manufacturing is one of the most common approaches in tissue engineering. The geometric design of tissue engineering scaffolds (e.g., pore size, pore shape, and pore distribution) has a significant impact on their biological behavior. Fluid flow dynamics are important for understanding blood flow through a porous structure, as they determine the transport of nutrients and oxygen to cells and the flushing of toxic waste. The aim of this study is to investigate the impact of the scaffold architecture, pore size and distribution on its biological performance using Computational Fluid Dynamics (CFD). Different blood flow velocities (BFV) induce wall shear stresses (WSS) on cells. WSS values above 30 mPa are detrimental to their growth. In this study, two scaffold designs were considered: rectangular scaffolds with uniform square pores (300, 350, and 450 µm), and anatomically designed circular scaffolds with a bone-like structure and pore size gradient (476–979 µm). The anatomically designed scaffolds provided the best fluid flow conditions, suggesting a 24.21% improvement in the biological performance compared to the rectangular scaffolds. The numerical observations are aligned with those of previously reported biological studies. Full article
Show Figures

Figure 1

Article
When Nothing Turns Itself Inside out and Becomes Something: Coating Poly(Lactic-Co-Glycolic Acid) Spheres with Hydroxyapatite Nanoparticles vs. the Other Way Around
J. Funct. Biomater. 2022, 13(3), 102; https://doi.org/10.3390/jfb13030102 - 23 Jul 2022
Cited by 1 | Viewed by 926
Abstract
To stabilize drugs physisorbed on the surface of hydroxyapatite (HAp) nanoparticles and prevent burst release, these nanoparticles are commonly coated with polymers. Bioactive HAp, however, becomes shielded from the surface of such core/shell entities, which partially defeats the purpose of using it. The [...] Read more.
To stabilize drugs physisorbed on the surface of hydroxyapatite (HAp) nanoparticles and prevent burst release, these nanoparticles are commonly coated with polymers. Bioactive HAp, however, becomes shielded from the surface of such core/shell entities, which partially defeats the purpose of using it. The goal of this study was to assess the biological and pharmacokinetic effects of inverting this classical core/shell structure by coating poly(lactic-co-glycolic acid) (PLGA) spheres with HAp nanoparticles. The HAp shell did not hinder the release of vancomycin; rather, it increased the release rate to a minor degree, compared to that from undecorated PLGA spheres. The decoration of PLGA spheres with HAp induced lesser mineral deposition and lesser upregulation of osteogenic markers compared to those induced by the composite particles where HAp nanoparticles were embedded inside the PLGA spheres. This was explained by homeostatic mechanisms governing the cell metabolism, which ensure than the sensation of a product of this metabolism in the cell interior or exterior is met with the reduction in the metabolic activity. The antagonistic relationship between proliferation and bone production was demonstrated by the higher proliferation rate of cells challenged with HAp-coated PLGA spheres than of those treated with PLGA-coated HAp. It is concluded that the overwhelmingly positive response of tissues to HAp-coated biomaterials for bone replacement is unlikely to be due to the direct induction of new bone growth in osteoblasts adhering to the HAp coating. Rather, these positive effects are consequential to more elementary aspects of cell attachment, mechanotransduction, and growth at the site of contact between the HAp-coated material and the tissue. Full article
(This article belongs to the Special Issue Functionalized Biomimetic Calcium Phosphates 2.0)
Show Figures

Figure 1

Article
Cytotoxicity and Efficacy in Debris and Smear Layer Removal of HOCl-Based Irrigating Solution: An In Vitro Study
J. Funct. Biomater. 2022, 13(3), 95; https://doi.org/10.3390/jfb13030095 - 15 Jul 2022
Viewed by 895
Abstract
In the present study we evaluated the cytotoxicity of super-oxidized water on human gingival fibroblasts and its efficacy in debris and smear layer removal from root canal walls. Cultured gingival fibroblasts were exposed to super-oxidized water (Sterilox), which was diluted in Iscove’s modified [...] Read more.
In the present study we evaluated the cytotoxicity of super-oxidized water on human gingival fibroblasts and its efficacy in debris and smear layer removal from root canal walls. Cultured gingival fibroblasts were exposed to super-oxidized water (Sterilox), which was diluted in Iscove’s modified Dulbecco’s medium (IMDM) at 30%, 40%, 50%, 60% and 70% concentrations. The control group was maintained in IMDM. The cell viability was evaluated by means of an MTT assay after incubation periods of 1 h, 2 h, 24 h and 48 h. Pathological cellular changes were also observed under fluorescence and phase contrast microscopes. The efficacy in debris and smear layer removal was evaluated in comparison to the conventional application of sodium hypochlorite (NaOCl) and ethylenediaminetetraacetic acid (EDTA). Forty maxillary premolars were randomly divided into two equal groups (n = 20) and shaped with ProTaper NEXT rotary instruments using Sterilox or NaOCl/EDTA for irrigation. Afterwards, roots were split longitudinally and examined under a scanning electron microscope. The results revealed that super-oxidized water and sterile distilled water have acceptable biological properties for endodontic applications at concentrations up to 50% (p > 0.05). Moreover, super-oxidized water is equally effective in debris and smear layer removal as compared to NaOCl/EDTA (p > 0.05). Full article
(This article belongs to the Special Issue Advanced Materials for Clinical Endodontic Applications)
Show Figures

Figure 1

Article
Influence of Electric Field on Proliferation Activity of Human Dermal Fibroblasts
J. Funct. Biomater. 2022, 13(3), 89; https://doi.org/10.3390/jfb13030089 - 29 Jun 2022
Viewed by 968
Abstract
In this work, an electrically conductive composite based on thermoplastic polyimide and graphene was obtained and used as a bioelectrode for electrical stimulation of human dermal fibroblasts. The values of the electrical conductivity of the obtained composite films varied from 10−15 to [...] Read more.
In this work, an electrically conductive composite based on thermoplastic polyimide and graphene was obtained and used as a bioelectrode for electrical stimulation of human dermal fibroblasts. The values of the electrical conductivity of the obtained composite films varied from 10−15 to 102 S/m with increasing graphene content (from 0 to 5.0 wt.%). The characteristics of ionic and electronic currents flowing through the matrix with the superposition of cyclic potentials ± 100 mV were studied. The high stability of the composite was established during prolonged cycling (130 h) in an electric field with a frequency of 0.016 Hz. It was established that the composite films based on polyimide and graphene have good biocompatibility and are not toxic to fibroblast cells. It was shown that preliminary electrical stimulation increases the proliferative activity of human dermal fibroblasts in comparison with intact cells. It is revealed that an electric field with a strength E = 0.02–0.04 V/m applied to the polyimide films containing 0.5–3.0 wt.% of the graphene nanoparticles activates cellular processes (adhesion, proliferation). Full article
Show Figures

Figure 1

Article
Hydroxyapatite Decorated with Tungsten Oxide Nanoparticles: New Composite Materials against Bacterial Growth
J. Funct. Biomater. 2022, 13(3), 88; https://doi.org/10.3390/jfb13030088 - 24 Jun 2022
Cited by 1 | Viewed by 922
Abstract
The availability of biomaterials able to counteract bacterial colonization is one of the main requirements of functional implants and medical devices. Herein, we functionalized hydroxyapatite (HA) with tungsten oxide (WO3) nanoparticles in the aim to obtain composite materials with improved biological [...] Read more.
The availability of biomaterials able to counteract bacterial colonization is one of the main requirements of functional implants and medical devices. Herein, we functionalized hydroxyapatite (HA) with tungsten oxide (WO3) nanoparticles in the aim to obtain composite materials with improved biological performance. To this purpose, we used HA, as well as HA functionalized with polyacrilic acid (HAPAA) or poly(ethylenimine) (HAPEI), as supports and polyvinylpyrrolidone (PVP) as stabilizing agent for WO3 nanoparticles. The number of nanoparticles loaded on the substrates was determined through Molecular Plasma-Atomic Emission Spectroscopy and is quite small, so it cannot be detected through X-ray diffraction analysis. It increases from HAPAA, to HA, to HAPEI, in agreement with the different values of zeta potential of the different substrates. HRTEM and STEM images show the dimensions of the nanoparticles are very small, less than 1 nm. In physiological solution HA support displays a greater tungsten cumulative release than HAPEI, despite its smaller loaded amount. Indeed, WO3 nanoparticles-functionalized HA exhibits a remarkable antibacterial activity against the Gram-positive Staphylococcus aureus in absence of cytotoxicity, which could be usefully exploited in the biomedical field. Full article
(This article belongs to the Special Issue Functionalized Biomimetic Calcium Phosphates 2.0)
Show Figures

Figure 1

Article
Direct Ink Write Printing of Chitin-Based Gel Fibers with Customizable Fibril Alignment, Porosity, and Mechanical Properties for Biomedical Applications
J. Funct. Biomater. 2022, 13(2), 83; https://doi.org/10.3390/jfb13020083 - 16 Jun 2022
Cited by 1 | Viewed by 1242
Abstract
A fine control over different dimensional scales is a challenging target for material science since it could grant control over many properties of the final material. In this study, we developed a multivariable additive manufacturing process, direct ink write printing, to control different [...] Read more.
A fine control over different dimensional scales is a challenging target for material science since it could grant control over many properties of the final material. In this study, we developed a multivariable additive manufacturing process, direct ink write printing, to control different architectural features from the nano- to the millimeter scale during extrusion. Chitin-based gel fibers with a water content of around 1500% were obtained extruding a polymeric solution of chitin into a counter solvent, water, inducing instant solidification of the material. A certain degree of fibrillar alignment was achieved basing on the shear stress induced by the nozzle. In this study we took into account a single variable, the nozzle’s internal diameter (NID). In fact, a positive correlation between NID, fibril alignment, and mechanical resistance was observed. A negative correlation with NID was observed with porosity, exposed surface, and lightly with water content. No correlation was observed with maximum elongation (~50%), and the scaffold’s excellent biocompatibility, which appeared unaltered. Overall, a single variable allowed a customization of different material features, which could be further tuned, adding control over other aspects of the synthetic process. Moreover, this manufacturing could be potentially applied to any polymer. Full article
(This article belongs to the Special Issue Nanoengineered Materials for Biomedical Applications)
Show Figures

Figure 1

Article
Effect of a Self-Assembly Peptide on Surface Roughness and Hardness of Bleached Enamel
J. Funct. Biomater. 2022, 13(2), 79; https://doi.org/10.3390/jfb13020079 - 13 Jun 2022
Cited by 1 | Viewed by 1143
Abstract
After bleaching, enamel surfaces are damaged, contributing to erosion and tooth sensitivity. Although fluoride is used after bleaching to try and revert alterations, it is not capable of repairing tooth structure. This study compared the effect of a self-assembly peptide (P11-4), [...] Read more.
After bleaching, enamel surfaces are damaged, contributing to erosion and tooth sensitivity. Although fluoride is used after bleaching to try and revert alterations, it is not capable of repairing tooth structure. This study compared the effect of a self-assembly peptide (P11-4), with and without fluoride, and sodium fluoride (NaF 2%) on the Knoop microhardness (KHN) and surface roughness (Ra (μm)) of bleached enamel with an in-office bleaching regimen. Enamel blocks of bovine teeth (5 × 5 × 2 mm) with standardized surface hardness were bleached with 35% carbamide peroxide, following the manufacturer’s instructions. The teeth were randomly divided into the following groups (n = 7) according to post-bleaching treatment: no treatment (negative control) (C-); 2% NaF (NaF); Curodont™ Repair (Repair); and Curodont™ Protect (Protect). Specimens were stored in artificial saliva at 37 °C. To evaluate the effect of the post-bleaching treatments, KHN and Ra were measured before bleaching (baseline) and 24 h and 7 days after bleaching. Data were submitted to repeated measures ANOVA and Bonferroni tests (α = 0.05). There were significant interactions between the study factors (p = 0.001). After 7 days, Repair (572.50 ± 79.04) and Protect (583.00 ± 74.76) specimens showed increased surface KHN, with values higher than the NaF (465.50 ± 41.50) and C- (475.22 ± 58.95) baseline values. There was no significant difference in KHN at 24 h among groups (p = 0.587). At 24 h after bleaching, Repair was significantly different from all groups (p < 0.05). Repair showed the lowest Ra (μm) values (0.133 ± 0.035). After seven days, there was no significant difference in Ra values among groups when compared to the baseline. The use of P11-4-based materials after bleaching resulted in the fastest recovery to baseline enamel properties. Full article
(This article belongs to the Special Issue Feature Papers in Dental Biomaterials)
Show Figures

Figure 1

Article
3D Plotting of Calcium Phosphate Cement and Melt Electrowriting of Polycaprolactone Microfibers in One Scaffold: A Hybrid Additive Manufacturing Process
J. Funct. Biomater. 2022, 13(2), 75; https://doi.org/10.3390/jfb13020075 - 08 Jun 2022
Cited by 1 | Viewed by 1579
Abstract
The fabrication of patient-specific scaffolds for bone substitutes is possible through extrusion-based 3D printing of calcium phosphate cements (CPC) which allows the generation of structures with a high degree of customization and interconnected porosity. Given the brittleness of this clinically approved material, the [...] Read more.
The fabrication of patient-specific scaffolds for bone substitutes is possible through extrusion-based 3D printing of calcium phosphate cements (CPC) which allows the generation of structures with a high degree of customization and interconnected porosity. Given the brittleness of this clinically approved material, the stability of open-porous scaffolds cannot always be secured. Herein, a multi-technological approach allowed the simultaneous combination of CPC printing with melt electrowriting (MEW) of polycaprolactone (PCL) microfibers in an alternating, tunable design in one automated fabrication process. The hybrid CPC+PCL scaffolds with varying CPC strand distance (800–2000 µm) and integrated PCL fibers featured a strong CPC to PCL interface. While no adverse effect on mechanical stiffness was detected by the PCL-supported scaffold design; the microfiber integration led to an improved integrity. The pore distance between CPC strands was gradually increased to identify at which critical CPC porosity the microfibers would have a significant impact on pore bridging behavior and growth of seeded cells. At a CPC strand distance of 1600 µm, after 2 weeks of cultivation, the incorporation of PCL fibers led to pore coverage by a human mesenchymal stem cell line and an elevated proliferation level of murine pre-osteoblasts. The integrated fabrication approach allows versatile design adjustments on different levels. Full article
Show Figures

Graphical abstract

Article
Rational Design and Characterisation of Novel Mono- and Bimetallic Antibacterial Linde Type A Zeolite Materials
J. Funct. Biomater. 2022, 13(2), 73; https://doi.org/10.3390/jfb13020073 - 02 Jun 2022
Viewed by 1150
Abstract
The development of antimicrobial devices and surfaces requires the setup of suitable materials, able to store and release active principles. In this context, zeolites, which are microporous aluminosilicate minerals, hold great promise, since they are able to serve as a reservoir for metal-ions [...] Read more.
The development of antimicrobial devices and surfaces requires the setup of suitable materials, able to store and release active principles. In this context, zeolites, which are microporous aluminosilicate minerals, hold great promise, since they are able to serve as a reservoir for metal-ions with antimicrobial properties. Here, we report on the preparation of Linde Type A zeolites, partially exchanged with combinations of metal-ions (Ag+, Cu2+, Zn2+) at different loadings (0.1–11.9 wt.%). We combine X-ray fluorescence, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction to monitor the metal-ion contents, distribution, and conservation of the zeolite structure after exchange. Then, we evaluate their antimicrobial activity, using agar dilution and optical-density monitoring of Escherichia coli cultures. The results indicate that silver-loaded materials are at least 70-fold more active than the copper-, zinc-, and non-exchanged ones. Moreover, zeolites loaded with lower Ag+ concentrations remain active down to 0.1 wt.%, and their activities are directly proportional to the total Ag content. Sequential exchanges with two metal ions (Ag+ and either Cu2+, Zn2+) display synergetic or antagonist effects, depending on the quantity of the second metal. Altogether, this work shows that, by combining analytical and quantitative methods, it is possible to fine-tune the composition of bi-metal-exchanged zeolites, in order to maximise their antimicrobial potential, opening new ways for the development of next-generation composite zeolite-containing antimicrobial materials, with potential applications for the design of dental or bone implants, as well as biomedical devices and pharmaceutical products. Full article
(This article belongs to the Special Issue Antibacterial Biomaterials)
Show Figures

Figure 1

Article
A Parametric Study of Flushing Conditions for Improvement of Angioscopy Visibility
J. Funct. Biomater. 2022, 13(2), 69; https://doi.org/10.3390/jfb13020069 - 01 Jun 2022
Viewed by 1022
Abstract
During an angioscopy operation, a transparent liquid called dextran is sprayed out from a catheter to flush the blood away from the space between the camera and target. Medical doctors usually inject dextran at a constant flow rate. However, they often cannot obtain [...] Read more.
During an angioscopy operation, a transparent liquid called dextran is sprayed out from a catheter to flush the blood away from the space between the camera and target. Medical doctors usually inject dextran at a constant flow rate. However, they often cannot obtain clear angioscopy visibility because the flushing out of the blood is insufficient. Good flushing conditions producing clear angioscopy visibility will increase the rate of success of angioscopy operations. This study aimed to determine a way to improve the clarity for angioscopy under different values for the parameters of the injection waveform, endoscope position, and catheter angle. We also determined the effect of a stepwise waveform for injecting the dextran only during systole while synchronizing the waveform to the cardiac cycle. To evaluate the visibility of the blood-vessel walls, we performed a computational fluid dynamics (CFD) simulation and calculated the visible area ratio (VAR), representing the ratio of the visible wall area to the total area of the wall at each point in time. Additionally, the normalized integration of the VAR called the area ratio (ARVAR) represents the ratio of the visible wall area as a function of the dextran injection period. The results demonstrate that the ARVAR with a stepped waveform, bottom endoscope, and three-degree-angle catheter results in the highest visibility, around 25 times larger than that under the control conditions: a constant waveform, a center endoscope, and 0 degrees. This set of conditions can improve angioscopy visibility. Full article
Show Figures

Figure 1

Article
Antibacterial and Osteogenic Properties of Ag Nanoparticles and Ag/TiO2 Nanostructures Prepared by Atomic Layer Deposition
J. Funct. Biomater. 2022, 13(2), 62; https://doi.org/10.3390/jfb13020062 - 18 May 2022
Cited by 4 | Viewed by 1479
Abstract
The combination of titania nanofilms and silver nanoparticles (NPs) is a very promising material, with antibacterial and osseointegration-induced properties for titanium implant coatings. In this work, we successfully prepared TiO2 nanolayer/Ag NP structures on titanium disks using atomic layer deposition (ALD). The [...] Read more.
The combination of titania nanofilms and silver nanoparticles (NPs) is a very promising material, with antibacterial and osseointegration-induced properties for titanium implant coatings. In this work, we successfully prepared TiO2 nanolayer/Ag NP structures on titanium disks using atomic layer deposition (ALD). The samples were studied by scanning electron microscopy (SEM), X-ray diffraction, X-ray photoelectron spectroscopy (XPS), contact angle measurements, and SEM-EDS. Antibacterial activity was tested against Staphylococcus aureus. The in vitro cytological response of MG-63 osteosarcoma and human fetal mesenchymal stem cells (FetMSCs) was examined using SEM study of their morphology, MTT test of viability and differentiation using alkaline phosphatase and osteopontin with and without medium-induced differentiation in the osteogenic direction. The samples with TiO2 nanolayers, Ag NPs, and a TiO2/Ag combination showed high antibacterial activity, differentiation in the osteogenic direction, and non-cytotoxicity. The medium for differentiation significantly improved osteogenic differentiation, but the ALD coatings also stimulated differentiation in the absence of the medium. The TiO2/Ag samples showed the best antibacterial ability and differentiation in the osteogenic direction, indicating the success of the combining of TiO2 and Ag to produce a multifunctional biocompatible and bactericidal material. Full article
(This article belongs to the Special Issue Biomaterials in Tissue, Biomedical and Surface Engineering)
Show Figures

Figure 1

Article
Electrospun PHB/Chitosan Composite Fibrous Membrane and Its Degradation Behaviours in Different pH Conditions
J. Funct. Biomater. 2022, 13(2), 58; https://doi.org/10.3390/jfb13020058 - 13 May 2022
Viewed by 1421
Abstract
Peripheral nerve injury (PNI) is a neurological disorder that causes more than 9 million patients to suffer from dysfunction of moving and sensing. Using biodegradable polymers to fabricate an artificial nerve conduit that replicates the environment of the extracellular matrix and guides neuron [...] Read more.
Peripheral nerve injury (PNI) is a neurological disorder that causes more than 9 million patients to suffer from dysfunction of moving and sensing. Using biodegradable polymers to fabricate an artificial nerve conduit that replicates the environment of the extracellular matrix and guides neuron regeneration through the damaged sites has been researched for decades and has led to promising but primarily pre-clinical outcomes. However, few peripheral nerve conduits (PNCs) have been constructed from controllable biodegradable polymeric materials that can maintain their structural integrity or completely degrade during and after nerve regeneration respectively. In this work, a novel PNC candidate material was developed via the electrospinning of polyhydroxy butyrate/chitosan (PHB/CS) composite polymers. An SEM characterisation revealed the resultant PHB/CS nanofibres with 0, 1 and 2 wt/v% CS had less and smaller beads than the nanofibres at 3 wt/v% CS. The water contact angle (WCA) measurement demonstrated that the wettability of PHB/CS electrospun fibres was significantly improved by additional CS. Furthermore, both the thermogravimetric analysis (TGA) and differentiation scanning calorimetry (DSC) results showed that PHB/CS polymers can be blended in a single phase with a trifluoracetic solvent in all compositions. Besides, the reduction in the degradation temperature (from 286.9 to 229.9 °C) and crystallinity (from 81.0% to 52.1%) with increasing contents of CS were further proven. Moreover, we found that the degradability of the PHB/CS nanofibres subjected to different pH values rated in the order of acidic > alkaline > phosphate buffer solution (PBS). Based on these findings, it can be concluded that PHB/CS electrospun fibres with variable blending ratios may be used for designing PNCs with controlled biodegradability. Full article
(This article belongs to the Topic Advanced Functional Materials for Regenerative Medicine)
Show Figures

Figure 1

Article
Physical and Chemical Characterization of Biomineralized Collagen with Different Microstructures
J. Funct. Biomater. 2022, 13(2), 57; https://doi.org/10.3390/jfb13020057 - 13 May 2022
Viewed by 1406
Abstract
Mineralized collagen is the basic unit in hierarchically organized natural bone with different structures. Polyacrylic acid (PAA) and periodic fluid shear stress (FSS) are the most common chemical and physical means to induce intrafibrillar mineralization. In the present study, non-mineralized collagen, extrafibrillar mineralized [...] Read more.
Mineralized collagen is the basic unit in hierarchically organized natural bone with different structures. Polyacrylic acid (PAA) and periodic fluid shear stress (FSS) are the most common chemical and physical means to induce intrafibrillar mineralization. In the present study, non-mineralized collagen, extrafibrillar mineralized (EM) collagen, intrafibrillar mineralized (IM) collagen, and hierarchical intrafibrillar mineralized (HIM) collagen induced by PAA and FSS were prepared, respectively. The physical and chemical properties of these mineralized collagens with different microstructures were systematically investigated afterwards. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed that mineralized collagen with different microstructures was prepared successfully. The pore density of the mineralized collagen scaffold is higher under the action of periodic FSS. Fourier transform infrared spectroscopy (FTIR) analysis showed the formation of the hydroxyapatite (HA) crystal. A significant improvement in the pore density, hydrophilicity, enzymatic stability, and thermal stability of the mineralized collagen indicated that the IM collagen under the action of periodic FSS was beneficial for maintaining collagen activity. HIM collagen fibers, which are prepared under the co-action of periodic FSS and sodium tripolyphosphate (TPP), may pave the way for new bone substitute material applications. Full article
Show Figures

Graphical abstract

Article
Nanocomposite Hydrogel Produced from PEGDA and Laponite for Bone Regeneration
J. Funct. Biomater. 2022, 13(2), 53; https://doi.org/10.3390/jfb13020053 - 04 May 2022
Cited by 2 | Viewed by 1931
Abstract
Herein, a nanocomposite hydrogel was produced using laponite and polyethylene-glycol diacrylate (PEGDA), with or without Irgacure (IG), for application in bone tissue regeneration. The nanocomposites were characterized by X-ray diffraction (XRD), Fourier-Transform infrared spectroscopy (FTIR), and thermal analysis (TG/DTG). The XRD results showed [...] Read more.
Herein, a nanocomposite hydrogel was produced using laponite and polyethylene-glycol diacrylate (PEGDA), with or without Irgacure (IG), for application in bone tissue regeneration. The nanocomposites were characterized by X-ray diffraction (XRD), Fourier-Transform infrared spectroscopy (FTIR), and thermal analysis (TG/DTG). The XRD results showed that the crystallographic structure of laponite was preserved in the nanocomposite hydrogels after the incorporation of PEGDA and IG. The FTIR results indicated that PEGDA polymer chains were entangled on laponite in hydrogels. The TG/DTG found that the presence of laponite (Lap) improved the thermal stability of nanocomposite hydrogel. The toxicity tests by Artemia salina indicated that the nanocomposite hydrogels were not toxic, because the amount of live nauplii was 80.0%. In addition, in vivo tests demonstrated that the hydrogels had the ability to regenerate bone in a bone defect model of the tibiae of osteopenic rats. For the nanocomposite hydrogel (PEGDA + Lap nanocomposites + UV light), the formation of intramembranous bone in the soft callus was more intense in 66.7% of the animals. Thus, the results presented in this study evidence that nanocomposite hydrogels obtained from laponite and PEGDA have the potential for use in bone regeneration. Full article
Show Figures

Figure 1

Article
Design of a Naturally Dyed and Waterproof Biotechnological Leather from Reconstituted Cellulose
J. Funct. Biomater. 2022, 13(2), 49; https://doi.org/10.3390/jfb13020049 - 29 Apr 2022
Cited by 1 | Viewed by 1798
Abstract
Consumerism in fashion involves the excessive consumption of garments in modern capitalist societies due to the expansion of globalisation, especially at the beginning of the 21st Century. The involvement of new designers in the garment industry has assisted in creating a desire for [...] Read more.
Consumerism in fashion involves the excessive consumption of garments in modern capitalist societies due to the expansion of globalisation, especially at the beginning of the 21st Century. The involvement of new designers in the garment industry has assisted in creating a desire for new trends. However, the fast pace of transitions between collections has made fashion increasingly frivolous and capable of generating considerable interest in new products, accompanied by an increase in the discarding of fabrics. Thus, studies have been conducted on developing sustainable textile materials for use in the fashion industry. The aim of the present study was to evaluate the potential of a vegan leather produced with a dyed, waterproof biopolymer made of reconstituted bacterial cellulose (BC). The dying process involved using plant-based natural dyes extracted from Allium cepa L., Punica granatum, and Eucalyptus globulus L. The BC films were then shredded and reconstituted to produce uniform surfaces with a constant thickness of 0.10 cm throughout the entire area. The films were waterproofed using the essential oil from Melaleuca alternifolia and wax from Copernicia prunifera. The characteristics of the biotechnological vegan leather were analysed using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), flexibility and mechanical tests, as well as the determination of the water contact angle (°) and sorption index (s). The results confirmed that the biomaterial has high tensile strength (maximum: 247.21 ± 16.52 N) and high flexibility; it can be folded more than 100 times at the same point without breaking or cracking. The water contact angle was 83.96°, indicating a small water interaction on the biotextile. The results of the present study demonstrate the potential of BC for the development of novel, durable, vegan, waterproof fashion products. Full article
(This article belongs to the Special Issue Biodegradable Polymers and Textiles)
Show Figures

Graphical abstract

Article
Catalyst-Free Click Chemistry for Engineering Chondroitin Sulfate-Multiarmed PEG Hydrogels for Skin Tissue Engineering
J. Funct. Biomater. 2022, 13(2), 45; https://doi.org/10.3390/jfb13020045 - 18 Apr 2022
Cited by 1 | Viewed by 1875
Abstract
The quest for an ideal biomaterial perfectly matching the microenvironment of the surrounding tissues and cells is an endless challenge within biomedical research, in addition to integrating this with a facile and sustainable technology for its preparation. Engineering hydrogels through click chemistry would [...] Read more.
The quest for an ideal biomaterial perfectly matching the microenvironment of the surrounding tissues and cells is an endless challenge within biomedical research, in addition to integrating this with a facile and sustainable technology for its preparation. Engineering hydrogels through click chemistry would promote the sustainable invention of tailor-made hydrogels. Herein, we disclose a versatile and facile catalyst-free click chemistry for the generation of an innovative hydrogel by combining chondroitin sulfate (CS) and polyethylene glycol (PEG). Various multi-armed PEG-Norbornene (A-PEG-N) with different molecular sizes were investigated to generate crosslinked copolymers with tunable rheological and mechanical properties. The crosslinked and mechanically stable porous hydrogels could be generated by simply mixing the two clickable Tetrazine-CS (TCS) and A-PEG-N components, generating a self-standing hydrogel within minutes. The leading candidate (TCS-8A-PEG-N (40 kD)), based on the mechanical and biocompatibility results, was further employed as a scaffold to improve wound closure and blood flow in vivo. The hydrogel demonstrated not only enhanced blood perfusion and an increased number of blood vessels, but also desirable fibrous matrix orientation and normal collagen deposition. Taken together, these results demonstrate the potential of the hydrogel to improve wound repair and hold promise for in situ skin tissue engineering applications. Full article
(This article belongs to the Special Issue Fibrous Scaffolds for Tissue Engineering Application II)
Show Figures

Graphical abstract

Article
The Implant Proteome—The Right Surgical Glue to Fix Titanium Implants In Situ
J. Funct. Biomater. 2022, 13(2), 44; https://doi.org/10.3390/jfb13020044 - 15 Apr 2022
Cited by 2 | Viewed by 1374
Abstract
Titanium implants are frequently applied to the bone in orthopedic and trauma surgery. Although these biomaterials are characterized by excellent implant survivorship and clinical outcomes, there are almost no data available on the initial protein layer binding to the implant surface in situ. [...] Read more.
Titanium implants are frequently applied to the bone in orthopedic and trauma surgery. Although these biomaterials are characterized by excellent implant survivorship and clinical outcomes, there are almost no data available on the initial protein layer binding to the implant surface in situ. This study aims to investigate the composition of the initial protein layer on endoprosthetic surfaces as a key initiating step in osseointegration. In patients qualified for total hip arthroplasty, the implants are inserted into the femoral canal, fixed and subsequently explanted after 2 and 5 min. The proteins adsorbed to the surface (the implant proteome) are analyzed by liquid chromatography–tandem mass spectrometry (LC-MS/MS). A statistical analysis of the proteins’ alteration with longer incubation times reveals a slight change in their abundance according to the Vroman effect. The pathways involved in the extracellular matrix organization of bone, sterile inflammation and the beginning of an immunogenic response governed by neutrophils are significantly enriched based on the analysis of the implant proteome. Those are generally not changed with longer incubation times. In summary, proteins relevant for osseointegration are already adsorbed within 2 min in situ. A deeper understanding of the in situ protein–implant interactions in patients may contribute to optimizing implant surfaces in orthopedic and trauma surgery. Full article
(This article belongs to the Special Issue Scaffolds and Implants for Bone Regeneration)
Show Figures

Graphical abstract

Article
TiO2 Nanotubes Functionalized with Icariin for an Attenuated In Vitro Immune Response and Improved In Vivo Osseointegration
J. Funct. Biomater. 2022, 13(2), 43; https://doi.org/10.3390/jfb13020043 - 14 Apr 2022
Cited by 2 | Viewed by 1452
Abstract
Due to their superior mechanical and chemical properties, titanium (Ti) and its alloys have been widely used as orthopedic implantable devices. However, their bioinertness represents a limitation, which can be overcome by employing various surface modifications, such as TiO2 nanotube (TNT) fabrication [...] Read more.
Due to their superior mechanical and chemical properties, titanium (Ti) and its alloys have been widely used as orthopedic implantable devices. However, their bioinertness represents a limitation, which can be overcome by employing various surface modifications, such as TiO2 nanotube (TNT) fabrication via electrochemical anodization. Anodic TNTs present tunable dimensions and unique structures, turning them into feasible drug delivery platforms. In the present work, TNTs were loaded with icariin (Ica) through an adhesive intermediate layer of polydopamine (DP), and their in vitro and in vivo biological performance was evaluated. The successful fabrication of the modified surfaces was verified by scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), and contact angle measurements (CA), while the in vitro release of Ica was evaluated via UV-VIS spectrophotometry. In terms of in vitro behaviour, comparative studies on RAW 264.7 macrophages demonstrated that the TNT substrates, especially TNT-DP-Ica, elicited a lower inflammatory response compared to the Ti support. Moreover, the in vivo implantation studies evinced generation of a reduced fibrotic capsule around this implant and increased thickness of the newly formed bone tissue at 1 month and 3 months post-implantation, respectively. Overall, our results indicate that the controlled release of Ica from TNT surfaces could result in an improved osseointegration process. Full article
(This article belongs to the Special Issue Women in Science: Functional Biomaterials)
Show Figures

Graphical abstract

Article
Microbial Adhesion to Dental Polymers for Conventional, Computer-Aided Subtractive and Additive Manufacturing: A Comparative In Vitro Study
J. Funct. Biomater. 2022, 13(2), 42; https://doi.org/10.3390/jfb13020042 - 11 Apr 2022
Cited by 3 | Viewed by 1310
Abstract
Modern structural materials are represented by a variety of polymer materials used for dental patients’ rehabilitation. They differ not only in physico-chemical properties, but also in microbiological properties, which is one of the reasons why these materials are chosen. The study focused on [...] Read more.
Modern structural materials are represented by a variety of polymer materials used for dental patients’ rehabilitation. They differ not only in physico-chemical properties, but also in microbiological properties, which is one of the reasons why these materials are chosen. The study focused on the microbial adhesion of clinical isolates of normal (5 types), periodontopathogenic (2 types), and fungal (2 types) microbiotas to various materials based on polymethylmethacrylate (PMMA) intended for traditional (cold-cured and hot-cured polymers), computer-aided subtractive and additive manufacturing. A comparative analysis was carried out on the studied samples of polymer materials according to the microorganisms’ adhesion index (AI). The lowest level of microorganisms’ AI of the three types of microbiotas was determined in relation to materials for additive manufacturing. The AI of hot-cured polymers, as well as materials for subtractive manufacturing, corresponded to the average level. The highest level of microorganisms’ adhesion was found in cold-cured polymers. Significant differences in AI for materials of the same technological production type (different manufacturers) were also determined. The tendency of significant differences in the indicators of the microorganisms’ adhesion level for the studied polymer materials on the basis of the type of production technology was determined. Full article
Show Figures

Figure 1

Article
GelMA Hydrogel Reinforced with 3D Printed PEGT/PBT Scaffolds for Supporting Epigenetically-Activated Human Bone Marrow Stromal Cells for Bone Repair
J. Funct. Biomater. 2022, 13(2), 41; https://doi.org/10.3390/jfb13020041 - 10 Apr 2022
Cited by 1 | Viewed by 2179
Abstract
Epigenetic approaches using the histone deacetylase 2 and 3 inhibitor-MI192 have been reported to accelerate stem cells to form mineralised tissues. Gelatine methacryloyl (GelMA) hydrogels provide a favourable microenvironment to facilitate cell delivery and support tissue formation. However, their application for bone repair [...] Read more.
Epigenetic approaches using the histone deacetylase 2 and 3 inhibitor-MI192 have been reported to accelerate stem cells to form mineralised tissues. Gelatine methacryloyl (GelMA) hydrogels provide a favourable microenvironment to facilitate cell delivery and support tissue formation. However, their application for bone repair is limited due to their low mechanical strength. This study aimed to investigate a GelMA hydrogel reinforced with a 3D printed scaffold to support MI192-induced human bone marrow stromal cells (hBMSCs) for bone formation. Cell culture: The GelMA (5 wt%) hydrogel supported the proliferation of MI192-pre-treated hBMSCs. MI192-pre-treated hBMSCs within the GelMA in osteogenic culture significantly increased alkaline phosphatase activity (p ≤ 0.001) compared to control. Histology: The MI192-pre-treated group enhanced osteoblast-related extracellular matrix deposition and mineralisation (p ≤ 0.001) compared to control. Mechanical testing: GelMA hydrogels reinforced with 3D printed poly(ethylene glycol)-terephthalate/poly(butylene terephthalate) (PEGT/PBT) scaffolds exhibited a 1000-fold increase in the compressive modulus compared to the GelMA alone. MI192-pre-treated hBMSCs within the GelMA–PEGT/PBT constructs significantly enhanced extracellular matrix collagen production and mineralisation compared to control (p ≤ 0.001). These findings demonstrate that the GelMA–PEGT/PBT construct provides enhanced mechanical strength and facilitates the delivery of epigenetically-activated MSCs for bone augmentation strategies. Full article
(This article belongs to the Topic Advanced Functional Materials for Regenerative Medicine)
Show Figures

Figure 1

Article
TiO2 Nanoparticles Dispersion in Block-Copolymer Aqueous Solutions: Nanoarchitectonics for Self-Assembly and Aggregation
J. Funct. Biomater. 2022, 13(2), 39; https://doi.org/10.3390/jfb13020039 - 09 Apr 2022
Cited by 1 | Viewed by 1690
Abstract
Achieving homogenous dispersion of nanoparticles inside a polymeric matrix is a great challenge for numerous applications. In the present study, we aim at understanding the role of different factors on the dispersion properties of TiO2 in pluronic F-127 mixtures. The mixtures were [...] Read more.
Achieving homogenous dispersion of nanoparticles inside a polymeric matrix is a great challenge for numerous applications. In the present study, we aim at understanding the role of different factors on the dispersion properties of TiO2 in pluronic F-127 mixtures. The mixtures were prepared with different pH and guest/host ratios and investigated by UV-Vis spectroscopy, dynamic light scattering, infrared spectroscopy and electrical conductivity. Depending on the preparation conditions, different amounts of TiO2 were loaded within the copolymer as quantitatively determined by UV-Vis spectroscopy. The different content of nanoparticles has direct implications on the gelation and micellization of pluronic analyzed by dynamic light scattering. The information derived on the self-assembly behavior was interpreted in relation to the infrared and conductivity measurements results. Together, these results shed light on the most favorable conditions for improving the nanoparticle dispersion inside the copolymer matrix and suggest a possible strategy to design functional nanoparticle-polymer systems. Full article
Show Figures

Graphical abstract

Article
HexA-Enzyme Coated Polymer Nanoparticles for the Development of a Drug-Delivery System in the Treatment of Sandhoff Lysosomal Storage Disease
J. Funct. Biomater. 2022, 13(2), 37; https://doi.org/10.3390/jfb13020037 - 31 Mar 2022
Cited by 2 | Viewed by 1640
Abstract
Lysosomal storage disorders (LSDs) are a set of metabolic diseases caused by mutations in genes that are in charge of the production of lysosomal enzymes, resulting in the buildup of non-degraded substrates and the consequent systemic damage that mainly involves the Central Nervous [...] Read more.
Lysosomal storage disorders (LSDs) are a set of metabolic diseases caused by mutations in genes that are in charge of the production of lysosomal enzymes, resulting in the buildup of non-degraded substrates and the consequent systemic damage that mainly involves the Central Nervous System (CNS). One of the most widely used and studied treatments is Enzyme Replacement Therapy, which is based on the administration of the recombinant deficient enzyme. This strategy has often proved fallacious due to the enzyme instability in body fluids and its inability to reach adequate levels in the CNS. In this work, we developed a system based on nanotechnology that allows a stable enzyme to be obtained by its covalent immobilization on nanoparticles (NPs) of polylactic acid, subsequently administered to a cellular model of LSDs, i.e., Sandhoff disease, caused by the absence or deficiency of the β-d-N-acetyl-hexosaminidase A (HexA) enzyme. The HexA enzymes, loaded onto the polymeric NPs through an immobilization procedure that has already been investigated and validated, were found to be stable over time, maintain optimal kinetic parameters, be able to permeate the plasma membrane, hydrolyze HexA’s natural substrate, and restore enzyme activity close to the levels of healthy cells. These results thus lay the foundation for testing the HexA-NPs in animal models of the disease and thus obtaining an efficient drug-delivery system. Full article
(This article belongs to the Special Issue Biomaterials for Drug Delivery)
Show Figures

Graphical abstract

Article
Uncovering Novel Pre-Treatment Molecular Biomarkers for Anti-TNF Therapeutic Response in Patients with Crohn’s Disease
J. Funct. Biomater. 2022, 13(2), 36; https://doi.org/10.3390/jfb13020036 - 30 Mar 2022
Viewed by 1476
Abstract
Neutralising monoclonal antibodies for tumour necrosis factor (TNF) has been widely used to treat Crohn’s disease (CD) in clinical practice. However, differential individual response necessitates a therapeutic response assessment of anti-TNF agents in CD patients for optimizing therapeutic strategy. We aimed to predict [...] Read more.
Neutralising monoclonal antibodies for tumour necrosis factor (TNF) has been widely used to treat Crohn’s disease (CD) in clinical practice. However, differential individual response necessitates a therapeutic response assessment of anti-TNF agents in CD patients for optimizing therapeutic strategy. We aimed to predict anti-TNF therapy response in CD patients using transcriptome analyses. Transcriptome analyses were performed using data from the Gene Expression Omnibus, GeneCards, and Human Protein Atlas databases. The significantly mitigated biological functions associated with anti-TNF therapy resistance in CD patients encompassed immune pathways, including Interleukin-17 (IL-17) signaling, cytokine-cytokine receptor interaction, and rheumatoid arthritis. The scores of immune cell markers, including neutrophils, monocytes, and macrophages/monocytes were also significantly decreased in non-responders compared with that measured in anti-TNF therapy responders. The KAT2B gene, associated with IL-17 cytokine mediated neutrophil mobilization and activation, was significantly under-expressed in both tissue and peripheral blood mononuclear cells (PBMCs) in anti-TNF therapy-resistant CD patients. The reduced expression of several pro-inflammatory cytokines due to down-regulated IL-17 signaling, is suggestive of the primary non-response to anti-TNF agents in CD patients. Furthermore, the PBMC KAT2B gene signature may be a promising pre-treatment prognostic biomarker for anti-TNF drug response in CD patients. Full article
Show Figures

Graphical abstract

Article
Engineering 3D Printed Scaffolds with Tunable Hydroxyapatite
J. Funct. Biomater. 2022, 13(2), 34; https://doi.org/10.3390/jfb13020034 - 23 Mar 2022
Cited by 5 | Viewed by 2373
Abstract
Orthopedic and craniofacial surgical procedures require the reconstruction of bone defects caused by trauma, diseases, and tumor resection. Successful bone restoration entails the development and use of bone grafts with structural, functional, and biological features similar to native tissues. Herein, we developed three-dimensional [...] Read more.
Orthopedic and craniofacial surgical procedures require the reconstruction of bone defects caused by trauma, diseases, and tumor resection. Successful bone restoration entails the development and use of bone grafts with structural, functional, and biological features similar to native tissues. Herein, we developed three-dimensional (3D) printed fine-tuned hydroxyapatite (HA) biomimetic bone structures, which can be applied as grafts, by using calcium phosphate cement (CPC) bioink, which is composed of tetracalcium phosphate (TTCP), dicalcium phosphate anhydrous (DCPA), and a liquid [Polyvinyl butyral (PVB) dissolved in ethanol (EtOH)]. The ink was ejected through a high-resolution syringe nozzle (210 µm) at room temperature into three different concentrations (0.01, 0.1, and 0.5) mol/L of the aqueous sodium phosphate dibasic (Na2HPO4) bath that serves as a hardening accelerator for HA formation. Raman spectrometer, X-ray diffraction (XRD), and scanning electron microscopy (SEM) demonstrated the real-time HA formation in (0.01, 0.1, and 0.5) mol/L Na2HPO4 baths. Under those conditions, HA was formed at different amounts, which tuned the scaffolds’ mechanical properties, porosity, and osteoclast activity. Overall, this method may pave the way to engineer 3D bone scaffolds with controlled HA composition and pre-defined properties, which will enhance graft-host integration in various anatomic locations. Full article
(This article belongs to the Special Issue Smart Biomaterials for Soft and Hard Tissue Repair and Regeneration)
Show Figures

Figure 1

Article
Synergistic Antibacterial Effect of Zinc Oxide Nanoparticles and Polymorphonuclear Neutrophils
J. Funct. Biomater. 2022, 13(2), 35; https://doi.org/10.3390/jfb13020035 - 23 Mar 2022
Viewed by 1737
Abstract
Zinc oxide nanoparticles (ZnONPs) are inorganic nano-biomaterials with excellent antimicrobial properties. However, their effects on the anti-infection ability of the innate immune system remains poorly understood. The aim of the present study was to explore the potential immunomodulatory effects of ZnONPs on the [...] Read more.
Zinc oxide nanoparticles (ZnONPs) are inorganic nano-biomaterials with excellent antimicrobial properties. However, their effects on the anti-infection ability of the innate immune system remains poorly understood. The aim of the present study was to explore the potential immunomodulatory effects of ZnONPs on the innate immune system, represented by polymorphonuclear leukocytes (PMNs), and determine whether they can act synergistically to resist pathogen infections. In vitro experiment showed that ZnONPs not only exhibit obvious antibacterial activity at biocompatible concentrations but also enhance the antibacterial property of PMNs. In vivo experiments demonstrated the antibacterial effect of ZnONPs, accompanied by more infiltration of subcutaneous immune cells. Further ex vivo and in vitro experiments revealed that ZnONPs enhanced the migration of PMNs, promoted their bacterial phagocytosis efficiency, proinflammatory cytokine (TNF-α, IL-1β, and IL-6) expression, and reactive oxygen species (ROS) production. In summary, this study revealed potential synergistic effects of ZnONPs on PMNs to resist pathogen infection and the underlying mechanisms. The findings suggest that attempts should be made to fabricate and apply biomaterials in order to maximize their synergy with the innate immune system, thus promoting the host’s resistance to pathogen invasion. Full article
(This article belongs to the Special Issue State-of-the-Art Functional Biomaterials in China)
Show Figures

Graphical abstract

Article
Dental Poly(methyl methacrylate)-Based Resin Containing a Nanoporous Silica Filler
J. Funct. Biomater. 2022, 13(1), 32; https://doi.org/10.3390/jfb13010032 - 15 Mar 2022
Viewed by 1780
Abstract
Poly(methyl methacrylate) (PMMA)-based resins have been conventionally used in dental prostheses owing to their good biocompatibility. However, PMMA-based resins have relatively poor mechanical properties. In the present study, a novel nanoporous silica filler was developed and introduced into PMMA-based resins to improve their [...] Read more.
Poly(methyl methacrylate) (PMMA)-based resins have been conventionally used in dental prostheses owing to their good biocompatibility. However, PMMA-based resins have relatively poor mechanical properties. In the present study, a novel nanoporous silica filler was developed and introduced into PMMA-based resins to improve their mechanical properties. The filler was prepared by sintering a green body composed of silica and an organic binder, followed by grinding to a fine powder and subsequent silanization. The filler was added to photocurable PMMA-based resin, which was prepared from MMA, PMMA, ethylene glycol dimethacrylate, and a photo-initiator. The filler was characterized by scanning electron microscopy (SEM), X-ray diffraction analysis, nitrogen sorption porosimetry, and Fourier transform infrared (FT-IR) spectroscopy. The PMMA-based resins were characterized by SEM and FT-IR, and the mechanical properties (Vickers hardness, flexural modulus, and flexural strength) and physicochemical properties (water sorption and solubility) were evaluated. The results suggested that the filler consisted of microparticles with nanopores. The filler at 23 wt % was well dispersed in the PMMA-based resin matrix. The mechanical and physicochemical properties of the PMMA-based resin improved significantly with the addition of the developed filler. Therefore, such filler-loaded PMMA-based resins are potential candidates for improving the strength and durability of polymer-based crown and denture base. Full article
(This article belongs to the Special Issue Feature Papers in Dental Biomaterials)
Show Figures

Figure 1

Article
Engineering Nanopatterned Structures to Orchestrate Macrophage Phenotype by Cell Shape
J. Funct. Biomater. 2022, 13(1), 31; https://doi.org/10.3390/jfb13010031 - 14 Mar 2022
Cited by 1 | Viewed by 1620
Abstract
Physical features on the biomaterial surface are known to affect macrophage cell shape and phenotype, providing opportunities for the design of novel “immune-instructive” topographies to modulate foreign body response. The work presented here employed nanopatterned polydimethylsiloxane substrates with well-characterized nanopillars and nanopits to [...] Read more.
Physical features on the biomaterial surface are known to affect macrophage cell shape and phenotype, providing opportunities for the design of novel “immune-instructive” topographies to modulate foreign body response. The work presented here employed nanopatterned polydimethylsiloxane substrates with well-characterized nanopillars and nanopits to assess RAW264.7 macrophage response to feature size. Macrophages responded to the small nanopillars (SNPLs) substrates (450 nm in diameter with average 300 nm edge-edge spacing), resulting in larger and well-spread cell morphology. Increasing interpillar distance to 800 nm in the large nanopillars (LNPLs) led to macrophages exhibiting morphologies similar to being cultured on the flat control. Macrophages responded to the nanopits (NPTs with 150 nm deep and average 800 nm edge-edge spacing) by a significant increase in cell elongation. Elongation and well-spread cell shape led to expression of anti-inflammatory/pro-healing (M2) phenotypic markers and downregulated expression of inflammatory cytokines. SNPLs and NPTs with high availability of integrin binding region of fibronectin facilitated integrin β1 expression and thus stored focal adhesion formation. Increased integrin β1 expression in macrophages on the SNPLs and NTPs was required for activation of the PI3K/Akt pathway, which promoted macrophage cell spreading and negatively regulated NF-κB activation as evidenced by similar globular cell shape and higher level of NF-κB expression after PI3K blockade. These observations suggested that alterations in macrophage cell shape from surface nanotopographies may provide vital cues to orchestrate macrophage phenotype. Full article
(This article belongs to the Special Issue Feature Papers in Bone Biomaterials)
Show Figures

Graphical abstract

Article
Surface Properties of Ti6Al7Nb Alloy: Surface Free Energy and Bacteria Adhesion
J. Funct. Biomater. 2022, 13(1), 26; https://doi.org/10.3390/jfb13010026 - 07 Mar 2022
Cited by 2 | Viewed by 1824
Abstract
The laser micro-machining was carried out on a station equipped with a TruMicro 5325c laser emitting ultraviolet radiation (343 nm wavelength) in picosecond pulses. On the surface of the Ti6Al7Nb alloy, dimple texturing with a constant diameter of ~200 μm, different depths (from [...] Read more.
The laser micro-machining was carried out on a station equipped with a TruMicro 5325c laser emitting ultraviolet radiation (343 nm wavelength) in picosecond pulses. On the surface of the Ti6Al7Nb alloy, dimple texturing with a constant diameter of ~200 μm, different depths (from ~5 to ~78 μm) and density (from 10% to 50%) were produced. The value of surface free energy was determined with the Owens–Wendt method using two measuring liquids: distilled water and diodomethane. The Staphylococcus epidermidis strain was used to test the adhesion of bacteria. It was found that the surface free energy value is influenced by both of the texture parameters (density, depth). The density also affects the potential for biofilm formation. Based on the analysis, it was shown that with an increase in surface free energy, the number of adhering microorganisms increases exponentially. Moreover, the study shows that there is a correlation between the number of adhering microorganisms and surface free energy. Full article
Show Figures

Figure 1

Article
Multi-Stimulus Responsive Multilayer Coating for Treatment of Device-Associated Infections
J. Funct. Biomater. 2022, 13(1), 24; https://doi.org/10.3390/jfb13010024 - 28 Feb 2022
Cited by 3 | Viewed by 2772
Abstract
Antibacterial coating with antibiotics is highly effective in avoiding device-associated infections (DAIs) which is an unsolved healthcare problem that causes significant morbidity and mortality rates. However, bacterial drug resistance caused by uncontrolled release of antibiotics seriously restricts clinical efficacy of antibacterial coating. Hence, [...] Read more.
Antibacterial coating with antibiotics is highly effective in avoiding device-associated infections (DAIs) which is an unsolved healthcare problem that causes significant morbidity and mortality rates. However, bacterial drug resistance caused by uncontrolled release of antibiotics seriously restricts clinical efficacy of antibacterial coating. Hence, a local and controlled-release system which can release antibiotics in response to bacterial infected signals is necessary in antibacterial coating. Herein, a multi-stimulus responsive multilayer antibacterial coating was prepared through layer-by-layer (LbL) self-assembly of montmorillonite (MMT), chlorhexidine acetate (CHA) and Poly(protocatechuic acid-polyethylene glycol 1000-bis(phenylboronic acid carbamoyl) cystamine) (PPPB). The coating can be covered on various substrates such as cellulose acetate membrane, polyacrylonitrile membrane, polyvinyl chloride membrane, and polyurethane membrane, proving it is a versatile coating. Under the stimulation of acids, glucose or dithiothreitol, this coating was able to achieve controlled release of CHA and kill more than 99% of Staphylococcus aureus and Escherichia coli (4 × 108 CFU/mL) within 4 h. In the mouse infection model, CHA releasing of the coating was triggered by infected microenvironment to completely kill bacteria, achieving wounds healing within 14 days. Full article
(This article belongs to the Special Issue State-of-the-Art Functional Biomaterials in China)
Show Figures

Graphical abstract

Article
Degradation of Dental Methacrylate-Based Composites in Simulated Clinical Immersion Media
J. Funct. Biomater. 2022, 13(1), 25; https://doi.org/10.3390/jfb13010025 - 28 Feb 2022
Viewed by 1411
Abstract
The selection of restorative materials with regard to the longevity and durability of a restoration is of crucial importance for daily dental practice and requires that the degradation of the material in the oral environment can be assessed. The aim of this study [...] Read more.
The selection of restorative materials with regard to the longevity and durability of a restoration is of crucial importance for daily dental practice and requires that the degradation of the material in the oral environment can be assessed. The aim of this study was to investigate the extent to which the mechanical properties of four (Esthet X, Ceram X, Filtek Supreme XT, and Filtek Supreme XT flow) resin-based composites (RBCs) alter during storage in saliva substitutes (artificial saliva) for 24 h and 28 days and in the context of simulated, more aggressive clinical conditions, including cycles exposure to de- and remineralization, alcohol, or salivary enzymes. For this purpose, flexural strength and modulus were determined in a three-point bending test (n = 20) followed by Weibull analysis, while quasi-static behavior was evaluated by instrumented indentation techniques. Degradation occurred in all RBCs and all aging protocols and was quantifiable at both macroscopic and microscopic levels. The postulated stabilizing effect on degradation through the incorporation of urethane-based co-monomers into the organic matrix or a higher filler loading is refuted. Even though modern RBCs show high clinical survival rates, biodegradation remains an issue that needs to be addressed. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

Article
Osseointegration at Implants Installed in Composite Bone: A Randomized Clinical Trial on Sinus Floor Elevation
J. Funct. Biomater. 2022, 13(1), 22; https://doi.org/10.3390/jfb13010022 - 28 Feb 2022
Cited by 3 | Viewed by 1594
Abstract
Osseointegration of implants installed in conjunction with sinus floor elevation might be affected by the presence of residual graft. The implant surface characteristics and the protection of the access window using a collagen membrane might influence the osseointegration. To evaluate these factors, sinus [...] Read more.
Osseointegration of implants installed in conjunction with sinus floor elevation might be affected by the presence of residual graft. The implant surface characteristics and the protection of the access window using a collagen membrane might influence the osseointegration. To evaluate these factors, sinus floor elevation was performed in patients using a natural bovine bone grafting material. The access windows were either covered with a collagen membrane made of porcine corium (Mb group) or left uncovered (No-Mb group) and, after six months, two mini-implants with either a moderate rough or turned surfaces were installed. After 3 months, biopsies containing the mini-implants were retrieved, processed histologically, and analyzed. Twenty patients, ten in each group, were included in the study. The two mini-implants were retrieved from fourteen patients, six belonging to the Mb group, and eight to the No-Mb group. No statistically significant differences were found in osseointegration between groups. However, statistically significant differences were found between the two surfaces. It was concluded that implants with a moderately rough surface installed in a composite bone presented much higher osseointegration compared to those with a turned surface. The present study failed to show an effect of the use of a collagen membrane on the access window. Full article
(This article belongs to the Special Issue Scaffolds and Implants for Bone Regeneration)
Show Figures

Figure 1

Back to TopTop