Emerging Trends in Microfluidic Biomaterials: From Functional Design to Applications
Abstract
:1. Introduction
2. Materials for Microfluidics Devices
2.1. Inorganic Materials
2.2. Polymers
2.3. Paper
3. Microfluidic Biomaterials
3.1. Features of Microfluidic Biomaterials
3.2. Preparation Method of Microfluidic Biomaterials
3.2.1. Micro-Molding Methods
3.2.2. Light-Based Methods
3.2.3. Three-Dimensional Printing Methods
3.2.4. Other Methods and Future Trends
4. Design of Organ-on-a-Chip with 3D Bioprinting Techniques
4.1. Types of 3D Bioprinting
4.2. Biomaterial Selection Criteria
4.2.1. Natural Biomaterials
4.2.2. Synthetic Biomaterials
4.3. Specific Steps of 3D Bioprinting for Organ-on-a-Chip Devices
4.3.1. Bioprinting Process Stages
4.3.2. Functional Design of Organ-on-a-Chip Devices
5. Medical Applications of Microfluidic Biomaterials
5.1. Drug Delivery Carriers
5.2. Cell Analysis
5.3. Tissue Engineering
6. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, X.; Bian, F.; Sun, L.; Cai, L.; Li, L.; Zhao, Y. Microfluidic Generation of Nanomaterials for Biomedical Applications. Small 2020, 16, 1901943. [Google Scholar] [CrossRef] [PubMed]
- Cassotta, M.; Forbes-Hernández, T.Y.; Iglesias, R.C.; Ruiz, R.; Zabaleta, M.E.; Giampieri, F.; Battino, M. Links between Nutrition, Infectious Diseases, and Microbiota: Emerging Technologies and Opportunities for Human-Focused Research. Nutrients 2020, 12, 1827. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.S.; Zhang, M.M.; Chen, Q.S.; Ouyang, Q. Multifunctional Metal-Organic Frameworks Driven Three-Dimensional Folded Paper-Based Microfluidic Analysis Device for Chlorpyrifos Detection. J. Agric. Food Chem. 2024, 72, 14375–14385. [Google Scholar] [CrossRef] [PubMed]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef]
- Zhou, W.J.; Luo, J.Y.; Zhao, L.H.; Zhao, M.; Ouyang, Z.; Yang, M.H. Influences of different storage environments and packaging materials on the quality of the traditional Chinese health food Herba Menthae Haplocalycis. Food Packag. Shelf Life 2018, 15, 52–61. [Google Scholar] [CrossRef]
- Yang, N.; Wang, P.; Xue, C.Y.; Sun, J.; Mao, H.P.; Oppong, P.K. A portable detection method for organophosphorus and carbamates pesticide residues based on multilayer paper chip. J. Food Process Eng. 2018, 41, e12867. [Google Scholar] [CrossRef]
- Yang, N.; Zhou, X.; Yu, D.F.; Jiao, S.Y.; Han, X.; Zhang, S.L.; Yin, H.; Mao, H.P. Pesticide residues identification by impedance time-sequence spectrum of enzyme inhibition on multilayer paper-based microfluidic chip. J. Food Process Eng. 2020, 43, e13544. [Google Scholar] [CrossRef]
- Becker, H.; Heim, U. Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sens. Actuators A Phys. 2000, 83, 130–135. [Google Scholar] [CrossRef]
- Wu, J.; Gu, M. Microfluidic sensing: State of the art fabrication and detection techniques. J. Biomed. Opt. 2011, 16, 080901. [Google Scholar] [CrossRef]
- Hassan, M.M.; Yi, X.; Zareef, M.; Li, H.H.; Chen, Q.S. Recent advancements of optical, electrochemical, and photoelectrochemical transducer-based microfluidic devices for pesticide and mycotoxins in food and water. Trends Food Sci. Technol. 2023, 142, 104230. [Google Scholar] [CrossRef]
- Yang, W.M.; Cao, L.L.; Lu, H.J.; Huang, Y.; Yang, W.Q.; Cai, Y.Z.; Li, S.M.; Li, S.Q.; Zhao, J.W.; Xu, W.Z. Custom-printed microfluidic chips using simultaneous ratiometric fluorescence with “Green” carbon dots for detection of multiple antibiotic residues in pork and water samples. J. Food Sci. 2024, 89, 5980–5992. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.M.; de Haan, P.; Ronaldson-Bouchard, K.; Kim, G.-A.; Ko, J.; Rho, H.S.; Chen, Z.; Habibovic, P.; Jeon, N.L.; Takayama, S.; et al. A guide to the organ-on-a-chip. Nat. Rev. Methods Primers 2022, 2, 33. [Google Scholar] [CrossRef]
- Serpe, F.; Casciola, C.M.; Ruocco, G.; Cidonio, G.; Scognamiglio, C. Microfluidic fiber spinning for 3D bioprinting: Harnessing microchannels to build macrotissues. Int. J. Bioprinting 2024, 10, 1404. [Google Scholar] [CrossRef]
- Feng, L.; Wu, J.N.; Cai, L.; Li, M.; Dai, Z.Q.; Li, D.J.; Liu, C.Q.; Zhang, M. Effects of different hydrocolloids on the water migration, rheological and 3D printing characteristics of β-carotene loaded yam starch-based hydrogel. Food Chem. 2022, 393, 133422. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Arslan, M.; Li, Z.H.; Cen, S.Y.; Shi, J.Y.; Huang, X.W.; Xiao, J.B.; Zou, X.B. Application of Protein in Extrusion-Based 3D Food Printing: Current Status and Prospectus. Foods 2022, 11, 1902. [Google Scholar] [CrossRef]
- Tien, J.; Dance, Y.W. Microfluidic biomaterials. Adv. Healthc. Mater. 2021, 10, 2001028. [Google Scholar] [CrossRef]
- Zheng, W.; Xie, R.; Liang, X.; Liang, Q. Fabrication of biomaterials and biostructures based on microfluidic manipulation. Small 2022, 18, 2105867. [Google Scholar] [CrossRef]
- Gao, Y.; Ma, Q.; Cao, J.; Wang, Y.; Yang, X.; Xu, Q.; Liang, Q.; Sun, Y. Recent advances in microfluidic-aided chitosan-based multifunctional materials for biomedical applications. Int. J. Pharm. 2021, 600, 120465. [Google Scholar] [CrossRef]
- Lin, J.; Wang, Z.; Huang, J.; Tang, S.; Saiding, Q.; Zhu, Q.; Cui, W. Microenvironment-Protected Exosome-Hydrogel for Facilitating Endometrial Regeneration, Fertility Restoration, and Live Birth of Offspring. Small 2021, 17, 2007235. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, H.; Zhang, H.; Guo, C.; Yang, K.; Chen, K.; Cheng, R.; Qian, N.; Sandler, N.; Zhang, Y.S.; et al. Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials 2019, 190–191, 97–110. [Google Scholar] [CrossRef]
- Qiu, R.K.; Qiu, G.D.; Zhao, P.Y.; Awais, M.; Fan, B.; Huang, Y.T.; Tong, L.T.; Wang, L.L.; Liu, L.Y.; Wang, F.Z. Regulation of rheological properties of soy protein isolate-beeswax based bigel inks for high-precision 3D printing. Food Hydrocoll. 2024, 153, 110052. [Google Scholar] [CrossRef]
- Salama, S.; Shou, Q.Y.; Abd El-Wahed, A.A.; Elias, N.; Xiao, J.B.; Swillam, A.; Umair, M.; Guo, Z.M.; Daglia, M.; Wang, K.; et al. Royal Jelly: Beneficial Properties and Synergistic Effects with Chemotherapeutic Drugs with Particular Emphasis in Anticancer Strategies. Nutrients 2022, 14, 4166. [Google Scholar] [CrossRef]
- Lengert, E.V.; Trushina, D.B.; Soldatov, M.; Ermakov, A.V. Microfluidic Synthesis and Analysis of Bioinspired Structures Based on CaCO3 for Potential Applications as Drug Delivery Carriers. Pharmaceutics 2022, 14, 139. [Google Scholar] [CrossRef]
- Wang, Y.P.; Chen, L.; Adu-Frimpong, M.; Wei, C.M.; Weng, W.; Wang, Q.L.; Xu, X.M.; Yu, J.N. Preparation, In Vivo and In Vitro Evaluation, and Pharmacodynamic Study of DMY-Loaded Self-Microemulsifying Drug Delivery System. Eur. J. Lipid Sci. Technol. 2021, 123, 2000369. [Google Scholar] [CrossRef]
- Wei, C.M.; Wang, Q.L.; Weng, W.; Adu-Frimpong, M.; Toreniyazov, E.; Ji, H.; Xu, X.M.; Yu, J.N. Enhanced oral bioavailability and anti-hyperuricemic activity of liquiritin via a self-nanoemulsifying drug delivery system. J. Sci. Food Agric. 2022, 102, 2032–2040. [Google Scholar] [CrossRef]
- Marcos, L.F.; Wilson, S.L.; Roach, P. Tissue engineering of the retina: From organoids to microfluidic chips. J. Tissue Eng. 2021, 12, 20417314211059876. [Google Scholar] [CrossRef] [PubMed]
- Moradi, S.Z.; Jalili, F.; Farhadian, N.; Joshi, T.; Wang, M.F.; Zou, L.; Cao, H.; Farzaei, M.H.; Xiao, J.B. Polyphenols and neurodegenerative diseases: Focus on neuronal regeneration. Crit. Rev. Food Sci. Nutr. 2022, 62, 3421–3436. [Google Scholar] [CrossRef]
- Guo, Y.T.; Wu, B.A.; Guo, X.Y.; Liu, D.D.; Qiu, C.C.; Ma, H.L. Effect of thermosonication on texture degradation of carrot tissue in relation to alterations in cell membrane and cell wall structure. Food Chem. 2022, 393, 133335. [Google Scholar] [CrossRef]
- Aishwarya, P.; Agrawal, G.; Sally, J.; Ravi, M. Dynamic three-dimensional cell-culture systems for enhanced in vitro applications. Curr. Sci. 2022, 122, 149–160. [Google Scholar] [CrossRef]
- Chen, G.; Khan, I.M.; He, W.S.; Li, Y.X.; Jin, P.; Campanella, O.H.; Zhang, H.H.; Huo, Y.R.; Chen, Y.; Yang, H.Q.; et al. Rebuilding the lid region from conformational and dynamic features to engineering applications of lipase in foods: Current status and future prospects. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2688–2714. [Google Scholar] [CrossRef]
- Wen, X.; Wang, L.J.; Li, J.J.; Chen, Y.F.; Zhuo, D.Y.; Anjago, W.M.; Jiu, M.; Zhu, H.L.; Zhang, Q.M.; Zhang, J.F.; et al. Staurosporine-producing Streptomyces sp. strain 11 × 1 cell-free culture filtrates control diseases caused by the oomycete plant pathogens Pythium myriotylum and Phytophthora sojae. Biocontrol Sci. Technol. 2024, 34, 123–147. [Google Scholar] [CrossRef]
- Cui, F.; Rhee, M.; Singh, A.; Tripathi, A. Microfluidic Sample Preparation for Medical Diagnostics. Annu. Rev. Biomed. Eng. 2015, 17, 267–286. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Li, S.Y.; Yao, F.Q.; Bao, F.B.; Ge, Y.Q.; Zou, M.Q.; Liang, P.; Chen, Q. Progress of Microfluidics Combined with SERS Technology in the Trace Detection of Harmful Substances. Chemosensors 2022, 10, 449. [Google Scholar] [CrossRef]
- Caplin, J.D.; Granados, N.G.; James, M.R.; Montazami, R.; Hashemi, N. Microfluidic Organ-on-a-Chip Technology for Advancement of Drug Development and Toxicology. Adv. Healthc. Mater. 2015, 4, 1426–1450. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Peng, Y.; Li, H.; Chen, W. Organ-on-a-chip: A new paradigm for drug development. Trends Pharmacol. Sci. 2021, 42, 119–133. [Google Scholar] [CrossRef]
- Yan, J.; Li, Z.; Guo, J.; Liu, S.; Guo, J. Organ-on-a-chip: A new tool for in vitro research. Biosens. Bioelectron. 2022, 216, 114626. [Google Scholar] [CrossRef]
- Huh, D.; Kim, H.J.; Fraser, J.P.; Shea, D.E.; Khan, M.; Bahinski, A.; Hamilton, G.A.; Ingber, D.E. Microfabrication of human organs-on-chips. Nat. Protoc. 2013, 8, 2135–2157. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, T.; Huang, Q.; Wang, Y. From organ-on-a-chip to human-on-a-chip: A review of research progress and latest applications. ACS Sens. 2024, 9, 3466–3488. [Google Scholar] [CrossRef]
- Zhao, Y.; Landau, S.; Okhovatian, S.; Liu, C.; Lu, R.X.Z.; Lai, B.F.L.; Wu, Q.; Kieda, J.; Cheung, K.; Rajasekar, S. Integrating organoids and organ-on-a-chip devices. Nat. Rev. Bioeng. 2024, 2, 588–608. [Google Scholar] [CrossRef]
- Plebani, R.; Potla, R.; Soong, M.; Bai, H.; Izadifar, Z.; Jiang, A.; Travis, R.N.; Belgur, C.; Dinis, A.; Cartwright, M.J.; et al. Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip. J. Cyst. Fibros. 2022, 21, 606–615. [Google Scholar] [CrossRef]
- Teixeira Carvalho, D.J.; Moroni, L.; Giselbrecht, S. Clamping strategies for organ-on-a-chip devices. Nat. Rev. Mater. 2023, 8, 147–164. [Google Scholar] [CrossRef]
- Shin, Y.C.; Than, N.; Min, S.; Shin, W.; Kim, H.J. Modelling host–microbiome interactions in organ-on-a-chip platforms. Nat. Rev. Bioeng. 2024, 2, 175–191. [Google Scholar] [CrossRef]
- van Berlo, D.; Nguyen, V.V.T.; Gkouzioti, V.; Leineweber, K.; Verhaar, M.C.; van Balkom, B.W.M. Stem cells, organoids, and organ-on-a-chip models for personalized in vitro drug testing. Curr. Opin. Toxicol. 2021, 28, 7–14. [Google Scholar] [CrossRef]
- Joseph, X.; Akhil, V.; Arathi, A.; Mohanan, P. Comprehensive development in organ-on-a-chip technology. J. Pharm. Sci. 2022, 111, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-W.; Kim, K.; Mukhambetiyar, K.; Lee, N.K.; Sabaté del Río, J.; Joo, J.; Park, C.G.; Kwon, T.; Park, T.-E. Organ-on-a-Chip Approach for Accelerating Blood–Brain Barrier Nanoshuttle Discovery. ACS Nano 2024, 18, 14388–14402. [Google Scholar] [CrossRef] [PubMed]
- Corral-Nájera, K.; Chauhan, G.; Serna-Saldívar, S.O.; Martínez-Chapa, S.O.; Aeinehvand, M.M. Polymeric and biological membranes for organ-on-a-chip devices. Microsyst. Nanoeng. 2023, 9, 107. [Google Scholar] [CrossRef]
- Sun, M.; Tang, L.K.; Yang, X.F.; Lu, J.Y.; He, H.H.; Lin, J.; He, Y.; Yu, M.F. Advancements of biomaterials in oral tissue engineering: Past, present, and future. Beni-Suef Univ. J. Basic Appl. Sci. 2024, 13, 104. [Google Scholar]
- Wang, Y.F.; Mao, H.P.; Zhang, X.D.; Liu, Y.; Du, X.X. A Rapid Detection Method for Tomato Gray Mold Spores in Greenhouse Based on Microfluidic Chip Enrichment and Lens-Less Diffraction Image Processing. Foods 2021, 10, 3011. [Google Scholar] [CrossRef]
- Wang, Y.F.; Zhang, X.D.; Yang, N.; Ma, G.X.; Du, X.X.; Mao, H.P. Separation-enrichment method for airborne disease spores based on microfluidic chip. Int. J. Agric. Biol. Eng. 2021, 14, 199–205. [Google Scholar] [CrossRef]
- Filippi, M.; Buchner, T.; Yasa, O.; Weirich, S.; Katzschmann, R.K. Microfluidic tissue engineering and bio-actuation. Adv. Mater. 2022, 34, 2108427. [Google Scholar] [CrossRef]
- Zhuge, W.; Ding, X.; Zhang, W.; Zhang, D.; Wang, H.; Wang, J. Microfluidic generation of helical micromotors for muscle tissue engineering. Chem. Eng. J. 2022, 447, 137455. [Google Scholar] [CrossRef]
- Lin, J.Y.; Chen, S.; Zhang, C.Y.; Liao, J.; Chen, Y.M.; Deng, S.Y.; Mao, Z.G.; Zhang, T.H.; Tian, N.; Song, Y.L.; et al. Recent advances in microfluidic technology of arterial thrombosis investigations. Platelets 2024, 35, 2316743. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, H.; Jin, E.J.; Jo, Y.; Kang, B.E.; Ryu, D.; Kim, G. A microfluidic device to fabricate one-step cell bead-laden hydrogel struts for tissue engineering. Small 2022, 18, 2106487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Su, L.; Wu, L.; Zhou, W.; Xie, J.; Fan, Y.; Zhou, X.; Zhou, C.; Cui, Y.; Sun, J. Versatile hydrogels prepared by microfluidics technology for bone tissue engineering applications. J. Mater. Chem. B 2025, 13, 2611–2639. [Google Scholar] [CrossRef]
- Jayne, R.K.; Karakan, M.Ç.; Zhang, K.; Pierce, N.; Michas, C.; Bishop, D.J.; Chen, C.S.; Ekinci, K.L.; White, A.E. Direct laser writing for cardiac tissue engineering: A microfluidic heart on a chip with integrated transducers. Lab Chip 2021, 21, 1724–1737. [Google Scholar] [CrossRef]
- Chen, G.Y.; Roy, I.; Yang, C.H.; Prasad, P.N. Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chem. Rev. 2016, 116, 2826–2885. [Google Scholar] [CrossRef]
- Chen, Z.L.; Li, Y.; Liu, W.W.; Zhang, D.Z.; Zhao, Y.Y.; Yuan, B.; Jiang, X.Y. Patterning Mammalian Cells for Modeling Three Types of Naturally Occurring Cell-Cell Interactions. Angew. Chem.-Int. Ed. 2009, 48, 8303–8305. [Google Scholar] [CrossRef]
- Zhang, X.D.; Bian, F.; Wang, Y.F.; Hu, L.; Yang, N.; Mao, H.P. A Method for Capture and Detection of Crop Airborne Disease Spores Based on Microfluidic Chips and Micro Raman Spectroscopy. Foods 2022, 11, 3462. [Google Scholar] [CrossRef]
- Jayan, H.; Yin, L.M.; Xue, S.S.; Zou, X.B.; Guo, Z.M. Raman spectroscopy-based microfluidic platforms: A promising tool for detection of foodborne pathogens in food products. Food Res. Int. 2024, 180, 114052. [Google Scholar] [CrossRef]
- Roy, E.; Pallandre, A.; Zribi, B.; Horny, M.-C.; Delapierre, F.D.; Cattoni, A.; Gamby, J.; Haghiri-Gosnet, A.-M. Overview of Materials for Microfluidic Applications. In Advances in Microfluidics—New Applications in Biology, Energy, and Materials Sciences; Intech: Houston, TX, USA, 2016. [Google Scholar]
- Esmaeili, M.; George, K.; Rezvan, G.; Taheri-Qazvini, N.; Zhang, R.; Sadati, M. Capillary flow characterizations of chiral nematic cellulose nanocrystal suspensions. Langmuir 2022, 38, 2192–2204. [Google Scholar] [CrossRef]
- Abbasi Moud, A. Cellulose through the lens of microfluidics: A review. Appl. Biosci. 2022, 1, 1–37. [Google Scholar] [CrossRef]
- Raj, P.M.; Barbe, L.; Andersson, M.; Moreira, M.D.A.; Haase, D.; Wootton, J.; Nehzati, S.; Terry, A.E.; Friel, R.J.; Tenje, M. Fabrication and characterisation of a silicon-borosilicate glass microfluidic device for synchrotron-based hard X-ray spectroscopy studies. RSC Adv. 2021, 11, 29859–29869. [Google Scholar]
- Funano, S.-i.; Ota, N.; Tanaka, Y. A simple and reversible glass–glass bonding method to construct a microfluidic device and its application for cell recovery. Lab Chip 2021, 21, 2244–2254. [Google Scholar] [CrossRef]
- Hamed, H.; Eldiasty, M.; Seyedi-Sahebari, S.-M.; Abou-Ziki, J.D. Applications, materials, and fabrication of micro glass parts and devices: An overview. Mater. Today 2023, 66, 194–220. [Google Scholar] [CrossRef]
- Nge, P.N.; Rogers, C.I.; Woolley, A.T. Advances in Microfluidic Materials, Functions, Integration, and Applications. Chem. Rev. 2013, 113, 2550–2583. [Google Scholar] [CrossRef] [PubMed]
- Baik, S.; Hwang, G.W.; Jang, S.; Jeong, S.; Kim, K.H.; Yang, T.-H.; Pang, C. Bioinspired microsphere-embedded adhesive architectures for an electrothermally actuating transport device of dry/wet pliable surfaces. ACS Appl. Mater. Interfaces 2021, 13, 6930–6940. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, Y.; Yu, J.; Dong, X.; Zhou, T. Additive, subtractive and formative manufacturing of glass-based functional micro/nanostructures: A comprehensive review. Mater. Des. 2023, 233, 112285. [Google Scholar] [CrossRef]
- Li, H.; Travlos, I.; Qi, L.J.; Kanatas, P.; Wang, P. Optimization of Herbicide Use: Study on Spreading and Evaporation Characteristics of Glyphosate-Organic Silicone Mixture Droplets on Weed Leaves. Agronomy 2019, 9, 547. [Google Scholar] [CrossRef]
- Chao, Y.H.; Pang, J.Y.; Bai, Y.; Wu, P.W.; Luo, J.; He, J.; Jin, Y.; Li, X.W.; Xiong, J.; Li, H.M.; et al. Graphene-like BN@SiO2 nanocomposites as efficient sorbents for solid-phase extraction of Rhodamine B and Rhodamine 6G from food samples. Food Chem. 2020, 320, 126666. [Google Scholar] [CrossRef]
- Lecot, S.; Lavigne, A.; Yang, Z.; Chevolot, Y.; Phaner-Goutorbe, M.; Yeromonahos, C. Effects of the chemical and structural properties of silane monolayers on the organization of water molecules and ions at interfaces, from molecular dynamics simulations. Langmuir 2021, 37, 5563–5572. [Google Scholar] [CrossRef]
- Monserrat Lopez, D.; Rottmann, P.; Puebla-Hellmann, G.; Drechsler, U.; Mayor, M.; Panke, S.; Fussenegger, M.; Lörtscher, E. Direct electrification of silicon microfluidics for electric field applications. Microsyst. Nanoeng. 2023, 9, 81. [Google Scholar] [CrossRef]
- Ma, G.-C.; Lin, W.-H.; Huang, C.-E.; Chang, T.-Y.; Liu, J.-Y.; Yang, Y.-J.; Lee, M.-H.; Wu, W.-J.; Chang, Y.-S.; Chen, M. A Silicon-based Coral-like Nanostructured Microfluidics to Isolate Rare Cells in Human Circulation: Validation by SK-BR-3 Cancer Cell Line and Its Utility in Circulating Fetal Nucleated Red Blood Cells. Micromachines 2019, 10, 132. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.J.; Ochoa, M.; Rahimi, R.; Yu, W.Y.; Ziaie, B. Laser-treated glass platform for rapid wicking-driven transport and particle separation in bio microfluidics. RSC Adv. 2019, 9, 19531–19538. [Google Scholar] [CrossRef]
- Markovic, T.; Ocket, I.; Baric, A.; Nauwelaers, B. Design and Comparison of Resonant and Non-Resonant Single-Layer Microwave Heaters for Continuous Flow Microfluidics in Silicon-Glass Technology. Energies 2020, 13, 2635. [Google Scholar] [CrossRef]
- Xu, L.Z.; Wei, C.C.; Liang, Z.W.; Chai, X.Y.; Li, Y.M.; Liu, Q. Development of rapeseed cleaning loss monitoring system and experiments in a combine harvester. Biosyst. Eng. 2019, 178, 118–130. [Google Scholar] [CrossRef]
- Jin, M.Z.; Zhao, Z.; Chen, S.R.; Chen, J.Y. Improved piezoelectric grain cleaning loss sensor based on adaptive neuro-fuzzy inference system. Precis. Agric. 2022, 23, 1174–1188. [Google Scholar] [CrossRef]
- Shanu, A.; Sharma, P.; Dixit, P. Micromachining of alumina ceramic for microsystems applications: A systematic review, challenges and future opportunities. Mater. Manuf. Process. 2024, 39, 892–924. [Google Scholar] [CrossRef]
- Belavic, D.; Hrovat, M.; Makarovic, K.; Dolanc, G.; Pohar, A.; Hocevar, S.; Malic, B. 3D LTCC structure for a large-volume cavity-type chemical microreactor. Microelectron. Int. 2015, 32, 133–137. [Google Scholar] [CrossRef]
- Golonka, L.J.; Malecha, K. LTCC fluidic microsystems. Inf. Midem-J. Microelectron. Electron. Compon. Mater. 2012, 42, 225–233. [Google Scholar]
- Hao, S.-Z.; Zhou, D.; Pang, L.-X.; Dang, M.-Z.; Sun, S.-K.; Zhou, T.; Trukhanov, S.; Trukhanov, A.; Sombra, A.S.B.; Li, Q. Ultra-low temperature co-fired ceramics with adjustable microwave dielectric properties in the Na2O–Bi2O3–MoO3 ternary system: A comprehensive study. J. Mater. Chem. C 2022, 10, 2008–2016. [Google Scholar] [CrossRef]
- Li, F.; Li, Y.; Li, S.; Luo, Y.; Lu, Y.; Tang, T.; Liao, Y.; Zhang, J.; Wen, Q. All-ceramic array patch for 5G signal enhancement based on B-site substituted zinc-cobalt molybdate low temperature co-fired ceramics. Chem. Eng. J. 2023, 466, 143325. [Google Scholar] [CrossRef]
- Liang, C.; Huang, J.; Wang, J.; Gong, H.; Bai, D.; Zhao, P. Additive manufacturing of low-temperature co-fired ceramic substrates and surface conductors based on material jetting. Addit. Manuf. 2023, 78, 103856. [Google Scholar] [CrossRef]
- Chong, Z.Z.; Tan, S.H.; Gañán-Calvo, A.M.; Tor, S.B.; Loh, N.H.; Nguyen, N.T. Active droplet generation in microfluidics. Lab Chip 2016, 16, 35–58. [Google Scholar] [CrossRef]
- Tan, S.H.; Maes, F.; Semin, B.; Vrignon, J.; Baret, J.C. The microfluidic jukebox. Sci. Rep. 2014, 4, 4787. [Google Scholar] [CrossRef]
- Tony, A.; Badea, I.; Yang, C.; Liu, Y.; Wells, G.; Wang, K.; Yin, R.; Zhang, H.; Zhang, W. The additive manufacturing approach to polydimethylsiloxane (PDMS) microfluidic devices: Review and future directions. Polymers 2023, 15, 1926. [Google Scholar] [CrossRef]
- Phan, T.H.T.; Kim, S.-J. Super-hydrophobic microfluidic channels fabricated via xurography-based polydimethylsiloxane (PDMS) micromolding. Chem. Eng. Sci. 2022, 258, 117768. [Google Scholar] [CrossRef]
- Shakeri, A.; Khan, S.; Didar, T.F. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices. Lab Chip 2021, 21, 3053–3075. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.J.; Caetano, S.; Dalot, A.; Sabino, F.; Calmeiro, T.R.; Fortunato, E.; Martins, R.; Pereira, E.; Prudêncio, M.; Byrne, H.J. A simple polystyrene microfluidic device for sensitive and accurate SERS-based detection of infection by malaria parasites. Analyst 2023, 148, 4053–4063. [Google Scholar] [CrossRef]
- Leclerc, C.A.; Williams, S.; Powe, C.; Zepp, N.; Lipworth, D.; Pensini, E.; Collier, C.M. Rapid design and prototyping of microfluidic chips via computer numerical control micromilling and anisotropic shrinking of stressed polystyrene sheets. Microfluid. Nanofluidics 2021, 25, 12. [Google Scholar] [CrossRef]
- Franco Corredor, S.; Mayoussi, F.; Luitz, M.; Kick, A.; Goralczyk, A.; Böcherer, D.; Vera, G.; Helmer, D.; Kotz-Helmer, F.; Rapp, B.E. A Polystyrene Photoresin for Direct Lithography of Microfluidic Chips. Adv. Mater. Technol. 2022, 7, 2200084. [Google Scholar] [CrossRef]
- Vidya, S.; Wattal, R.; Singh, L.; Mathiyalagan, P. CO2 laser micromachining of polymethyl methacrylate (PMMA): A review. In Advances in Manufacturing and Industrial Engineering: Select Proceedings of ICAPIE 2019; Springer: Singapore, 2021; pp. 939–945. [Google Scholar]
- Sözmen, A.B.; Arslan Yildiz, A. Cost-effective and rapid prototyping of PMMA microfluidic device via polymer-assisted bonding. Microfluid. Nanofluidics 2021, 25, 66. [Google Scholar] [CrossRef]
- Vo, T.N.A.; Chen, P.-C. Maximizing interfacial bonding strength between PDMS and PMMA substrates for manufacturing hybrid microfluidic devices withstanding extremely high flow rate and high operation pressure. Sens. Actuators A Phys. 2022, 334, 113330. [Google Scholar] [CrossRef]
- Hassanpour-Tamrin, S.; Sanati-Nezhad, A.; Sen, A. A simple and low-cost approach for irreversible bonding of polymethylmethacrylate and polydimethylsiloxane at room temperature for high-pressure hybrid microfluidics. Sci. Rep. 2021, 11, 4821. [Google Scholar] [CrossRef] [PubMed]
- Javier, K.F.B.; Bataller, B.G.; Migo-Sumagang, M.V. Development of a Sustainable Supply Chain Network for Microfluidic Devices Made from Recycled Materials. Chem. Eng. Trans. 2024, 114, 601–606. [Google Scholar]
- Doronin, F.; Rudyak, Y.V.; Rytikov, G.; Evdokimov, A.; Nazarov, V. 3D-printed planar microfluidic device on oxyfluorinated PET-substrate. Polym. Test. 2021, 99, 107209. [Google Scholar] [CrossRef]
- Sobejano de la Merced, C.; Doveri, L.; Muñoz Santoro, T.s.; García, J.; Garmendia, J.; Cortés Domínguez, I.n.; Díaz Fernández, Y.A.; Ortiz de Solórzano, C. Functionalization of Polyethylene Terephthalate (PETE) Membranes for the Enhancement of Cellular Adhesion in Organ-on-a-Chip Devices. ACS Appl. Mater. Interfaces 2025, 17, 4529–4542. [Google Scholar] [CrossRef] [PubMed]
- Nsabimana, J.; Wang, Y.; Ruan, Q.; Li, T.; Shen, H.; Yang, C.; Zhu, Z. An electrochemical method for a rapid and sensitive immunoassay on digital microfluidics with integrated indium tin oxide electrodes coated on a PET film. Analyst 2021, 146, 4473–4479. [Google Scholar] [CrossRef]
- Atta, O.M.; Manan, S.; Shahzad, A.; Ul-Islam, M.; Ullah, M.W.; Yang, G. Biobased materials for active food packaging: A review. Food Hydrocoll. 2022, 125, 107419. [Google Scholar] [CrossRef]
- Srivastava, S.; Singh, P.; Pandey, A.K.; Dixit, C.K. Unified EOS incorporating the finite strain theory for explaining thermo elastic properties of high temperature superconductors, nanomaterials and bulk metallic glasses. Solid State Commun. 2024, 377, 115387. [Google Scholar] [CrossRef]
- Shaegh, S.A.M.; Pourmand, A.; Nabavinia, M.; Avci, H.; Tamayol, A.; Mostafalu, P.; Ghavifekr, H.B.; Aghdam, E.N.; Dokmeci, M.R.; Khademhosseini, A.; et al. Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding. Sens. Actuators B Chem. 2018, 255, 100–109. [Google Scholar] [CrossRef]
- Balachandran, A.; Sreenilayam, S.P.; Madanan, K.; Thomas, S.; Brabazon, D. Nanoparticle production via laser ablation synthesis in solution method and printed electronic application-A brief review. Results Eng. 2022, 16, 100646. [Google Scholar] [CrossRef]
- Park, M.; Gu, Y.; Mao, X.; Grigoropoulos, C.P.; Zorba, V. Mechanisms of ultrafast GHz burst fs laser ablation. Sci. Adv. 2023, 9, eadf6397. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, P.; Singh, V.K.; Patra, K. Influences of tribological and mechanical properties of (Ti/Al) N and diamond like carbon coated tungsten carbide tool on machining and dynamic stability in micro milling of Ti6Al4V. J. Manuf. Process. 2023, 85, 915–934. [Google Scholar] [CrossRef]
- Ahmed, F.; Ahmad, F.; Kumaran, S.T.; Danish, M.; Kurniawan, R.; Ali, S. Development of cryogenic assisted machining strategy to reduce the burr formation during micro-milling of ductile material. J. Manuf. Process. 2023, 85, 43–51. [Google Scholar] [CrossRef]
- Liu, J.; Qiao, H.; Liu, C.; Xu, Z.; Li, Y.; Wang, L. Plasma assisted thermal bonding for PMMA microfluidic chips with integrated metal microelectrodes. Sens. Actuators B Chem. 2009, 141, 646–651. [Google Scholar] [CrossRef]
- Tsao, C.W. Polymer Microfluidics: Simple, Low-Cost Fabrication Process Bridging Academic Lab Research to Commercialized Production. Micromachines 2016, 7, 225. [Google Scholar] [CrossRef]
- Nishat, S.; Jafry, A.T.; Martinez, A.W.; Awan, F.R. Paper-based microfluidics: Simplified fabrication and assay methods. Sens. Actuators B-Chem. 2021, 336, 129681. [Google Scholar] [CrossRef]
- Bezinge, L.; Shih, C.J.; Richards, D.A.; deMello, A.J. Electrochemical Paper-Based Microfluidics: Harnessing Capillary Flow for Advanced Diagnostics. Small 2024, 20, 2401148. [Google Scholar] [CrossRef]
- Mogera, U.; Guo, H.; Namkoong, M.; Rahman, M.S.; Nguyen, T.; Tian, L. Wearable plasmonic paper–based microfluidics for continuous sweat analysis. Sci. Adv. 2022, 8, eabn1736. [Google Scholar] [CrossRef]
- Silva-Neto, H.A.; Arantes, I.V.; Ferreira, A.L.; do Nascimento, G.H.; Meloni, G.N.; de Araujo, W.R.; Paixão, T.R.; Coltro, W.K. Recent advances on paper-based microfluidic devices for bioanalysis. TrAC Trends Anal. Chem. 2023, 158, 116893. [Google Scholar] [CrossRef]
- Ruiz, R.A.; Gonzalez, J.L.; Vazquez-Alvarado, M.; Martinez, N.W.; Martinez, A.W. Beyond wax printing: Fabrication of paper-based microfluidic devices using a thermal transfer printer. Anal. Chem. 2022, 94, 8833–8837. [Google Scholar] [CrossRef] [PubMed]
- Weiß, L.J.; Lubins, G.; Music, E.; Rinklin, P.; Banzet, M.; Peng, H.; Terkan, K.; Mayer, D.; Wolfrum, B. Single-impact electrochemistry in paper-based microfluidics. ACS Sens. 2022, 7, 884–892. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Li, C.; Zheng, Y.; Cao, H.; Ye, T.; Wu, X.; Hao, L.; Yin, F.; Yu, J.; Xu, F. A portable multi-channel fluorescent paper-based microfluidic chip based on smartphone imaging for simultaneous detection of four heavy metals. Talanta 2024, 266, 125112. [Google Scholar] [CrossRef]
- Espinosa, A.; Diaz, J.; Vazquez, E.; Acosta, L.; Santiago, A.; Cunci, L. Fabrication of paper-based microfluidic devices using a 3D printer and a commercially-available wax filament. Talanta Open 2022, 6, 100142. [Google Scholar] [CrossRef]
- Cheng, J.; Li, C.; Xiong, Y.; Zhang, H.; Raza, H.; Ullah, S.; Wu, J.; Zheng, G.; Cao, Q.; Zhang, D. Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 2022, 14, 80. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Dai, Y.; Dou, S.; Liang, J. Flexible nanogenerators for wearable electronic applications based on piezoelectric materials. Mater. Today Energy 2021, 20, 100690. [Google Scholar] [CrossRef]
- Yang, R.; Gui, X.; Yao, L.; Hu, Q.; Yang, L.; Zhang, H.; Yao, Y.; Mei, H.; Tang, Z. Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 2021, 13, 66. [Google Scholar] [CrossRef] [PubMed]
- Shay, T.; Saha, T.; Dickey, M.D.; Velev, O.D. Principles of long-term fluids handling in paper-based wearables with capillary-evaporative transport. Biomicrofluidics 2020, 14, 034112. [Google Scholar] [CrossRef]
- Tai, W.C.; Chang, Y.C.; Chou, D.A.; Fu, L.M. Lab-on-Paper Devices for Diagnosis of Human Diseases Using Urine Samples-A Review. Biosensors 2021, 11, 260. [Google Scholar] [CrossRef]
- Trinh, K.T.L.; Thai, D.A.; Lee, N.Y. Bonding Strategies for Thermoplastics Applicable for Bioanalysis and Diagnostics. Micromachines 2022, 13, 1503. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, T.; Wu, Y.; Wu, X.; Lang, Z.; Huang, F.; Zhu, P.; Si, T.; Xu, R.X. Microfluidic strategies for engineering oxygen-releasing biomaterials. Acta Biomater. 2024, 179, 61–82. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, A.; Kordic, I.; Li, J.; Zhang, N.; Bharadwaj, N.S.; Fang, Z.; Das, S.; Coskun, A.F. Decoding senescence of aging single cells at the nexus of biomaterials, microfluidics, and spatial omics. npj Aging 2024, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Bhat, A.; Janani, G.; Shandilya, V.; Gupta, R.; Mandal, B.B. Microfluidic human physiomimetic liver model as a screening platform for drug induced liver injury. Biomaterials 2024, 310, 122627. [Google Scholar] [CrossRef] [PubMed]
- Valentin, T.M.; Leggett, S.E.; Chen, P.-Y.; Sodhi, J.K.; Stephens, L.H.; McClintock, H.D.; Sim, J.Y.; Wong, I.Y. Stereolithographic printing of ionically-crosslinked alginate hydrogels for degradable biomaterials and microfluidics. Lab Chip 2017, 17, 3474–3488. [Google Scholar] [CrossRef]
- Zhang, C.; Grossier, R.; Candoni, N.; Veesler, S. Preparation of alginate hydrogel microparticles by gelation introducing cross-linkers using droplet-based microfluidics: A review of methods. Biomater. Res. 2021, 25, 41. [Google Scholar] [CrossRef]
- Mok, J.H.; Niu, Y.; Zhao, Y. Continuous-flow viscoelastic profiling of calcium alginate hydrogel microspheres using a microfluidic Lab-on-a-chip device. Food Hydrocoll. 2024, 153, 109979. [Google Scholar] [CrossRef]
- Dasgupta, A.; Sori, N.; Petrova, S.; Maghdouri-White, Y.; Thayer, N.; Kemper, N.; Polk, S.; Leathers, D.; Coughenour, K.; Dascoli, J. Comprehensive collagen crosslinking comparison of microfluidic wet-extruded microfibers for bioactive surgical suture development. Acta Biomater. 2021, 128, 186–200. [Google Scholar] [CrossRef]
- Ma, J.Y.; Wang, Y.C.; Liu, J. Biomaterials Meet Microfluidics: From Synthesis Technologies to Biological Applications. Micromachines 2017, 8, 255. [Google Scholar] [CrossRef]
- Illath, K.; Kar, S.; Gupta, P.; Shinde, A.; Wankhar, S.; Tseng, F.-G.; Lim, K.-T.; Nagai, M.; Santra, T.S. Microfluidic nanomaterials: From synthesis to biomedical applications. Biomaterials 2022, 280, 121247. [Google Scholar] [CrossRef]
- Chung, B.G.; Lee, K.H.; Khademhosseini, A.; Lee, S.H. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip 2012, 12, 45–59. [Google Scholar] [CrossRef]
- He, W.S.; Hu, D.; Wang, Y.; Chen, X.Y.; Jia, C.S.; Ma, H.L.; Feng, B.A. A novel chemo-enzymatic synthesis of hydrophilic phytosterol derivatives. Food Chem. 2016, 192, 557–565. [Google Scholar] [CrossRef] [PubMed]
- He, W.S.; Wang, H.H.; Jing, Z.M.; Cui, D.D.; Zhu, J.Q.; Li, Z.J.; Ma, H.L. Highly Efficient Synthesis of Hydrophilic Phytosterol Derivatives Catalyzed by Ionic Liquid. J. Am. Oil Chem. Soc. 2018, 95, 89–100. [Google Scholar] [CrossRef]
- Natarajan, S.; Chang-Yen, D.A.; Gale, B.K. Large-area, high-aspect-ratio SU-8 molds for the fabrication of PDMS microfluidic devices. J. Micromechanics Microengineering 2008, 18, 045021. [Google Scholar] [CrossRef]
- Kim, H.; Bae, C.; Kook, Y.-M.; Koh, W.-G.; Lee, K.; Park, M.H. Mesenchymal stem cell 3D encapsulation technologies for biomimetic microenvironment in tissue regeneration. Stem Cell Res. Ther. 2019, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Nativel, F.; Smith, A.; Boulestreau, J.; Lépine, C.; Baron, J.; Marquis, M.; Vignes, C.; Le Guennec, Y.; Veziers, J.; Lesoeur, J.; et al. Micromolding-based encapsulation of mesenchymal stromal cells in alginate for intraarticular injection in osteoarthritis. Mater. Today Bio 2023, 19, 100581. [Google Scholar] [CrossRef]
- Tsao, C.W.; Wu, Z.K. Polymer Microchannel and Micromold Surface Polishing for Rapid, Low-Quantity Polydimethylsiloxane and Thermoplastic Microfluidic Device Fabrication. Polymers 2020, 12, 2574. [Google Scholar] [CrossRef]
- Chen, Z.H.; Lv, Z.D.; Zhang, Z.; Zhang, Y.H.; Cui, W.G. Biomaterials for microfluidic technology. Mater. Futures 2022, 1, 012401. [Google Scholar] [CrossRef]
- Lamberti, A. Microfluidic photocatalytic device exploiting PDMS/TiO2 nanocomposite. Appl. Surf. Sci. 2015, 335, 50–54. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, T.; Du, Y.; Zhao, B.; Patel, H.P.; Boldt, R.; Auernhammer, G.K.; Fery, A.; Li, J.; Thiele, J. Titanium dioxide nanoparticles embedded in assembled dipeptide hydrogels for microfluidic photodegradation. J. Colloid Interface Sci. 2024, 654, 405–412. [Google Scholar] [CrossRef]
- Qiu, W.; Gehre, C.; Nepomuceno, J.P.; Bao, Y.; Li, Z.; Mueller, R.; Qin, X.-H. Coumarin-Based Photodegradable Hydrogels Enable Two-Photon Subtractive Biofabrication at 300 mm s−1. Angew. Chem.-Int. Ed. 2024, 63, e202404599. [Google Scholar] [CrossRef]
- Yamahira, S.; Satoh, T.; Yanagawa, F.; Tamura, M.; Takagi, T.; Nakatani, E.; Kusama, Y.; Sumaru, K.; Sugiura, S.; Kanamori, T. Stepwise construction of dynamic microscale concentration gradients around hydrogel-encapsulated cells in a microfluidic perfusion culture device. R. Soc. Open Sci. 2020, 7, 200027. [Google Scholar] [CrossRef] [PubMed]
- Enrique Perez-Cortez, J.; Hugo Sanchez-Rodriguez, V.; Gallegos-Martinez, S.; Chuck-Hernandez, C.; Rodriguez, C.A.; Moises Alvarez, M.; Trujillo-de Santiago, G.; Vazquez-Lepe, E.; Israel Martinez-Lopez, J. Low-Cost Light-Based GelMA 3D Bioprinting via Retrofitting: Manufacturability Test and Cell Culture Assessment. Micromachines 2023, 14, 55. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Yu, Z.; Gao, G.; Yang, M.; Du, X.; Wang, Y.; Fu, Q. Light-based 3D bioprinting technology applied to repair and regeneration of different tissues: A rational proposal for biomedical applications. Mater. Today Bio 2024, 27, 101135. [Google Scholar] [CrossRef]
- Li, W.; Li, J.; Pan, C.; Lee, J.-S.; Kim, B.S.; Gao, G. Light-based 3D bioprinting techniques for illuminating the advances of vascular tissue engineering. Mater. Today Bio 2024, 29, 101286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, X.; Li, Y.; Zhang, Y. Applications of Light-Based 3D Bioprinting and Photoactive Biomaterials for Tissue Engineering. Materials 2023, 16, 7461. [Google Scholar] [CrossRef]
- Jiang, T.; Munguia-Lopez, J.G.; Flores-Torres, S.; Kort-Mascort, J.; Kinsella, J.M. Extrusion bioprinting of soft materials: An emerging technique for biological model fabrication. Appl. Phys. Rev. 2019, 6, 011310. [Google Scholar] [CrossRef]
- Gatto, M.L.; Mengucci, P.; Mattioli-Belmonte, M.; Munteanu, D.; Nasini, R.; Tognoli, E.; Denti, L.; Gatto, A. Features of Vat-Photopolymerized Masters for Microfluidic Device Manufacturing. Bioengineering 2024, 11, 80. [Google Scholar] [CrossRef]
- Prabhakar, P.; Sen, R.K.; Dwivedi, N.; Khan, R.; Solanki, P.R.; Srivastava, A.K.; Dhand, C. 3D-Printed Microfluidics and Potential Biomedical Applications. Front. Nanotechnol. 2021, 3, 609355. [Google Scholar] [CrossRef]
- Chen, C.; Huang, S.; Long, Y.; Chen, J.; Zhao, M.; Dai, B.; Zhang, D. Fabrication of a 1x4 optical splitter by 3D printing and microfluidic abrasive micromachining. Opt. Commun. 2024, 562, 130544. [Google Scholar] [CrossRef]
- Kang, J.-W.; Jeon, J.; Lee, J.-Y.; Jeon, J.-H.; Hong, J. Surface-Wetting Characteristics of DLP-Based 3D Printing Outcomes under Various Printing Conditions for Microfluidic Device Fabrication. Micromachines 2024, 15, 61. [Google Scholar] [CrossRef]
- Li, X.; Wang, M.; Davis, T.P.; Zhang, L.; Qiao, R. Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices. Biosensors 2024, 14, 301. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Li, J.; Guo, Z.; Zhang, Y.; Nie, B.; Qi, G.; Zhang, X.; Zhang, J.; Wei, R. 3D Printing of Individualized Microfluidic Chips with DLP-Based Printer. Materials 2023, 16, 6984. [Google Scholar] [CrossRef]
- Miri, A.K.; Khalilpour, A.; Cecen, B.; Maharjan, S.; Shin, S.R.; Khademhosseini, A. Multiscale bioprinting of vascularized models. Biomaterials 2019, 198, 204–216. [Google Scholar] [CrossRef]
- Pereira, T.; Kennedy, J.V.; Potgieter, J. A comparison of traditional manufacturing vs additive manufacturing, the best method for the job. In Proceedings of the 14th Global Congress on Manufacturing and Management (GCMM), Brisbane, Australia, 5–7 December 2018; pp. 11–18. [Google Scholar]
- Xu, B.G.; Wang, X.D.; Chitrakar, B.; Xu, Y.; Wei, B.X.; Wang, B.; Lin, L.; Guo, Z.M.; Zhou, C.S.; Ma, H.L. Effect of various physical modifications of pea protein isolate (PPI) on 3D printing behavior and dysphagia properties of strawberry-PPI gels. Food Hydrocoll. 2025, 158, 110498. [Google Scholar] [CrossRef]
- Zhai, X.D.; Sun, Y.; Cen, S.Y.; Wang, X.Y.; Zhang, J.J.; Yang, Z.K.; Li, Y.X.; Wang, X.; Zhou, C.G.; Arslan, M.; et al. Anthocyanins-encapsulated 3D-printable bigels: A colorimetric and leaching-resistant volatile amines sensor for intelligent food packaging. Food Hydrocoll. 2022, 133, 107989. [Google Scholar] [CrossRef]
- Xu, Y.; Qi, F.J.; Mao, H.C.; Li, S.W.; Zhu, Y.Z.; Gong, J.W.; Wang, L.; Malmstadt, N.; Chen, Y. In-situ transfer vat photopolymerization for transparent microfluidic device fabrication. Nat. Commun. 2022, 13, 918. [Google Scholar] [CrossRef]
- Jiao, H.X.; Shi, Y.F.; Sun, J.Z.; Lu, X.C.; Zhang, H.X.; Li, Y.; Fu, Y.Y.; Guo, J.Q.; Wang, Q.Q.; Liu, H.; et al. Sawdust-derived cellulose nanofibrils with high biosafety for potential bioprinting. Ind. Crops Prod. 2024, 209, 118025. [Google Scholar] [CrossRef]
- Ding, F.Y.; Hu, B.; Lan, S.; Wang, H.X. Flexographic and screen printing of carboxymethyl chitosan based edible inks for food packaging applications. Food Packag. Shelf Life 2020, 26, 100559. [Google Scholar]
- Cheng, J.X.; Yu, S.Y.; Wang, R.; Ge, Q. Digital light processing based multimaterial 3D printing: Challenges, solutions and perspectives. Int. J. Extrem. Manuf. 2024, 6, 042006. [Google Scholar] [CrossRef]
- Nam, J.; Kim, M. Advances in materials and technologies for digital light processing 3D printing. Nano Converg. 2024, 11, 45. [Google Scholar] [CrossRef]
- Tiboni, M.; Campana, R.; Frangipani, E.; Casettari, L. 3D printed clotrimazole intravaginal ring for the treatment of recurrent vaginal candidiasis. Int. J. Pharm. 2021, 596, 120290. [Google Scholar] [CrossRef] [PubMed]
- Kara, A.; Vassiliadou, A.; Ongoren, B.; Keeble, W.; Hing, R.; Lalatsa, A.; Serrano, D.R. Engineering 3D Printed Microfluidic Chips for the Fabrication of Nanomedicines. Pharmaceutics 2021, 13, 2134. [Google Scholar] [CrossRef]
- Cao, X.; Maharjan, S.; Ashfaq, R.; Shin, J.; Zhang, Y.S. Bioprinting of Small-Diameter Blood Vessels. Engineering 2021, 7, 832–844. [Google Scholar] [CrossRef]
- Hashemzadeh, H.; Shojaeilangari, S.; Allahverdi, A.; Rothbauer, M.; Ertl, P.; Naderi-Manesh, H. A combined microfluidic deep learning approach for lung cancer cell high throughput screening toward automatic cancer screening applications. Sci. Rep. 2021, 11, 9804. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.F.; Guo, G.; Wu, X.Y.; Wu, Q.; Liu, F.F.; Zhang, H.; Shi, N.; Guan, Y.M. Advances in Integration, Wearable Applications, and Artificial Intelligence of Biomedical Microfluidics Systems. Micromachines 2023, 14, 972. [Google Scholar] [CrossRef]
- Apoorva, S.; Nguyen, N.T.; Sreejith, K.R. Recent developments and future perspectives of microfluidics and smart technologies in wearable devices. Lab Chip 2024, 24, 1833–1866. [Google Scholar] [CrossRef]
- Anderson, S.R.; Stagner, E.J.; Sivakumar, H.; Skardal, A. Three-dimensional bioprinting of in vitro tumor organoid and organ-on-a-chip models. MRS Bull. 2023, 48, 643–656. [Google Scholar] [CrossRef]
- Feitor, J.F.; Brazaca, L.C.; Lima, A.M.; Ferreira, V.G.; Kassab, G.; Bagnato, V.S.; Carrilho, E.; Cardoso, D.R. Organ-on-a-Chip for Drug Screening: A Bright Future for Sustainability? A Critical Review. ACS Biomater. Sci. Eng. 2023, 9, 2220–2234. [Google Scholar] [CrossRef]
- Hadavi, D.; Tosheva, I.; Siegel, T.P.; Cuypers, E.; Honing, M. Technological advances for analyzing the content of organ-on-a-chip by mass spectrometry. Front. Bioeng. Biotechnol. 2023, 11, 1197760. [Google Scholar] [CrossRef]
- Marrero, D.; Guimera, A.; Maes, L.; Villa, R.; Alvarez, M.; Illa, X. Organ-on-a-chip with integrated semitransparent organic electrodes for barrier function monitoring. Lab Chip 2023, 23, 1954. [Google Scholar] [CrossRef]
- Yang, X.; Shi, J.; Shi, B.; Li, J.; Xue, C.; Ma, J.; Gao, X. Micro- and nano-fibers for organ-on-a-chip: Construction, applications, and prospects. Mater. Today Bio 2024, 29, 101322. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, F.; Deguchi, S.; Takayama, K. Organ-on-a-chip models for elucidating the cellular biology of infectious diseases. Biochim. Biophys. Acta-Mol. Cell Res. 2023, 1870, 119504. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.J.; Bae, M.; Kim, J.; Cho, D.W. Application of biomaterial-based three-dimensional bioprinting for organ-on-a-chip fabrication. Int. J. Bioprinting 2024, 10, 1972. [Google Scholar] [CrossRef]
- Ambhorkar, P.; Rakin, R.H.; Wang, Z.; Kumar, H.; Kim, K. Biofabrication strategies for engineering heterogeneous artificial tissues. Addit. Manuf. 2020, 36, 101459. [Google Scholar] [CrossRef]
- Li, Y.; Mao, Q.; Li, X.; Yin, J.; Wang, Y.; Fu, J.; Huang, Y. High-fidelity and high-efficiency additive manufacturing using tunable pre-curing digital light processing. Addit. Manuf. 2019, 30, 100889. [Google Scholar] [CrossRef]
- Carvalho, V.; Gonçalves, I.; Lage, T.; Rodrigues, R.O.; Minas, G.; Teixeira, S.; Moita, A.S.; Hori, T.; Kaji, H.; Lima, R.A. 3D Printing Techniques and Their Applications to Organ-on-a-Chip Platforms: A Systematic Review. Sensors 2021, 21, 3304. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, M.; Fan, X.; Zhou, H. Recent advances in bioprinting techniques: Approaches, applications and future prospects. J. Transl. Med. 2016, 14, 271. [Google Scholar] [CrossRef]
- Rothbauer, M.; Eilenberger, C.; Spitz, S.; Bachmann, B.E.M.; Kratz, S.R.A.; Reihs, E.I.; Windhager, R.; Toegel, S.; Ertl, P. Recent Advances in Additive Manufacturing and 3D Bioprinting for Organs-On-A-Chip and Microphysiological Systems. Front. Bioeng. Biotechnol. 2022, 10, 837087. [Google Scholar] [CrossRef]
- Agunbiade, A.O.; Song, L.; Agunbiade, O.J.; Ofoedu, C.E.; Chacha, J.S.; Duguma, H.T.; Hossaini, S.M.; Rasaq, W.A.; Shorstkii, I.; Osuji, C.M.; et al. Potentials of 3D extrusion-based printing in resolving food processing challenges: A perspective review. J. Food Process Eng. 2022, 45, e13996. [Google Scholar] [CrossRef]
- Zhao, D.K.; Xu, H.Q.; Yin, J.; Yang, H.Y. Inkjet 3D bioprinting for tissue engineering and pharmaceutics. J. Zhejiang Univ.-Sci. A 2022, 23, 955–973. [Google Scholar] [CrossRef]
- Lee, J.M.; Huang, X.; Goh, G.L.; Tran, T.; Yeong, W.Y. Understanding droplet jetting on varying substrate for biological applications. Int. J. Bioprinting 2023, 9, 192–206. [Google Scholar] [CrossRef]
- Matejkova, J.; Kanokova, D.; Matejka, R. Current Status of Bioprinting Using Polymer Hydrogels for the Production of Vascular Grafts. Gels 2025, 11, 4. [Google Scholar] [CrossRef]
- Ng, W.L.; Shkolnikov, V. Optimizing cell deposition for inkjet-based bioprinting. Int. J. Bioprinting 2024, 10, 182–206. [Google Scholar] [CrossRef]
- Zhu, H.; Li, R.; Li, S.; Guo, K.; Ji, C.; Gao, F.; Zheng, Y.; Zhu, R.; Wang, H.; Zhang, L.; et al. Multi-physical field control piezoelectric inkjet bioprinting for 3D tissue-like structure manufacturing. Int. J. Bioprinting 2024, 10, 359–378. [Google Scholar] [CrossRef]
- Wu, K.Y.; Osman, R.; Kearn, N.; Kalevar, A. Three-Dimensional Bioprinting for Retinal Tissue Engineering. Biomimetics 2024, 9, 733. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Liu, W.; Zhang, Y.; Gu, W.; Li, M.; Lu, C.; Zhou, R.; Che, Y.; Lu, H.; Zhu, Y.; et al. Application of three-dimensional printing in interventional medicine. J. Interv. Med. 2020, 3, 1–16. [Google Scholar] [CrossRef]
- Akter, F.; Araf, Y.; Promon, S.K.; Zhai, J.; Zheng, C. Machine learning boosts three-dimensional bioprinting. Int. J. Bioprinting 2024, 10, 01043. [Google Scholar]
- Hall, G.N.; Fan, Y.; Viellerobe, B.; Iazzolino, A.; Dimopoulos, A.; Poiron, C.; Clapies, A.; Luyten, F.P.; Guillemot, F.; Papantoniou, I. Laser-assisted bioprinting of targeted cartilaginous spheroids for high density bottom-up tissue engineering. Biofabrication 2024, 16, 045029. [Google Scholar] [CrossRef]
- Jaffredo, M.; Duchamp, O.; Touya, N.; Bouleau, Y.; Dulon, D.; Devillard, R.; Bonnard, D. Proof of concept of intracochlear drug administration by laser-assisted bioprinting in mice. Hear. Res. 2023, 438, 108880. [Google Scholar] [CrossRef]
- Amirpour, M.; Cracknell, D.; Amirian, A.; Alipour, A.N. Hybrid 3D printing of fluid-filled lattices for biomedical applications: A review. Int. J. Adv. Manuf. Technol. 2025, 136, 4083–4105. [Google Scholar] [CrossRef]
- Dong, R.H.; Liu, Y.; Mou, L.; Deng, J.Q.; Jiang, X.Y. Microfluidics-Based Biomaterials and Biodevices. Adv. Mater. 2019, 31, e180503. [Google Scholar] [CrossRef]
- Skardal, A.; Atala, A. Biomaterials for Integration with 3-D Bioprinting. Ann. Biomed. Eng. 2015, 43, 730–746. [Google Scholar] [CrossRef] [PubMed]
- Osório, L.A.; Silva, E.; Mackay, R.E. A Review of Biomaterials and Scaffold Fabrication for Organ-on-a-Chip (OOAC) Systems. Bioengineering 2021, 8, 113. [Google Scholar] [CrossRef] [PubMed]
- Birajdar, M.S.; Joo, H.; Koh, W.G.; Park, H. Natural bio-based monomers for biomedical applications: A review. Biomater. Res. 2021, 25, 8. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.K.; Dong, Y.; Wang, Y.Y. Collagen-Based Biomaterials for Tissue Engineering. Acs Biomater. Sci. Eng. 2023, 9, 1132–1150. [Google Scholar]
- Zhou, C.S.; Li, Y.H.; Yu, X.J.; Yang, H.; Ma, H.L.; Yagoub, A.E.A.; Cheng, Y.; Hu, J.L.; Otu, P.N.Y. Extraction and characterization of chicken feet soluble collagen. LWT-Food Sci. Technol. 2016, 74, 145–153. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, X.J.; Zhou, C.S.; Yagoub, A.A.; Ma, H.L. Effects of collagen and casein with phenolic compounds interactions on protein in vitro digestion and antioxidation. LWT-Food Sci. Technol. 2020, 124, 109192. [Google Scholar] [CrossRef]
- Zamprogno, P.; Wüthrich, S.; Achenbach, S.; Thoma, G.; Stucki, J.D.; Hobi, N.; Schneider-Daum, N.; Lehr, C.M.; Huwer, H.; Geiser, T.; et al. Second-generation lung-on-a-chip with an array of stretchable alveoli made with a biological membrane. Commun. Biol. 2021, 4, 168. [Google Scholar] [CrossRef]
- Yang, X.; Yu, X.J.; Yagoub, A.G.; Chen, L.; Wahia, H.; Osae, R.; Zhou, C.S. Structure and stability of low molecular weight collagen peptide (prepared from white carp skin) -calcium complex. LWT-Food Sci. Technol. 2021, 136, 110335. [Google Scholar] [CrossRef]
- Lin, L.; Zhu, Y.L.; Cui, H.Y. Electrospun thyme essential oil/gelatin nanofibers for active packaging against Campylobacter jejuni in chicken. LWT-Food Sci. Technol. 2018, 97, 711–718. [Google Scholar] [CrossRef]
- Lin, L.; Gu, Y.L.; Cui, H.Y. Novel electrospun gelatin-glycerin-ε-Poly-lysine nanofibers for controlling Listeria monocytogenes on beef. Food Packag. Shelf Life 2018, 18, 21–30. [Google Scholar] [CrossRef]
- Lin, L.; Gu, Y.L.; Cui, H.Y. Moringa oil/chitosan nanoparticles embedded gelatin nanofibers for food packaging against Listeria monocytogenes and Staphylococcus aureus on cheese. Food Packag. Shelf Life 2019, 19, 86–93. [Google Scholar] [CrossRef]
- Alsakhawy, S.A.; Baghdadi, H.H.; El-Shenawy, M.A.; Sabra, S.A.; El-Hosseiny, L.S. Encapsulation of thymus vulgaris essential oil in caseinate/gelatin nanocomposite hydrogel: In vitro antibacterial activity and in vivo wound healing potential. Int. J. Pharm. 2022, 628, 122280. [Google Scholar] [CrossRef]
- Mohseni, M.; Shokrollahi, P.; Shokrolahi, F.; Hosseini, S.; Taghiyar, L.; Kamali, A. Dexamethasone loaded injectable, self-healing hydrogel microspheresbased on UPy-functionalized Gelatin/ZnHAp physical network promotes bone regeneration. Int. J. Pharm. 2022, 626, 122196. [Google Scholar] [CrossRef]
- Zheng, F.; Yang, X.; Li, J.; Tian, Z.; Xiao, B.; Yi, S.; Duan, L. Coordination with zirconium: A facile approach to improve the mechanical properties and thermostability of gelatin hydrogel. Int. J. Biol. Macromol. 2022, 205, 595–603. [Google Scholar] [CrossRef]
- Kurian, A.G.; Singh, R.K.; Patel, K.D.; Lee, J.H.; Kim, H.W. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact. Mater. 2022, 8, 267–295. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Sun, X.; Wang, Z.; Guo, S.; Yu, G.; Yang, H. Synthesis and Properties of Gelatin Methacryloyl (GelMA) Hydrogels and Their Recent Applications in Load-Bearing Tissue. Polymers 2018, 10, 1290. [Google Scholar] [CrossRef] [PubMed]
- Casanova-Batlle, E.; Guerra, A.J.; Ciurana, J. A novel direct ink writing manufacturing system to 3D print highly concentrated silk fibroin. Procedia CIRP 2022, 110, 231–235. [Google Scholar] [CrossRef]
- Zhang, S.; Shah, S.A.-u.-M.; Basharat, K.; Qamar, S.A.; Raza, A.; Mohamed, A.; Bilal, M.; Iqbal, H.M.N. Silk-based nano-hydrogels for futuristic biomedical applications. J. Drug Deliv. Sci. Technol. 2022, 72, 103385. [Google Scholar] [CrossRef]
- Li, Y.W.; Yao, L.; Zhang, L.W.; Zhang, Y.S.; Zheng, T.; Liu, L.; Zhang, L. Enhanced physicochemical stabilities of cyanidin-3-O-glucoside via combination with silk fibroin. Food Chem. 2021, 355, 129479. [Google Scholar] [CrossRef]
- Lin, L.; Luo, C.C.; Li, C.Z.; Abdel-Samie, M.A.; Cui, H.Y. Eugenol/silk fibroin nanoparticles embedded Lycium barbarum polysaccharide nanofibers for active food packaging. Food Packag. Shelf Life 2022, 32, 100841. [Google Scholar] [CrossRef]
- Xu, H.N.; Pan, J.Y.; Dabbour, M.; Mintah, B.K.; Chen, W.; Yang, F.; Zhang, Z.L.; Cheng, Y.; Dai, C.H.; He, R.H.; et al. Synergistic effects of pH shift and heat treatment on solubility, physicochemical and structural properties, and lysinoalanine formation in silkworm pupa protein isolates. Food Res. Int. 2023, 165, 112554. [Google Scholar] [CrossRef]
- Hassan, S.; Heinrich, M.; Cecen, B.; Prakash, J.; Zhang, Y.S. 26—Biomaterials for on-chip organ systems. In Biomaterials for Organ and Tissue Regeneration; Vrana, N.E., Knopf-Marques, H., Barthes, J., Eds.; Woodhead Publishing: Cambridge, UK, 2020; pp. 669–707. [Google Scholar]
- Vanaei, S.; Parizi, M.S.; Vanaei, S.; Salemizadehparizi, F.; Vanaei, H.R. An Overview on Materials and Techniques in 3D Bioprinting Toward Biomedical Application. Eng. Regen. 2021, 2, 1–18. [Google Scholar] [CrossRef]
- Hang, T.; Lu, N.; Takagaki, M.; Mao, H.P. Leaf area model based on thermal effectiveness and photosynthetically active radiation in lettuce grown in mini-plant factories under different light cycles. Sci. Hortic. 2019, 252, 113–120. [Google Scholar] [CrossRef]
- Lu, Z.; Gao, W.; Liu, F.; Cui, J.; Feng, S.; Liang, C.; Guo, Y.; Wang, Z.; Mao, Z.; Zhang, B. Vat photopolymerization based digital light processing 3D printing hydrogels in biomedical fields: Key parameters and perspective. Addit. Manuf. 2024, 94, 104443. [Google Scholar] [CrossRef]
- Asti, A.; Gioglio, L. Natural and synthetic biodegradable polymers: Different scaffolds for cell expansion and tissue formation. Int. J. Artif. Organs 2014, 37, 187–205. [Google Scholar] [CrossRef] [PubMed]
- DeStefano, V.; Khan, S.; Tabada, A. Applications of PLA in modern medicine. Eng. Regen. 2020, 1, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Chen, M.; Du, H.; Guo, X.; Yuan, H.; Li, M.; Xu, Y. Tetracalcium phosphate/porous iron synergistically improved the mechanical, degradation and biological properties of polylactic acid scaffolds. Int. J. Biol. Macromol. 2024, 271, 132530. [Google Scholar] [CrossRef]
- Pan, Y.; Li, B.; Sun, X.; Tu, P.; Guo, Y.; Zhao, Z.; Wu, M.; Wang, Y.; Wang, Z.; Ma, Y. Composite Hydrogel Containing Collagen-Modified Polylactic Acid-Hydroxylactic Acid Copolymer Microspheres Loaded with Tetramethylpyrazine Promotes Articular Cartilage Repair. Macromol. Biosci. 2024, 24, e2400003. [Google Scholar] [CrossRef]
- Zahedah, R.; Dinc, B. Advancing bone tissue engineering: Multi-walled carbon nanotube-polylactic acid composites for enhanced regeneration. Compos. Interfaces 2025, 32, 399–419. [Google Scholar] [CrossRef]
- Liu, R.; Pang, Y.; Xiao, T.; Zhang, S.; Liu, Y.; Min, Y. Multifunctional PCL composite nanofibers reinforced with lignin and ZIF-8 for the treatment of bone defects. Int. J. Biol. Macromol. 2022, 218, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.R.F.; Wlodarek, L.; Alibhai, F.; Wu, J.; Li, S.; Sun, Y.; Santerre, J.P.; Li, R.-K. A Polypyrrole-Polycarbonate Polyurethane Elastomer Alleviates Cardiac Arrhythmias via Improving Bio-Conductivity. Adv. Healthc. Mater. 2023, 12, e2203168. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.; Bhat, G.A.; Darensbourg, D.J. Enabling New Approaches: Recent Advances in Processing Aliphatic Polycarbonate-Based Materials. Angew. Chem.-Int. Ed. 2023, 62, e202307507. [Google Scholar] [CrossRef]
- Chelu, M.; Musuc, A.M. Advanced Biomedical Applications of Multifunctional Natural and Synthetic Biomaterials. Processes 2023, 11, 2696. [Google Scholar] [CrossRef]
- Carneiro, J.; Lima, R.; Campos, J.; Miranda, J.M. A microparticle blood analogue suspension matching blood rheology. Soft Matter 2021, 17, 3963–3974. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, R.; Mehrotra, D. 3D bioprinting and craniofacial regeneration. J. Oral Biol. Craniofacial Res. 2020, 10, 650–659. [Google Scholar] [CrossRef]
- Zhang, J.; Wehrle, E.; Rubert, M.; Müller, R. 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors. Int. J. Mol. Sci. 2021, 22, 3971. [Google Scholar] [CrossRef]
- Chen, X.; Liu, C.; Xu, Z.; Xu, H.; Wang, L. Research Progress of Design Methods on Microfluidic Chips. J. Anal. Sci. 2012, 28, 423–427. [Google Scholar]
- Lee, H.; Cho, D.W. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lab Chip 2016, 16, 2618–2625. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Huang, G.L.; Huang, H.L. The glyconanoparticle as carrier for drug delivery. Drug Deliv. 2018, 25, 1840–1845. [Google Scholar] [CrossRef]
- Arabuli, K.V.; Kopoleva, E.; Akenoun, A.; Mikhailova, L.V.; Petrova, E.; Muslimov, A.R.; Senichkina, D.A.; Tsymbal, S.; Shakirova, A.I.; Ignatiev, A.I.; et al. On-chip fabrication of calcium carbonate nanoparticles loaded with various compounds using microfluidic approach. Biomater. Adv. 2024, 161, 213904. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yang, B.; Ye, L.; Hu, S.; Li, B.; Yang, Y.; Hu, Y.; Jia, X.; Feng, L.; Xiong, Z. Multistage microfluidic assisted Co-Delivery platform for dual-agent facile sequential encapsulation. Eur. J. Pharm. Biopharm. 2025, 207, 114616. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhou, W.; Yang, S.; Chu, R.; Zhen, Y.; Ding, R.; Xu, J.; Qian, Z.; Wen, N. Biocompatible sodium alginate-silk fibroin antibacterial microspheres from a microfluidic platform for infected wound repair. J. Bioact. Compat. Polym. 2024, 39, 197–213. [Google Scholar] [CrossRef]
- Shojaei, F.; Dini, G.; Vahabi, L.; Ghasemi, P. Microfluidic-assisted synthesis of mesoporous silica nanoparticles as drug carriers: Characterization and biocompatibility studies. J. Nanoparticle Res. 2024, 26, 258. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Hamadou, A.H.; Chen, C.; Xu, B. Encapsulation of phenolic compounds within food-grade carriers and delivery systems by pH-driven method: A systematic review. Crit. Rev. Food Sci. Nutr. 2023, 63, 4153–4174. [Google Scholar] [CrossRef]
- Wang, Q.L.; Wang, Y.P.; Xie, Y.J.; Adu-Frimpong, M.; Wei, C.M.; Yang, X.; Cao, X.; Deng, W.W.; Toreniyazov, E.; Ji, H.; et al. Nonionic surfactant vesicles as a novel drug delivery system for increasing the oral bioavailability of Ginsenoside Rb1. Food Biosci. 2021, 42, 101064. [Google Scholar] [CrossRef]
- Wen, C.T.; Zhang, J.X.; Zhang, H.H.; Duan, Y.Q. New Perspective on Natural Plant Protein-Based Nanocarriers for Bioactive Ingredients Delivery. Foods 2022, 11, 1701. [Google Scholar] [CrossRef]
- Hui, Y.; Yi, X.; Hou, F.; Wibowo, D.; Zhang, F.; Zhao, D.Y.; Gao, H.J.; Zhao, C.X. Role of Nanoparticle Mechanical Properties in Cancer Drug Delivery. ACS Nano 2019, 13, 7410–7424. [Google Scholar] [CrossRef]
- Yan, J.K.; Qiu, W.Y.; Wang, Y.Y.; Wu, J.Y. Biocompatible Polyelectrolyte Complex Nanoparticles from Lactoferrin and Pectin as Potential Vehicles for Antioxidative Curcumin. J. Agric. Food Chem. 2017, 65, 5720–5730. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Xia, J.J.; Bin, Z.; Zhou, R.Y.; Onyinye, A.I. Lipase nanogel catalyzed synthesis of vitamin E succinate in non-aqueous phase. J. Sci. Food Agric. 2021, 101, 3186–3192. [Google Scholar]
- Zheng, F.Q.; Tian, R.Z.; Lu, H.X.; Liang, X.; Shafiq, M.; Uchida, S.; Chen, H.R.; Ma, M. Droplet Microfluidics Powered Hydrogel Microparticles for Stem Cell-Mediated Biomedical Applications. Small 2024, 20, e2401400. [Google Scholar] [CrossRef]
- Mehraji, S.; DeVoe, D.L. Microfluidic synthesis of lipid-based nanoparticles for drug delivery: Recent advances and opportunities. Lab Chip 2024, 24, 1154–1174. [Google Scholar] [CrossRef]
- Apostolou, M.; Fatokun, A.A.; Assi, S.; Khan, I. Targeted Lipid-Based Drug Delivery Systems for Lung Cancer Therapy. Appl. Sci. 2024, 14, 6759. [Google Scholar] [CrossRef]
- Chen, K.; Yang, H.; Cai, R. Microfluidics for Nanomedicine Delivery. Acs Biomater. Sci. Eng. 2025, 11, 774–783. [Google Scholar] [CrossRef]
- Stengel, D.; Demirel, B.H.; Knoll, P.; Truszkowska, M.; Laffleur, F.; Bernkop-Schnuerch, A. PEG vs. zwitterions: How these surface decorations determine cellular uptake of lipid-based nanocarriers. J. Colloid Interface Sci. 2023, 647, 52–64. [Google Scholar] [CrossRef] [PubMed]
- van Os, W.L.; Wielaert, L.; Alter, C.; Davidovic, D.; Sachl, R.; Kock, T.; Gonz, U.U.; Arias-Alpizar, G.; Vigario, F.L.; Knol, R.A.; et al. Lipid conjugate dissociation analysis improves the in vivo understanding of lipid-based nanomedicine. J. Control. Release 2024, 371, 85–100. [Google Scholar] [CrossRef]
- Waheed, I.; Ali, A.; Tabassum, H.; Khatoon, N.; Lai, W.-F.; Zhou, X. Lipid-based nanoparticles as drug delivery carriers for cancer therapy. Front. Oncol. 2024, 14, 1296091. [Google Scholar] [CrossRef]
- Fredholm, B.B.; Fleming, W.W.; Vanhoutte, P.M.; Godfraind, T. The role of pharmacology in drug discovery. Nat. Rev. Drug Discov. 2002, 1, 237–238. [Google Scholar] [CrossRef]
- Deng, B.; Wang, K.; Huang, P.; Yang, M.; Liu, D.; Guan, Y. Thermal bubble single-cell printing chip: High-throughput, wide-field, and efficient. Biomicrofluidics 2024, 18, 064102. [Google Scholar] [CrossRef]
- Fang, W.; Liu, X.; Maiga, M.; Cao, W.; Mu, Y.; Yan, Q.; Zhu, Q. Digital PCR for Single-Cell Analysis. Biosensors 2024, 14, 64. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Hu, S.; Wang, X. Applications of single-cell technologies in drug discovery for tumor treatment. iScience 2024, 27, 110486. [Google Scholar] [CrossRef] [PubMed]
- Rhaman, M.S.; Ali, M.; Ye, W.; Li, B. Opportunities and Challenges in Advancing Plant Research with Single-cell Omics. Genom. Proteom. Bioinform. 2024, 22, qzae026. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Qiu, J.; Liu, M.; Wang, Y.; Yu, Y.; Liu, H.; Zhang, Y.; Han, L. Microfluidic Biochips for Single-Cell Isolation and Single-Cell Analysis of Multiomics and Exosomes. Adv. Sci. 2024, 11, e2401263. [Google Scholar] [CrossRef]
- Wu, Y.; Zhuang, J.; Song, Y.; Gao, X.; Chu, J.; Han, S. Advances in single-cell sequencing technology in microbiome research. Genes Dis. 2024, 11, 101129. [Google Scholar] [CrossRef]
- Atif, A.R.; Aramesh, M.; Carter, S.S.; Tenje, M.; Mestres, G. Universal Biomaterial-on-Chip: A versatile platform for evaluating cellular responses on diverse biomaterial substrates. J. Mater. Sci.-Mater. Med. 2024, 35, 2. [Google Scholar] [CrossRef]
- Huebner, A.; Olguin, L.F.; Bratton, D.; Whyte, G.; Huck, W.T.; de Mello, A.J.; Edel, J.B.; Abell, C.; Hollfelder, F. Development of quantitative cell-based enzyme assays in microdroplets. Anal. Chem. 2008, 80, 3890–3896. [Google Scholar] [CrossRef]
- Ramji, R.; Wang, M.; Bhagat, A.A.S.; Tan Shao Weng, D.; Thakor, N.V.; Teck Lim, C.; Chen, C.-H. Single cell kinase signaling assay using pinched flow coupled droplet microfluidics. Biomicrofluidics 2014, 8, 034104. [Google Scholar] [CrossRef]
- Patel, N.N.; Butler, P.E.M.; Buttery, L.; Polak, J.M.; Tolley, N.S. Tissue engineering and ENT surgery. J. Laryngol. Otol. 2002, 116, 165–169. [Google Scholar] [CrossRef]
- Cidonio, G.; Glinka, M.; Kim, Y.-H.; Dawson, J.I.; Oreffo, R.O.C. Nanocomposite Clay-Based Bioinks for Skeletal Tissue Engineering. Methods Mol. Biol. 2021, 2147, 63–72. [Google Scholar]
- van der Heide, D.; Cidonio, G.; Stoddart, M.J.; D’Este, M. 3D printing of inorganic-biopolymer composites for bone regeneration. Biofabrication 2022, 14, 042003. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Ji, X.; Chen, J.; Xie, M.Y.; Geng, L.N.; Gao, R.C. Enhanced oral bioavailability and tissue distribution of ferric citrate through liposomal encapsulation. Cyta-J. Food 2017, 15, 136–142. [Google Scholar] [CrossRef]
- Feng, Y.S.; Zhu, Y.; Wan, J.Y.; Yang, X.; Firempong, C.K.; Yu, J.N.; Xu, X.M. Enhanced oral bioavailability, reduced irritation and increased hypolipidemic activity of self-assembled capsaicin prodrug nanoparticles. J. Funct. Foods 2018, 44, 137–145. [Google Scholar] [CrossRef]
- Wang, Z.B.; Wang, Q.; Wang, L.; Xu, W.D.; He, Y.Q.; Li, Y.L.; He, S.; Ma, H.L. Improvement of skin condition by oral administration of collagen hydrolysates in chronologically aged mice. J. Sci. Food Agric. 2017, 97, 2721–2726. [Google Scholar] [CrossRef]
- Jia, F.H.; Gao, Y.B.; Wang, H. Recent Advances in Drug Delivery System Fabricated by Microfluidics for Disease Therapy. Bioengineering 2022, 9, 625. [Google Scholar] [CrossRef]
Methods | Variable Limitations | Advantages | Disadvantages | Reference |
---|---|---|---|---|
Micro-molding | Mold precision limitations, material needs thermoplastic | High yield, low cost | Prefabricated molds required, low design flexibility | [133] |
Light-based | Lithography resolution, photosensitive material limitations | High precision, high resolution | High equipment costs and cumbersome processes | [139] |
3D Printing | Print resolution, limited material options | Rapid prototyping, complex 3D structures can be prepared, no molds required | Resolution and speed need to be improved | [162] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.; Cui, L.; Shi, X.; Wu, S. Emerging Trends in Microfluidic Biomaterials: From Functional Design to Applications. J. Funct. Biomater. 2025, 16, 166. https://doi.org/10.3390/jfb16050166
Lin J, Cui L, Shi X, Wu S. Emerging Trends in Microfluidic Biomaterials: From Functional Design to Applications. Journal of Functional Biomaterials. 2025; 16(5):166. https://doi.org/10.3390/jfb16050166
Chicago/Turabian StyleLin, Jiaqi, Lijuan Cui, Xiaokun Shi, and Shuping Wu. 2025. "Emerging Trends in Microfluidic Biomaterials: From Functional Design to Applications" Journal of Functional Biomaterials 16, no. 5: 166. https://doi.org/10.3390/jfb16050166
APA StyleLin, J., Cui, L., Shi, X., & Wu, S. (2025). Emerging Trends in Microfluidic Biomaterials: From Functional Design to Applications. Journal of Functional Biomaterials, 16(5), 166. https://doi.org/10.3390/jfb16050166