Next Issue
Volume 16, September
Previous Issue
Volume 16, July
 
 

J. Funct. Biomater., Volume 16, Issue 8 (August 2025) – 36 articles

Cover Story (view full-size image): Simulated microgravity, achieved through rotating wall vessel bioreactors, provides a unique 3D dynamic culture environment that enhances tissue engineering by mimicking space-like conditions. In bone tissue research, 3D-printed trabecular scaffolds cultured under such conditions show a specific cell response. The absence of sedimentation and the continuous rotation allow uniform cell distribution, improve the delivery of nutrients and oxygen, and facilitate the removal of metabolic waste. Beyond bone, simulated microgravity offers a powerful platform for advancing all tissue engineering fields, enabling more physiologically relevant models and accelerating biomedical innovation to support space medicine. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
16 pages, 7082 KB  
Article
Ultrasound-Responsive Drug Delivery System Based on Piezoelectric Catalytic Mechanisms
by Kaixi Cui, Tianzheng Li, Yifei Ma, Chuanjin Zhang, Ke Zhang, Chao Qi and Kaiyong Cai
J. Funct. Biomater. 2025, 16(8), 304; https://doi.org/10.3390/jfb16080304 - 21 Aug 2025
Viewed by 528
Abstract
Ultrasound-responsive nanomaterials represent a promising approach for achieving non-invasive and localized drug delivery within tumor microenvironments. In this study, we developed a piezocatalysis-assisted hydrogel system that integrates reactive oxygen species (ROS) generation with stimulus-responsive drug release. The platform combines piezoelectric barium titanate (BTO) [...] Read more.
Ultrasound-responsive nanomaterials represent a promising approach for achieving non-invasive and localized drug delivery within tumor microenvironments. In this study, we developed a piezocatalysis-assisted hydrogel system that integrates reactive oxygen species (ROS) generation with stimulus-responsive drug release. The platform combines piezoelectric barium titanate (BTO) nanoparticles with a ROS-sensitive hydrogel matrix, forming an ultrasound-activated dual-function therapeutic system. Upon ultrasound irradiation, the BTO nanoparticles generate ROS—predominantly hydroxyl radicals (OH) and singlet oxygen (1O2)—through the piezoelectric effect, which triggers hydrogel degradation and facilitates the controlled release of encapsulated therapeutic agents. The composition and kinetics of ROS generation were evaluated using radical scavenging assays and fluorescence probe techniques, while the drug release behavior was validated under simulated oxidative environments and acoustic fields. Structural and compositional characterizations (TEM, XRD, and XPS) confirmed the quality and stability of the nanoparticles, and cytocompatibility was assessed using 3T3 fibroblasts. This synergistic strategy, combining piezocatalytic ROS generation with hydrogel disintegration, demonstrates a feasible approach for designing responsive nanoplatforms in ultrasound-mediated drug delivery systems. Full article
(This article belongs to the Special Issue Biomaterials for Drug Delivery and Cancer Therapy)
Show Figures

Figure 1

24 pages, 4238 KB  
Article
Hydrothermal Magnesium Alloy Extracts Modulate MicroRNA Expression in RAW264.7 Cells: Implications for Bone Remodeling
by Viviana Costa, Lavinia Raimondi, Daniele Bellavia, Angela De Luca, Pasquale Guglielmi, Angela Cusanno, Luca Cattini, Lia Pulsatelli, Matteo Pavarini, Roberto Chiesa and Gianluca Giavaresi
J. Funct. Biomater. 2025, 16(8), 303; https://doi.org/10.3390/jfb16080303 - 21 Aug 2025
Viewed by 406
Abstract
Magnesium (Mg) alloys, particularly Mg AZ31, have emerged as promising biomaterials for orthopedic applications due to their biodegradability and favorable mechanical characteristics. Among these, the Mg AZ31+SPF alloy, subjected to hydrothermal (HT) treatment, has demonstrated enhanced bioactivity. Our previous research established that this [...] Read more.
Magnesium (Mg) alloys, particularly Mg AZ31, have emerged as promising biomaterials for orthopedic applications due to their biodegradability and favorable mechanical characteristics. Among these, the Mg AZ31+SPF alloy, subjected to hydrothermal (HT) treatment, has demonstrated enhanced bioactivity. Our previous research established that this surface modification supports the osteogenic differentiation of human mesenchymal stem cells (hMSCs) by modulating both canonical and non-canonical signaling pathways, including those implicated in osteogenesis, hypoxic response, exosome biogenesis, and lipid metabolism. In the present study, we extended our investigation to assess the effects of Mg AZ31+SPF+HT and Mg AZ31+SPF extracts on murine pre-osteoclasts (RAW 264.7 cells) over 3- and 6-day treatment periods. The primary objectives were to evaluate biocompatibility and to investigate potential impacts on osteoclastogenesis induction and miRNA expression profiles. Methods: To assess cytocompatibility, metabolic activity, DNA integrity, and morphological alterations in RAW 264.7 cells were evaluated. Osteoclast differentiation was quantified using TRAP staining, alongside the assessment of osteoclastogenic marker expression by qRT-PCR and ELISA. The immunomodulatory properties of the extracts were examined using multiplex BioPlex assays to quantify soluble factors involved in bone healing. Additionally, global miRNA expression profiling was performed using a specialized panel targeting 82 microRNAs implicated in bone remodeling and inflammatory signaling. Results: Mg AZ31+SPF+HT extract exhibited high biocompatibility, with no observable adverse effects on cell viability. Notably, a significant reduction in the number of TRAP-positive and multinucleated cells was observed relative to the Mg AZ31+SPF group. This effect was corroborated by the downregulation of osteoclast-specific gene expression and decreased MMP9 protein levels. Cytokine profiling indicated that Mg AZ31+SPF+HT extract promoted an earlier release of key cytokines involved in maintaining the balance between bone formation and resorption, suggesting a beneficial role in bone healing. Furthermore, miRNA profiling revealed a distinct regulatory signature in Mg AZ31+SPF+HT-treated cells, with differentially expressed miRNAs associated with inflammation, osteoclast differentiation, apoptosis, bone resorption, hypoxic response, and metabolic processes compared to Mg AZ31+SPF-treated cells. Conclusions: Collectively, these findings indicate that hydrothermal treatment of Mg AZ31+SPF (resulting in Mg AZ31+SPF+HT) attenuates pre-osteoclast activation by influencing cellular morphology, gene and protein expression, as well as post-transcriptional regulation via modulation of miRNAs. The preliminary identification of miRNAs and the activation of their regulatory networks in pre-osteoclasts exposed to hydrothermally treated Mg alloy are described herein. In the context of orthopedic surgery—where balanced bone remodeling is imperative—our results emphasize the dual significance of promoting bone formation while modulating bone resorption to achieve optimal implant integration and ensure long-term bone health. Full article
(This article belongs to the Special Issue Metals and Alloys for Biomedical Applications (2nd Edition))
Show Figures

Graphical abstract

17 pages, 2755 KB  
Article
Enhanced Osteogenic Response to an Osteochondral Scaffold Modified with BMP-2 or Strontium-Enriched Amorphous Calcium Phosphate in a Co-Culture In Vitro Model
by Stefania Pagani, Manuela Salerno, Janis Locs, Jana Vecstaudza, Laura Dolcini, Milena Fini, Gianluca Giavaresi, Giuseppe Filardo and Marta Columbaro
J. Funct. Biomater. 2025, 16(8), 302; https://doi.org/10.3390/jfb16080302 - 21 Aug 2025
Viewed by 609
Abstract
Background: A trilayered collagen/collagen–magnesium–hydroxyapatite (Col/Col-Mg-HA) scaffold is used in clinical practice to treat osteochondral lesions, but the regeneration of the subchondral bone is still not satisfactory. Objective: The aim of this study was to test, in vitro, the osteoinductivity induced by [...] Read more.
Background: A trilayered collagen/collagen–magnesium–hydroxyapatite (Col/Col-Mg-HA) scaffold is used in clinical practice to treat osteochondral lesions, but the regeneration of the subchondral bone is still not satisfactory. Objective: The aim of this study was to test, in vitro, the osteoinductivity induced by the addition of bone morphogenetic protein-2 (BMP-2) or amorphous calcium phosphate granules with strontium ions (Sr-ACP), in order to improve the clinical regeneration of subchondral bone, still incomplete. Methodology: Normal human osteoblasts (NHOsts) were seeded on the scaffolds and grown for 14 days in the presence of human osteoclasts and conditioned medium of human endothelial cells. NHOst adhesion and morphology were observed with transmission electron microscopy, and metabolic activity was tested by Alamar blue assay. The expression of osteoblast- and osteoclast-typical markers was evaluated by RT-PCR on scaffolds modified by enrichment with BPM-2 or Sr-ACP, as well as on unmodified material used as a control. Results: NHOsts adhered well to all types of scaffolds, maintained their typical morphology, and secreted abundant extracellular matrix. On the modified materials, COL1A1, SPARC, SPP1, and BGLAP were more expressed than on the unmodified ones, showing the highest expression in the presence of BMP-2. On Sr-ACP-enriched scaffolds, NHOsts had a lower proliferation rate and a lower expression of RUNX2, SP7, and ALPL compared to the other materials. The modified scaffolds, particularly the one containing Sr-ACP, increased the expression of the osteoclasts’ typical markers and decreased the OPG/RANKL ratio. Both types of scaffold modification were able to increase the osteoinductivity with respect to the original scaffold used in clinical practice. BMP-2 modification seemed to be more slightly oriented to sustain NHOst activity, and Sr-ACP seemed to be more slightly oriented to sustain the osteoclast activity. These could provide a concerted action toward better regeneration of the entire osteochondral unit. Full article
Show Figures

Figure 1

14 pages, 931 KB  
Article
Comparative in Vitro Evaluation of Marginal Sealing in Class I Composite Restorations Using Fifth- and Seventh-Generation Adhesives
by Serban Talpos Niculescu, Ioana Veja, George-Dumitru Constantin, Ioana Elena Lile, Christos Armeniakos, Ioana Roxana Munteanu and Tareq Hajaj
J. Funct. Biomater. 2025, 16(8), 301; https://doi.org/10.3390/jfb16080301 - 20 Aug 2025
Viewed by 448
Abstract
Background: A major challenge in adhesive dentistry, often leading to restoration failure, is microleakage. This in vitro comparative study was designed to assess microleakage at the tooth–composite interface. The investigation aimed to compare the sealing efficacy of two commonly used adhesive systems. Methods: [...] Read more.
Background: A major challenge in adhesive dentistry, often leading to restoration failure, is microleakage. This in vitro comparative study was designed to assess microleakage at the tooth–composite interface. The investigation aimed to compare the sealing efficacy of two commonly used adhesive systems. Methods: Standardized Class I cavities were prepared on 20 extracted human molars and randomly divided into two groups (n = 10 each). Group A was treated with a fifth-generation total-etch adhesive (OptiBond™ Solo Plus, Kerr Corporation, Orange, CA, USA), and Group B received a seventh-generation self-etch adhesive (Adhese® Universal VivaPen®, Ivoclar Vivadent AG, Schaan, Liechtenstein). All restorations were completed using Herculite XRV composite resin. Microleakage was evaluated using dye penetration analysis after immersion in 2% methylene blue for 10 days, followed by longitudinal sectioning and microscopic measurement at 500× magnification. Results: The fifth-generation adhesive group showed a mean microleakage of 0.2503 ± 0.1921 mm, while the seventh-generation group recorded 0.2484 ± 0.1764 mm. Statistical analysis using an independent t-test revealed no significant difference between the groups (p = 0.696). Conclusions: Both adhesive systems demonstrated comparable performance in minimizing microleakage under standardized conditions. Although the total-etch group exhibited slightly lower numerical values, the difference was not statistically significant. These findings suggest that both adhesive approaches can be clinically effective when applied appropriately. Full article
(This article belongs to the Special Issue Dental Composite Resin: Characteristics and Future Perspectives)
Show Figures

Figure 1

23 pages, 4373 KB  
Article
Effect of Zinc and Magnesium Compounds and Nano-Hydroxyapatite on the Physicochemical Properties and Biological Activity of Alginate and Gelatin Scaffolds for Osteochondral Defects
by Anna Morawska-Chochół, Agnieszka Urbaś, Witold Reczyński, Ewelina Kwiecień and Magdalena Rzewuska
J. Funct. Biomater. 2025, 16(8), 300; https://doi.org/10.3390/jfb16080300 - 19 Aug 2025
Viewed by 499
Abstract
Composite scaffolds based on a hydrogel matrix modified with hydroxyapatite, magnesium, or zinc compounds are promising for filling and regenerating osteochondral defects due to the specific biological properties of these modifiers. The aim of this work was to evaluate the influence of hydroxyapatite, [...] Read more.
Composite scaffolds based on a hydrogel matrix modified with hydroxyapatite, magnesium, or zinc compounds are promising for filling and regenerating osteochondral defects due to the specific biological properties of these modifiers. The aim of this work was to evaluate the influence of hydroxyapatite, nano-hydroxyapatite, magnesium chloride, and zinc oxide on mechanical properties, swelling ability, behavior in a simulated biological environment (ion release, stability, bioactivity), and antibacterial effects. Furthermore, the influence of the hydrogel matrix (alginate, gelatin, alginate/gelatin) on the selected properties was also assessed. The results showed that the addition of ZnO improved the mechanical properties of all types of matrices most effectively. Additionally, zinc ions were gradually released into the environment and partially incorporated into the formed apatite. The released zinc ions increased the inhibition zones of Staphylococcus aureus growth; however, this effect was observed only in scaffolds with an alginate matrix. This indicates that hydrogel plays a key role in antibacterial effects, beyond the contribution of antibacterial additives. No effect of magnesium on bacterial growth inhibition was observed despite its rapid release. Magnesium ions promoted efficient secretion of apatite during incubation, although it was not stable. The addition of nano-HAP significantly increased the stability of the apatite precipitates. Full article
Show Figures

Figure 1

12 pages, 1363 KB  
Article
Antibacterial Characteristics of Nanoclay-Infused Cavit Temporary Filling Material: In Vitro Study
by Bahareh Nazemi Salman, Ayda Notash, Ali Ramazani, Shaghayegh Niaz, Seyed Mohammadrasoul Naeimi, Shayan Darvish and Ionut Luchian
J. Funct. Biomater. 2025, 16(8), 299; https://doi.org/10.3390/jfb16080299 - 19 Aug 2025
Viewed by 454
Abstract
In pediatric endodontic procedures, final crown placement is often delayed, requiring the use of temporary filling materials to seal the access cavity. Given the importance of antibacterial properties in temporary restorations and the known antimicrobial effects of nanoclay particles, this study aimed to [...] Read more.
In pediatric endodontic procedures, final crown placement is often delayed, requiring the use of temporary filling materials to seal the access cavity. Given the importance of antibacterial properties in temporary restorations and the known antimicrobial effects of nanoclay particles, this study aimed to evaluate the antibacterial efficacy of a nanoclay-infused temporary dressing against cariogenic and residual intracanal bacteria. A commercial temporary material (CAVISOL, Tehran, Iran) was blended with nanoclay (SOUTHERN, Gonzalez, TX, USA; average size 95 nm), using eugenol as a wetting agent. The antibacterial effects on Streptococcus mutans, Enterococcus faecalis, and Escherichia coli were assessed using disc diffusion, well diffusion, and microtiter plate assays after 24 h of incubation at 37 °C (six material groups, three bacterial strains, three replications for each antibacterial test). Statistical analyses were performed using Shapiro–Wilk and ANOVA tests (p < 0.05). The results showed that formulations containing 60% and 80% nanoclay significantly inhibited the growth of all tested bacteria, outperforming pure Cavit (p < 0.05). The most substantial inhibition was observed in E. coli, while S. mutans exhibited the least susceptibility (p < 0.05). These findings suggest that incorporating nanoclay into temporary fillings may enhance efficacy to increase the success rate of pediatric endodontic treatments, although further physicochemical and clinical evaluations are warranted. Full article
(This article belongs to the Special Issue Biomaterials Applied in Dental Sciences)
Show Figures

Figure 1

3 pages, 144 KB  
Editorial
Functional Biomaterials for Regenerative Dentistry
by Nicholas G. Fischer
J. Funct. Biomater. 2025, 16(8), 298; https://doi.org/10.3390/jfb16080298 - 19 Aug 2025
Viewed by 461
Abstract
Regenerative dentistry hopes to restore oral health by replacing diseased or damaged tissues with biologically functional, integrated counterparts [...] Full article
(This article belongs to the Special Issue Functional Biomaterials for Regenerative Dentistry)
22 pages, 1661 KB  
Article
Biliary Injuries Repair Using Copolymeric Scaffold: A Systematic Review and In Vivo Experimental Study
by Salvatore Buscemi, Giulia Bonventre, Andrea Gottardo, Mariano Licciardi, Fabio Salvatore Palumbo, Giovanni Cassata, Luca Cicero, Giulia Lo Monte, Roberto Puleio and Attilio Ignazio Lo Monte
J. Funct. Biomater. 2025, 16(8), 297; https://doi.org/10.3390/jfb16080297 - 18 Aug 2025
Viewed by 418
Abstract
Background: Common bile duct (CBD) treatments are often associated with complications, limiting long-term efficacy. To overcome these issues, polymeric grafts have been suggested as promising alternatives, since they are highly customizable, biocompatible, and may reduce side effects frequency. Methods: A systematic review was [...] Read more.
Background: Common bile duct (CBD) treatments are often associated with complications, limiting long-term efficacy. To overcome these issues, polymeric grafts have been suggested as promising alternatives, since they are highly customizable, biocompatible, and may reduce side effects frequency. Methods: A systematic review was conducted, interrogating MEDLINE and Cochrane Library. Next, an in vivo study involved 20 pigs, which underwent a former controlled biliary injury. To repair the defect, a α,β-Poly(N-2-hydroxyethyl)-DL-Aspartamide (PHEA)–Polylactic-acid (PLA)–Polycaprolactone (PCL) scaffold was implanted. The animals were sacrificed at one and three months for gross and histological examinations, to assess tissue integration and healing outcomes. Results: The systematic review highlighted that such scaffolds have shown promising results in CBD regeneration, both in single and joined applications. These findings were confirmed by the in vivo study, where the use of such scaffolds—particularly, the planar ones—led to safe and complete bile duct regeneration. Histological analysis revealed lymphomonocytic infiltrates and neovascularization, while microscopic examination showed progressive scaffold degradation accompanied by biliary tissue regeneration. Conclusions: Experimental results are consistent with the literature, confirming the potential of such polymeric scaffolds in aiding complete CBD regeneration and being reabsorbed shortly after. Still, further studies are needed to fully validate their translational application. PROSPERO ID: CRD420251115056. Full article
(This article belongs to the Special Issue Polymers Materials Used in Biomedical Engineering)
Show Figures

Graphical abstract

18 pages, 2264 KB  
Article
Influence of Drilling Protocol on Primary Implant Stability Depending on Different Bone Qualities and Implant Macro-Designs, Lengths, and Diameters
by Milan Stoilov, Ramin Shafaghi, Lea Stoilov, Helmut Stark, Michael Marder, Norbert Enkling and Dominik Kraus
J. Funct. Biomater. 2025, 16(8), 296; https://doi.org/10.3390/jfb16080296 - 16 Aug 2025
Viewed by 697
Abstract
Background: Primary implant stability is a critical factor for successful osseointegration and long-term implant success. This study investigates the impact of drilling protocol modifications on primary stability, considering different bone qualities and implant macro-designs, lengths, and diameters. Material and Methods: Three implant designs—two [...] Read more.
Background: Primary implant stability is a critical factor for successful osseointegration and long-term implant success. This study investigates the impact of drilling protocol modifications on primary stability, considering different bone qualities and implant macro-designs, lengths, and diameters. Material and Methods: Three implant designs—two parallel-walled and one tapered—were tested with diameters ranging from 3.4 to 5.2 mm and lengths from 7.5 to 14.5 mm. Implants were placed in polyurethane foam blocks simulating different bone densities (10, 15, 25, and 35 PCF). A standard drilling protocol was used in all groups, with modifications based on bone quality: overpreparation in dense bone and underpreparation in softer bone. Primary stability was evaluated using insertion torque (IT). The optimal IT range was defined as 25–50 Ncm, based on clinical guidelines for immediate loading. The influence of drilling protocol adaptations on stability parameters was assessed. Results: Insertion torque was primarily influenced by bone density and implant diameter, with implant length playing a minor role. In dense bone (D1, D2), underpreparation improved torque values, especially in smaller implants, while overpreparation reduced them. The highest torques occurred with 5.2 mm implants, sometimes exceeding 80 Ncm. Standard protocols did not consistently achieve optimal torque across implant types. In soft bone (D3), underpreparation—particularly with tapered implants—was modestly beneficial. In very soft bone (D4), none of the protocols reliably reached the desired torque range. Conclusions: Adapting drilling protocols to bone density improves insertion torque, especially with wider implants and in denser bone. Underpreparation is generally more effective than overpreparation. However, in very soft bone, neither implant geometry nor drilling adaptations reliably achieve optimal primary stability, highlighting the need for additional strategies. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

21 pages, 3052 KB  
Article
MIL-53 MOF on Sustainable Biomaterial for Antimicrobial Evaluation Against E. coli and S. aureus Bacteria by Efficient Release of Penicillin G
by Delia Monserrat Ávila-Márquez, Alien Blanco Flores, Helen Paola Toledo Jaldin, Mateo Burke Irazoque, Maribel González Torres, Alfredo Rafael Vilchis-Nestor, Carla Calderon Toledo, Sergio Gutiérrez-Cortez, Juan Pablo Díaz Rodríguez and Alejandro Dorazco-González
J. Funct. Biomater. 2025, 16(8), 295; https://doi.org/10.3390/jfb16080295 - 15 Aug 2025
Viewed by 658
Abstract
The development of efficient antibiotic-releasing materials derived from sustainable and recyclable compounds represents a key area within biomedical materials science, particularly in the treatment of antibacterial infections. Herein, a Fe3+/terephthalate-based metal–organic framework (MIL-53) and a novel advanced material made [...] Read more.
The development of efficient antibiotic-releasing materials derived from sustainable and recyclable compounds represents a key area within biomedical materials science, particularly in the treatment of antibacterial infections. Herein, a Fe3+/terephthalate-based metal–organic framework (MIL-53) and a novel advanced material made of MIL-53 with biogenic hydroxyapatite (1) were prepared by solvothermal reactions, and these were studied in detail as a Penicillin-G-releasing material. After loading Penicillin G on 1 and MIL-53, the antibiotic percentage release was studied, and the antimicrobial effectiveness of each material was evaluated against two bacterial ATCC strains (E. coli and S. aureus) and various Penicillin-G-resistant uropathogenic strains such as E. coli isolates (HHM 25, ERV 6, and FGI 4). Functional, structural, and morphological characteristics of these materials were thoroughly studied by analytical tools (FTIR, XRD, BET, SEM-EDS, and XPS). The Penicillin G load did not exceed 50% in both materials. The Penicillin G adsorption mechanism involves several types of interactions with the materials. The release of the antibiotic was more efficient from MIL-53, where the load did not exceed 20%. The release was analyzed using mathematical models. They indicated that when Penicillin G is released from MIL-53, the process follows diffusion through a uniform matrix; however, 1 is more porous, which helps with the release by diffusion of Penicillin G, and 1 exhibits more than a 90% inhibition of the growth of bacteria and strains like MIL-53. This suggests a valuable approach to antibiotic activity against resistant pathogens. The use of composite materials derived from the Fe-MOF with a sustainable matrix of hydroxyapatite as antibiotic-releasing materials has been unexplored until now. Full article
(This article belongs to the Topic Recent Advances in Composite Biomaterials)
Show Figures

Graphical abstract

14 pages, 4450 KB  
Article
Photothermally Responsive Biomimetic Composite Scaffolds Based on Polydopamine-Functionalized Nanoparticles/Polyurethane for Bone Repair
by Ruqing Bai, Jiaqi Chen, Ting Zhang, Tao Chen, Xiaoying Liu, Weihu Yang, Tuck-Whye Wong, Jianwei Zhang and Li Wang
J. Funct. Biomater. 2025, 16(8), 294; https://doi.org/10.3390/jfb16080294 - 15 Aug 2025
Viewed by 674
Abstract
In this study, a shape-changeable 3D scaffold with photothermal effects was developed to address the clinical challenges of complex bone defects. The multifunctional construct was fabricated via in situ polymerization combined with a gas foaming technique, creating hierarchical porous architectures that mimic the [...] Read more.
In this study, a shape-changeable 3D scaffold with photothermal effects was developed to address the clinical challenges of complex bone defects. The multifunctional construct was fabricated via in situ polymerization combined with a gas foaming technique, creating hierarchical porous architectures that mimic the native bone extracellular matrix. By incorporating polydopamine (PDA)-modified amorphous calcium phosphate (CA) into poly(propylene glycol) (PPG)- and poly(ԑ-caprolactone) (PCL)-based polyurethane (PU). The obtained scaffolds achieved osteoinductive potential for bone tissue engineering. The surface PDA modification of CA enabled efficient photothermal shape conversion under near-infrared (NIR) irradiation, facilitating non-invasive remote control of localized hyperthermia. The optimized scaffolds exhibited interconnected porosity (approximately 70%) with osteoconductive pore channels (200–500 μm), resulting in good osteoinduction in cell culture, and precise shape-memory recovery at physiological temperatures (~40 °C) under NIR for minimally invasive delivery. The synergistic effect of osteogenesis promotion and photothermal transition demonstrated this programmable scaffold as a promising solution for integrated minimally invasive bone repair and defect reconstruction. Full article
Show Figures

Figure 1

36 pages, 775 KB  
Systematic Review
Efficacy of Endodontic Files in Root Canal Retreatment: A Systematic Review of In Vitro Studies
by Anna Soler-Doria, José Luis Sanz, Marcello Maddalone and Leopoldo Forner
J. Funct. Biomater. 2025, 16(8), 293; https://doi.org/10.3390/jfb16080293 - 14 Aug 2025
Viewed by 685
Abstract
The success rate of root canal treatment is high, but it can fail. In these cases, orthograde root canal retreatment is often the treatment of choice, for which numerous biomaterials are available on the market, including endodontic files. This systematic review aimed to [...] Read more.
The success rate of root canal treatment is high, but it can fail. In these cases, orthograde root canal retreatment is often the treatment of choice, for which numerous biomaterials are available on the market, including endodontic files. This systematic review aimed to study the endodontic files available on the market and establish their efficacy in root canal retreatment. An electronic search of six different databases was performed, and in vitro experimental studies that studied root canal cleaning, debris extrusion, retreatment time, or dentinal damage produced with any of the comparison methods were selected. The quality of the studies was assessed with the QUIN scale. In total, 78 studies were included for the analysis, of which 9 had a high risk of bias, 53 had a moderate risk, and 16 had a low risk. The methods used to evaluate the efficacy of endodontic files in root canal retreatment are heterogeneous. Manual files produce more apical extrusion than rotary files. PTUR files are the most studied endodontic files. It is the file system that leaves the least residual filling material in the canal, takes the least time during retreatment, and removes the greatest amount of dentine. However, no file system achieved the complete removal of the root canal filling material. No consistent pattern emerged across studies when comparing rotary files with continuous and reciprocating rotation in terms of the removal of the filling material, the time required for de-obturation, dentine damage produced, or apical extrusion. Full article
(This article belongs to the Special Issue The 15th Anniversary of JFB—Endodontic Biomaterials)
Show Figures

Figure 1

15 pages, 1514 KB  
Article
Injectable Thermosensitive Hydrogel Containing Bakuchiol Reduces Periodontal Inflammation and Alveolar Bone Loss in a Rat Model
by Seong-Jin Shin, Gyu-Yeon Shim, Seong-Hee Moon, Yu-Jin Kim, Hyun-Jin Kim, Seunghan Oh, Jung-Hwan Lee and Ji-Myung Bae
J. Funct. Biomater. 2025, 16(8), 292; https://doi.org/10.3390/jfb16080292 - 13 Aug 2025
Viewed by 961
Abstract
This study aimed to develop and evaluate a bakuchiol-loaded thermosensitive hydrogel (BTH) as a novel local drug delivery system for the management of periodontitis. Bakuchiol, a natural phenolic compound extracted from Psoralea corylifolia, was incorporated into a hydrogel composed of poloxamers and [...] Read more.
This study aimed to develop and evaluate a bakuchiol-loaded thermosensitive hydrogel (BTH) as a novel local drug delivery system for the management of periodontitis. Bakuchiol, a natural phenolic compound extracted from Psoralea corylifolia, was incorporated into a hydrogel composed of poloxamers and carboxymethylcellulose. The gelation behavior, physicochemical properties, and drug release profile were analyzed. Additionally, antibacterial activity against Porphyromonas gingivalis was assessed. Cytotoxicity was evaluated in human gingival fibroblasts and RAW 264.7 cells. Anti-inflammatory effects were determined by measuring proinflammatory cytokine expression in lipopolysaccharide-stimulated RAW 264.7 macrophages. Furthermore, alveolar bone loss, cytokine expression, and histological findings were assessed in a rat model of ligature-induced periodontitis. BTH demonstrated sol–gel transition at body temperature, with sustained drug release over 15 days. Moreover, it exhibited significant antibacterial activity against P. gingivalis and was non-cytotoxic at an extract concentration of 6.25%. In vitro, it significantly downregulated inflammatory cytokines in activated macrophages. In vivo, BTH application reduced alveolar bone loss and interleukin-1β expression in gingival tissues. Histological analysis confirmed decreased inflammatory cell infiltration and alveolar bone destruction. Thus, BTH demonstrated both antibacterial and anti-inflammatory activities, exhibiting potential as a promising therapeutic strategy for localized periodontal treatment. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

19 pages, 4137 KB  
Article
Analysis of Insertion Torque of Orthodontic Mini-Implants Depending on the System and the Morphological Substrate
by Tamara Rahela Ioana, Filip George Boeru, Ioana Mitruț, Anne-Marie Rauten, Mahmoud Elsaafin, Mihaela Ionescu, Ionela Elisabeta Staicu and Horia Octavian Manolea
J. Funct. Biomater. 2025, 16(8), 291; https://doi.org/10.3390/jfb16080291 - 13 Aug 2025
Viewed by 531
Abstract
Orthodontic mini-implants are well-known anchorage devices and stand out as a particularly effective tool for ensuring maximum anchorage without relying on patient compliance. Therefore, it is necessary to understand what levels of torque strains remain in the physiological limits and can guarantee the [...] Read more.
Orthodontic mini-implants are well-known anchorage devices and stand out as a particularly effective tool for ensuring maximum anchorage without relying on patient compliance. Therefore, it is necessary to understand what levels of torque strains remain in the physiological limits and can guarantee the stability of these mini-implants. The aim of this study was to investigate and measure the initial and final torque values of orthodontic mini-implants when placed perpendicular to the maxillary and mandibular bone surfaces. In our study, orthodontic mini-implants from different companies were inserted perpendicularly using different insertion torques on the plate of both maxillary and mandibular bones from pig specimens. The torque values were then analyzed. The results of this study highlight the need for continued research to analyze the ideal insertion torque of different types of mini-implants depending on the insertion area, in order to achieve clinical success of mini-implants. Full article
(This article belongs to the Special Issue Biomechanical Studies and Biomaterials in Dentistry)
Show Figures

Figure 1

14 pages, 3562 KB  
Article
Relationship Between Fracture Toughness and Fracture Mirror in Modern Polymer-Based Dental Composites
by Nicoleta Ilie
J. Funct. Biomater. 2025, 16(8), 290; https://doi.org/10.3390/jfb16080290 - 12 Aug 2025
Viewed by 654
Abstract
The mechanical behavior of dental composites depends on the sample size and stress configuration. This makes it difficult to extrapolate laboratory data to clinical restorations with significant variations in size and geometry. Intrinsic parameters, such as fracture toughness, are therefore of great importance, [...] Read more.
The mechanical behavior of dental composites depends on the sample size and stress configuration. This makes it difficult to extrapolate laboratory data to clinical restorations with significant variations in size and geometry. Intrinsic parameters, such as fracture toughness, are therefore of great importance, even if they are less common and more difficult to measure. The aim of this study was to apply principles of fractography and fracture mechanics to exploit the results obtained from a three-point bending test. The objectives include calculating a material-specific constant, validating the experimental findings, and establishing a correlation with fracture toughness. Forty representative composites with wide variation in filler quantity (65–83% by weight and 46.4–64% by volume), type (compact glasses and pre-polymerized), and composition were examined. Fracture toughness/KIc was evaluated in a notchless triangular prism test. Fracture type, origin, and mirror size were determined on 280 flexural fracture specimens (n = 20). The amount of filler strongly influences all measured parameters, with the effect strength varying in the sequence: mechanical work (ηP2 = 0.995), modulus of elasticity (ηP2 = 0.991), flexural strength (ηP2 = 0.988), fracture toughness (ηP2 = 0.979), and mirror constant (ηP2 = 0.965). Fracture surfaces allowed the delineation of the fracture mirror and the application of fracture mechanics approaches. The mirror constant was derived from the radius of the fracture mirror, measured in the direction of constant stress, using Orr’s equation, and correlates well with KIc (0.81). Larger confidence intervals were observed for the mirror constant data, while for 5 of 14 materials, the mirror constant was overestimated compared to KIc. The overestimation was attributed to the lower refractive index of the urethane methacrylate composition. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

15 pages, 1434 KB  
Article
Shear Bond Strength of Self-Adhesive and Self-Etching Resin Cements to Dentin for Indirect Restorations
by Janet Kirilova, Georgi Veselinov Iliev, Sevda Yantcheva, Elitsa Deliverska and Viktoria Petrova
J. Funct. Biomater. 2025, 16(8), 289; https://doi.org/10.3390/jfb16080289 - 12 Aug 2025
Viewed by 546
Abstract
This study assessed and compared the shear bond strength of self-adhesive and self-etching resin cements for indirect aesthetic restorations to dentin. Four different materials, lithium disilicate ceramics, zirconia ceramics, polymethyl methacrylate (PMMA) composites, and hybrid materials, were used for indirect restorations cemented to [...] Read more.
This study assessed and compared the shear bond strength of self-adhesive and self-etching resin cements for indirect aesthetic restorations to dentin. Four different materials, lithium disilicate ceramics, zirconia ceramics, polymethyl methacrylate (PMMA) composites, and hybrid materials, were used for indirect restorations cemented to dentin. The null hypothesis was that there would be no differences in shear bond strength between the investigated materials. Eighty extracted human molars were used. Eighty dentin specimens with a flat surface were prepared and randomly distributed in groups of 10 (n = 10). From each material (Cerasmart 270, Initial LiSi Blok, Katana ZR Noritake, and Crowntec Next Dent), 20 blocks were made and cemented to the dentin samples. Half of the blocks from each material were cemented to dentin using self-etching resin cement (Panavia V5), and the other half using self-adhesive resin cement (i-CEM). After the specimens were prepared, a laboratory test was conducted to evaluate the shear bond strength. The fracture type was determined using a light microscope, and SEM confirmed the results. The results were statistically analysed. All materials cemented with self-etching cements (Panavia V5) showed statistically higher shear strength values than those cemented with self-adhesive resin cement (i-CEM). In the specimen groups where self-adhesive cement (i-CEM) was used, Cerasmart 270 bonded statistically better. A statistical difference was found between all groups of materials cemented with self-etching cement. The Initial LiSi Block showed the strongest bond, followed by Katana Zr Noritake, Crowntec NextDent, and Cerasmart 270. Adhesion fracture to dentin was observed for all groups cemented with i-CEM. This study highlights the superior performance of self-etching cements in terms of shear bond strength. 10-Methacryloyloxydecyl dihydrogen phosphate (10-MDP), a functional monomer, was found to enhance adhesion strength significantly. However, using self-adhesive cements was associated with a weaker bond to dentin, highlighting the importance of the right cementing agent in restorative dentistry. Full article
(This article belongs to the Special Issue Biomaterials for Dental Reparative and Regenerative Therapies)
Show Figures

Figure 1

13 pages, 3998 KB  
Article
Promoting Surface Energy and Osteoblast Viability on Zirconia Implant Abutments Through Glass–Ceramic Spray Deposition Technology
by Wen-Chieh Hsu, Tao-Yu Cha, Yu-Chin Yao, Chien-Ming Kang, Sheng-Han Wu, Yuichi Mine, Chien-Fu Tseng, I-Ta Lee, Dan-Jae Lin and Tzu-Yu Peng
J. Funct. Biomater. 2025, 16(8), 288; https://doi.org/10.3390/jfb16080288 - 7 Aug 2025
Viewed by 789
Abstract
Zirconia is used widely for high-precision custom abutments; however, stress concentration can compromise osseointegration. Although glass–ceramic spray deposition (GCSD) can enhance the surface properties of zirconia, its biological effects remain unclear. In this study, the biological responses of human osteoblast-like (MG-63) cells to [...] Read more.
Zirconia is used widely for high-precision custom abutments; however, stress concentration can compromise osseointegration. Although glass–ceramic spray deposition (GCSD) can enhance the surface properties of zirconia, its biological effects remain unclear. In this study, the biological responses of human osteoblast-like (MG-63) cells to GCSD-modified zirconia surfaces were evaluated to assess the potential application in zirconia abutments. Disk-shaped zirconia and titanium alloy samples were prepared; titanium served as the control (Ti). Zirconia was subjected to polishing (NT), airborne-particle abrasion (AB), or GCSD with (GE) or without (GC) hydrofluoric acid (HF) etching. Surface characteristics, including wettability, surface energy (SE), and surface potential (SP), were analyzed. Cytotoxicity and MG-63 cell adhesion were assessed using the PrestoBlue assay, scanning electron microscopy (SEM), viability staining, and confocal laser scanning microscopy (CLSM). Statistical analysis was performed with a significance level of 0.05. GCSD produced a dense glass–ceramic coating on the zirconia surface, which significantly enhanced hydrophilicity as indicated by reduced water contact angles and increased SE in the GC and GE groups (p < 0.05). HF etching increased SP (p < 0.05). No cytotoxicity was observed in any group. SEM, viability staining, and CLSM revealed enhanced MG-63 cell attachment on Ti and GE surfaces and the highest viability ratio in the GE group. The NT group exhibited the lowest cell attachment and viability at all time points. GCSD effectively improved zirconia abutment surface properties by enhancing hydrophilicity and promoting MG-63 cell adhesion, with biocompatibility comparable to or better than that of titanium. Full article
Show Figures

Figure 1

18 pages, 7273 KB  
Article
Functional Compression Fabrics with Dual Scar-Suppressing and Antimicrobial Properties: Microencapsulation Design and Performance Evaluation
by Lihuan Zhao, Changjing Li, Mingzhu Yuan, Rong Zhang, Xinrui Liu, Xiuwen Nie and Bowen Yan
J. Funct. Biomater. 2025, 16(8), 287; https://doi.org/10.3390/jfb16080287 - 5 Aug 2025
Viewed by 619
Abstract
Pressure therapy combined with silicone has a significant effect on scar hyperplasia, but limitations such as long-term wearing of compression garments (CGs) can easily cause bacterial infection, cleanliness, and lifespan problems of CGs caused by the tedious operation of applying silicone. In this [...] Read more.
Pressure therapy combined with silicone has a significant effect on scar hyperplasia, but limitations such as long-term wearing of compression garments (CGs) can easily cause bacterial infection, cleanliness, and lifespan problems of CGs caused by the tedious operation of applying silicone. In this study, a compression garment fabric (CGF) with both inhibition of scar hyperplasia and antibacterial function was prepared. A polydimethylsiloxane (PDMS)-loaded microcapsule (PDMS-M) was prepared with chitosan quaternary ammonium salt (HACC) and sodium alginate (SA) as wall materials and PDMS as core materials by the complex coagulation method. The PDMS-Ms were finished on CGF and modified with (3-aminopropyl)triethoxysilane (APTES) to obtain PDMS-M CGF, which was further treated with HACC to produce PDMS-M-HACC CGF. X-ray Photoelectron Spectroscopy(XPS) and Fourier transform infrared spectroscopy (FTIR) analysis confirmed the formation of covalent bonding between PDMS-M and CGF. The PDMS-M CGF exhibited antibacterial rates of 94.2% against Gram-negative bacteria Escherichia coli (E. coli, AATCC 6538) and of 83.1% against Gram-positive bacteria Staphylococcus aureus (S. aureus, AATCC 25922). The antibacterial rate of PDMS-M-HACC CGF against both E. coli and S. aureus reached 99.9%, with wash durability reaching grade AA for E. coli and approaching grade A for S. aureus. The finished CGF maintained good biocompatibility and showed minimal reduction in moisture permeability compared to unfinished CGF, though with decreased elastic recovery, air permeability and softness. The finished CGF of this study is expected to improve the therapeutic effect of hypertrophic scars and improve the quality of life of patients with hypertrophic scars. Full article
Show Figures

Figure 1

12 pages, 2807 KB  
Article
Evaluation of Hydroxyapatite–β-Tricalcium Phosphate Collagen Composites for Socket Preservation in a Canine Model
by Dong Woo Kim, Donghyun Lee, Jaeyoung Ryu, Min-Suk Kook, Hong-Ju Park and Seunggon Jung
J. Funct. Biomater. 2025, 16(8), 286; https://doi.org/10.3390/jfb16080286 - 3 Aug 2025
Viewed by 921
Abstract
This study aimed to compare the performance of three hydroxyapatite–β-tricalcium phosphate (HA–β-TCP) collagen composite grafts in a canine model for extraction socket preservation. Eight mongrel dogs underwent atraumatic bilateral mandibular premolar extraction, and sockets were randomly grafted with HBC28 (20% high-crystalline HA, 80% [...] Read more.
This study aimed to compare the performance of three hydroxyapatite–β-tricalcium phosphate (HA–β-TCP) collagen composite grafts in a canine model for extraction socket preservation. Eight mongrel dogs underwent atraumatic bilateral mandibular premolar extraction, and sockets were randomly grafted with HBC28 (20% high-crystalline HA, 80% β-TCP bovine collagen), HBC37 (30% HA, 70% β-TCP, bovine collagen), or HPC64 (60% HA, 40% β-TCP, porcine collagen). Grafts differed in their HA–β-TCP ratio and collagen origin and content. Animals were sacrificed at 4 and 12 weeks, and the healing sites were evaluated using micro-computed tomography (micro-CT) and histological analysis. At 12 weeks, all groups showed good socket maintenance with comparable new bone formation. However, histological analysis revealed that HBC28 had significantly higher residual graft volume, while HPC64 demonstrated more extensive graft resorption. Histomorphometric analysis confirmed these findings, with statistically significant differences in residual graft area and bone volume fraction. No inflammatory response or adverse tissue reactions were observed in any group. These results suggest that all three HA–β-TCP collagen composites are biocompatible and suitable for socket preservation, with varying resorption kinetics influenced by graft composition. Selection of graft material may thus be guided by the desired rate of replacement by new bone. Full article
(This article belongs to the Special Issue Biomechanical Studies and Biomaterials in Dentistry)
Show Figures

Figure 1

32 pages, 2710 KB  
Review
Polyphosphazene-Based Nanotherapeutics
by Sara Gutierrez-Gutierrez, Rocio Mellid-Carballal, Noemi Csaba and Marcos Garcia-Fuentes
J. Funct. Biomater. 2025, 16(8), 285; https://doi.org/10.3390/jfb16080285 - 2 Aug 2025
Viewed by 865
Abstract
Poly(organo)phosphazenes (PPZs) are increasingly recognized as versatile biomaterials for drug delivery applications in nanomedicine. Their unique hybrid structure—featuring an inorganic backbone and highly tunable organic side chains—confers exceptional biocompatibility and adaptability. Through precise synthetic methodologies, PPZs can be engineered to exhibit a wide [...] Read more.
Poly(organo)phosphazenes (PPZs) are increasingly recognized as versatile biomaterials for drug delivery applications in nanomedicine. Their unique hybrid structure—featuring an inorganic backbone and highly tunable organic side chains—confers exceptional biocompatibility and adaptability. Through precise synthetic methodologies, PPZs can be engineered to exhibit a wide spectrum of functional properties, including the formation of multifunctional nanostructures tailored for specific therapeutic needs. These attributes enable PPZs to address several critical challenges associated with conventional drug delivery systems, such as poor pharmacokinetics and pharmacodynamics. By modulating solubility profiles, enhancing drug stability, enabling targeted delivery, and supporting controlled release, PPZs offer a robust platform for improving therapeutic efficacy and patient outcomes. This review explores the fundamental chemistry, biopharmaceutical characteristics, and biomedical applications of PPZs, particularly emphasizing their role in zero-dimensional nanotherapeutic systems, including various nanoparticle formulations. PPZ-based nanotherapeutics are further examined based on their drug-loading mechanisms, which include electrostatic complexation in polyelectrolytic systems, self-assembly in amphiphilic constructs, and covalent conjugation with active pharmaceutical agents. Together, these strategies underscore the potential of PPZs as a next-generation material for advanced drug delivery platforms. Full article
(This article belongs to the Special Issue Nanomaterials for Drug Targeting and Drug Delivery (2nd Edition))
Show Figures

Graphical abstract

13 pages, 1296 KB  
Article
Impact of Autoclaving on the Dimensional Stability of 3D-Printed Surgical Guides for Aesthetic Crown Lengthening
by Albert González-Barnadas, Anna Ribas-Garcia, Adrià Jorba-García, Rui Figueiredo, Eduard Valmaseda-Castellón and Octavi Camps-Font
J. Funct. Biomater. 2025, 16(8), 284; https://doi.org/10.3390/jfb16080284 - 2 Aug 2025
Viewed by 869
Abstract
The aim of this study was to evaluate the impact of autoclaving on the dimensional stability of surgical guides (SGs) for aesthetic crown lengthening (ACL) using different resins/printing methods. Fifty SGs for ACL were printed using five different resin/printer combinations (FL, SR, ND, [...] Read more.
The aim of this study was to evaluate the impact of autoclaving on the dimensional stability of surgical guides (SGs) for aesthetic crown lengthening (ACL) using different resins/printing methods. Fifty SGs for ACL were printed using five different resin/printer combinations (FL, SR, ND, KS and VC). All the SGs were scanned before (T0) and after (T1) sterilization. Autoclaving was conducted at 134 °C during 4 min. The STL files of each SG at T0 and T1 were compared with the original design (TR). Dimensional stability was measured using trueness and precision. Deviations from TR to T1 were calculated in the three space axes and by measuring the area between three reference landmarks. At T0, the FL group showed the best trueness and precision, while the SR group performed significantly worse than the other groups. At T1, all the groups except VC exhibited significant dimensional alterations compared with T0. Also, VC showed the best trueness and precision values. All the groups had a significant deviation in at least one space axis, while only the SR group exhibited significant variations from T1 to TR in the area between the reference landmarks. Most of the evaluated resin/3D printer combinations suffered significant dimensional alterations after autoclaving. Full article
(This article belongs to the Special Issue Biomaterials in Dentistry: Current Status and Advances)
Show Figures

Figure 1

13 pages, 1247 KB  
Article
Controlling Sodium Titanate Crystal Size to Improve Wettability and Early Osseointegration of Titanium Implants: Insights from an Animal Model
by Saray Fernández-Hernández, Javier Gil, Marta Sanjuán-Álvarez, Ignacio Sanz, Mariano Herrero-Climent and Aritza Brizuela-Velasco
J. Funct. Biomater. 2025, 16(8), 283; https://doi.org/10.3390/jfb16080283 - 1 Aug 2025
Viewed by 761
Abstract
The thermo-chemical treatment of dental implants leads to the formation of sodium titanate crystals on their surface. When in contact with blood, these crystals dissolve and trigger an ionic exchange cascade, resulting in the formation of a calcium apatite layer. This study, carried [...] Read more.
The thermo-chemical treatment of dental implants leads to the formation of sodium titanate crystals on their surface. When in contact with blood, these crystals dissolve and trigger an ionic exchange cascade, resulting in the formation of a calcium apatite layer. This study, carried out both in vitro and in an animal model, aimed to determine whether the cooling rate of the treatment affects the size of the deposited crystals, and whether this in turn influences wettability and early bone-to-implant contact (BIC). A total of 50 dental implants and 50 titanium discs were treated using four different cooling rates, along with a control group. Crystal size was analyzed on implant surfaces using scanning electron microscopy, and wettability was assessed on titanium discs using a goniometer. Finally, the implants were placed in the tibiae of 13 rabbits, and histological analysis was performed after three weeks to compare BIC among groups. Results suggest that a cooling rate of 75 °C/h produces smaller sodium titanate crystals, which are associated with significantly improved surface wettability and a higher percentage of bone-to-implant contact after 3 weeks of healing (p < 0.05). Full article
(This article belongs to the Special Issue Biomaterials for Dental Reparative and Regenerative Therapies)
Show Figures

Figure 1

15 pages, 2614 KB  
Article
Impact of Pre- and Post-Dilatation on Long-Term Outcomes After Self-Expanding and Balloon-Expandable TAVI
by Alexandru Stan, Ayman Elkahlout, Marius Mihai Harpa, Marian Pop, Mihaly Veres, Antonela Delia Stan, Paul-Adrian Călburean, Anda-Cristina Scurtu, Klara Brînzaniuc and Horatiu Suciu
J. Funct. Biomater. 2025, 16(8), 282; https://doi.org/10.3390/jfb16080282 - 1 Aug 2025
Viewed by 636
Abstract
The main objective of this study was to compare the long-term outcomes of transcatheter aortic valve implantation (TAVI) in patients with severe aortic stenosis, focusing on differences between self-expanding valve (SEV) versus balloon-expandable valve (BEV) prostheses and the influence of balloon pre- and [...] Read more.
The main objective of this study was to compare the long-term outcomes of transcatheter aortic valve implantation (TAVI) in patients with severe aortic stenosis, focusing on differences between self-expanding valve (SEV) versus balloon-expandable valve (BEV) prostheses and the influence of balloon pre- and post-dilatation on clinical results. The secondary objective was to report the long-term outcomes after TAVI in Romania. All patients who underwent a TAVI procedure for severe AS between November 2016 and May 2025 at a tertiary center in Romania were included in the present study. A total of 702 patients were included, of which 455 (64.8%) and 247 (35.1%) patients received a BEV (Sapien3 platform) and a SEV (Accurate, Boston, Portico, Evolut, or Navitor platforms), respectively. Pre-dilatation was performed in 514 (73.2%) cases, and post-dilatation was performed in 189 (26.9%) cases. There were 10.5 and 7.8 all-cause and cardiovascular-cause mortality event rates per 100 patient years, respectively. In regard to the univariable Cox regression, a BEV has significantly lower mortality than an SEV (HR = 0.67[0.46–0.96], p = 0.03), pre-dilatation did not influence mortality (HR = 0.71[0.48–1.04], p = 0.08), and post-dilatation significantly increased mortality (HR = 1.51[1.05–2.19], p = 0.03). In regard to the multivariable Cox regression, survival was not influenced by pre-dilatation or the valve platform, while post-dilatation had a trend towards higher mortality (p = 0.06). The BEV and SEV have similar survival rates, with no heterogeneity among a large number of TAVI platforms. While pre-dilatation had no impact on mortality, post-dilatation was associated with a trend towards increased mortality (p = 0.06), which was independent of the transprosthetic gradient. Survival after TAVI in Romania is comparable to that reported in Western registries. Full article
(This article belongs to the Special Issue Emerging Biomaterials and Technologies for Cardiovascular Disease)
Show Figures

Figure 1

15 pages, 3215 KB  
Article
The Effect of Collagen Membrane Fixation with Pins on Buccal Bone Regeneration in Immediate Dental Implant Sites: A Preclinical Study in Dogs
by Yuma Hazama, Takahisa Iida, Niklaus P. Lang, Fernando M. Muñoz Guzon, Giovanna Iezzi, Daniele Botticelli and Shunsuke Baba
J. Funct. Biomater. 2025, 16(8), 281; https://doi.org/10.3390/jfb16080281 - 31 Jul 2025
Viewed by 753
Abstract
Background: The role of collagen membrane fixation during guided bone regeneration (GBR) remains debatable, particularly in post-extraction sockets with buccal defects and concomitant immediate implant placement. This study evaluated whether or not fixation with titanium pins improved regenerative outcomes. Methods: Six adult Beagle [...] Read more.
Background: The role of collagen membrane fixation during guided bone regeneration (GBR) remains debatable, particularly in post-extraction sockets with buccal defects and concomitant immediate implant placement. This study evaluated whether or not fixation with titanium pins improved regenerative outcomes. Methods: Six adult Beagle dogs received bilateral extractions of the fourth mandibular premolars. An implant was immediately placed in both the distal alveoli, and standardized buccal bone defects (5 mm height, 3–2 mm width) were prepared. All defects were filled with a slowly resorbing equine xenograft and covered by a resorbable pericardium membrane. At the test sites, the membrane was apically fixed with pins, while no fixation was applied to the control sites. After 3 months of healing, histomorphometric analyses were performed. Results: The vertical bone gain of the buccal crest was 3.2 mm in the test sites (pin group) and 2.9 mm in the control sites (no-pin) (p > 0.754). No significant difference was found in terms of bone-to-implant contact (BIC). However, residual graft particles were located significantly more coronally in the pin group compared to the no-pin group (p = 0.021). Morphometric analyses revealed similar new bone formation within the groups, but with higher amounts of residual xenograft and soft tissue in the pin group. Conclusions: Membrane fixation did not significantly enhance vertical bone gain, and although the slightly higher regeneration in the pin group (3.2 mm vs. 2.9 mm) may hold clinical relevance in esthetically sensitive areas and osseointegration, it appeared to limit apical migration of the grafting material. Full article
(This article belongs to the Special Issue Biomaterials in Dentistry: Current Status and Advances)
Show Figures

Figure 1

36 pages, 17913 KB  
Article
Manufacturing, Microstructure, and Mechanics of 316L SS Biomaterials by Laser Powder Bed Fusion
by Zhizhou Zhang, Paul Mativenga and Shi-Qing Huang
J. Funct. Biomater. 2025, 16(8), 280; https://doi.org/10.3390/jfb16080280 - 31 Jul 2025
Viewed by 760
Abstract
Laser powder bed fusion (LPBF) is an advanced additive manufacturing technology that is gaining increasing interest for biomedical implants because it can produce dense, patient-specific metallic components with controlled microstructures. This study investigated the LPBF fabrication of 316L stainless steel, which is widely [...] Read more.
Laser powder bed fusion (LPBF) is an advanced additive manufacturing technology that is gaining increasing interest for biomedical implants because it can produce dense, patient-specific metallic components with controlled microstructures. This study investigated the LPBF fabrication of 316L stainless steel, which is widely used in orthopedic and dental implants, and examined the effects of laser power and scanning speed on the microstructure and mechanical properties relevant to biomedical applications. The study achieved 99.97% density and refined columnar and cellular austenitic grains, with optimized molten pool morphology. The optimal LPBF parameters, 190 W laser power and 700 mm/s, produced a tensile strength of 762.83 MPa and hardness of 253.07 HV0.2, which exceeded the values of conventional cast 316L stainless steel. These results demonstrated the potential of optimized LPBF 316L stainless steel for functional biomedical applications that require high mechanical integrity and biocompatibility. Full article
(This article belongs to the Special Issue Bio-Additive Manufacturing in Materials Science)
Show Figures

Figure 1

16 pages, 1867 KB  
Review
Histological Processing of Scaffolds: Challenges and Solutions
by Tomas Ragauskas, Ilona Uzieliene and Eiva Bernotiene
J. Funct. Biomater. 2025, 16(8), 279; https://doi.org/10.3390/jfb16080279 - 31 Jul 2025
Viewed by 786
Abstract
Scaffolds are widely used in bioengineering, both as 3D native tissue-mimicking models for investigating mechanisms under physiological and pathological conditions and also as implantable agents in regenerative medicine. Histological approaches, mainly formalin-fixed paraffin-embedded (FFPE) and frozen sample sectioning, are commonly applied to evaluate [...] Read more.
Scaffolds are widely used in bioengineering, both as 3D native tissue-mimicking models for investigating mechanisms under physiological and pathological conditions and also as implantable agents in regenerative medicine. Histological approaches, mainly formalin-fixed paraffin-embedded (FFPE) and frozen sample sectioning, are commonly applied to evaluate cell distribution and tissue-like properties of scaffolds. However, standard histological processing is not always compatible with the materials that scaffolds are made of. Thus, some adaptations to protocols are required to obtain intact sections. In this review we discuss challenges related to the histological processing of scaffolds and solutions to overcome them. We sequentially cover processing steps of the three main histological techniques for sample preparation—cryomicrotomy, FFPE samples microtomy and vibrating microtomy. Furthermore, we highlight the critical considerations in choosing the most appropriate method based on scaffold composition, mechanical properties and the specific research question. The goal of this review is to provide practical guidance on choosing reliable histological evaluation of complex scaffold-based systems in tissue engineering research. Full article
Show Figures

Figure 1

29 pages, 2309 KB  
Systematic Review
The Influence of Printing Orientation on the Properties of 3D-Printed Polymeric Provisional Dental Restorations: A Systematic Review and Meta-Analysis
by Firas K. Alqarawi
J. Funct. Biomater. 2025, 16(8), 278; https://doi.org/10.3390/jfb16080278 - 31 Jul 2025
Viewed by 831
Abstract
Three-dimensional printing is commonly used to fabricate provisional dental restorations. Studies have reported that changes in printing orientation affect the physical and mechanical properties of 3D-printed polymeric provisional restorations; however the findings have been inconsistent. Therefore, this systematic review and meta-analysis aims to [...] Read more.
Three-dimensional printing is commonly used to fabricate provisional dental restorations. Studies have reported that changes in printing orientation affect the physical and mechanical properties of 3D-printed polymeric provisional restorations; however the findings have been inconsistent. Therefore, this systematic review and meta-analysis aims to analyze the articles evaluating the influence of printing orientation on the physical and mechanical properties of 3D-printed polymeric provisional dental restorations. Recommendations provided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed to structure and compose the review. The PICO (Participant, Intervention, Comparison, Outcome) question ordered was: ‘Do 3D-printed provisional dental restorations (P) printed at various orientations (except 0°) (I) exhibit similar physical and mechanical properties (O) when compared to those printed at a 0° orientation (C)?’. An electronic search was conducted on 28 and 29 April 2025, by two independent researchers across four databases (MEDLINE/PubMed, Scopus, Cochrane Library, and Web of Science) to systematically collect relevant articles published up to March 2025. After removing duplicate articles and applying predefined inclusion and exclusion criteria, twenty-one articles were incorporated into this review. Self-designed Performa’s were used to tabulate all relevant information. For the quality analysis, the modified CONSORT scale was utilized. The quantitative analysis was performed on only fifteen out of twenty-one articles. It can be concluded that the printing orientation affects some of the tested properties, which include fracture strength (significantly higher for specimens printed at 0° when compared to 90°), wear resistance (significantly higher for specimens printed at 90° when compared to 0°), microhardness (significantly higher for specimens printed at 90°and 45° when compared to 0°), color stability (high at 0°), and surface roughness (significantly higher for specimens printed at 45° and 90° when compared to 0°). There were varied outcomes in terms of flexural strength and elastic modulus. Full article
(This article belongs to the Special Issue Advances in Restorative Dentistry Materials)
Show Figures

Figure 1

15 pages, 2263 KB  
Article
Comparison of the Trueness of Complete Dentures Fabricated Using Liquid Crystal Display 3D Printing According to Build Angle and Natural Light Exposure
by Haeri Kim, KeunBaDa Son, So-Yeun Kim and Kyu-Bok Lee
J. Funct. Biomater. 2025, 16(8), 277; https://doi.org/10.3390/jfb16080277 - 30 Jul 2025
Viewed by 721
Abstract
The dimensional accuracy of the intaglio surface of complete dentures fabricated using liquid crystal display (LCD) three-dimensional (3D) printing might be influenced by the build angle and post-processing storage conditions. This study evaluated the effect of build angle and natural light exposure duration [...] Read more.
The dimensional accuracy of the intaglio surface of complete dentures fabricated using liquid crystal display (LCD) three-dimensional (3D) printing might be influenced by the build angle and post-processing storage conditions. This study evaluated the effect of build angle and natural light exposure duration on the intaglio surface trueness of maxillary complete denture bases. Standardized denture base designs (2 mm uniform thickness) were fabricated using an LCD 3D printer (Lilivis Print; Huvitz, Seoul, Republic of Korea) at build angles of 0°, 45°, and 90° (n = 7 per group). All specimens were printed using the same photopolymer resin (Tera Harz Denture; Graphy, Seoul, Republic of Korea) and identical printing parameters, followed by ultrasonic cleaning and ultraviolet post-curing. Specimens were stored under controlled light-emitting diode lighting and exposed to natural light (400–800 lux) for 0, 14, or 30 days. The intaglio surfaces were scanned and superimposed on the original design data, following the International Organization for Standardization 12836. Quantitative assessment included root mean square deviation, mean deviation, and tolerance percentage. Statistical analyses were performed using one-way analysis of variance and paired t-tests (α = 0.05). Build angle and light exposure duration significantly affected surface trueness (p < 0.05). The 90° build angle group exhibited the highest accuracy and dimensional stability, while the 0° group showed the greatest deviations (p < 0.05). These findings underscore the importance of optimizing build orientation and storage conditions in denture 3D printing. Full article
(This article belongs to the Special Issue Bio-Additive Manufacturing in Materials Science)
Show Figures

Figure 1

14 pages, 1487 KB  
Article
On the Interplay Between Roughness and Elastic Modulus at the Nanoscale: A Methodology Study with Bone as Model Material
by Alessandro Gambardella, Gregorio Marchiori, Melania Maglio, Marco Boi, Matteo Montesissa, Jessika Bertacchini, Stefano Biressi, Nicola Baldini, Gianluca Giavaresi and Marco Bontempi
J. Funct. Biomater. 2025, 16(8), 276; https://doi.org/10.3390/jfb16080276 - 29 Jul 2025
Viewed by 627
Abstract
Atomic force microscopy (AFM)-based nanoindentation enables investigation of the mechanical response of biological materials at a subcellular scale. However, quantitative estimates of mechanical parameters such as the elastic modulus (E) remain unreliable because the influence of sample roughness on E measurements at the [...] Read more.
Atomic force microscopy (AFM)-based nanoindentation enables investigation of the mechanical response of biological materials at a subcellular scale. However, quantitative estimates of mechanical parameters such as the elastic modulus (E) remain unreliable because the influence of sample roughness on E measurements at the nanoscale is still poorly understood. This study re-examines the interpretation of roughness from a more rigorous perspective and validates an experimental methodology to extract roughness at each nanoindentation site—i.e., the local roughness γs—with which the corresponding E value can be accurately correlated. Cortical regions of a murine tibia cross-section, characterized by complex nanoscale morphology, were selected as a testbed. Eighty non-overlapping nanoindentations were performed using two different AFM tips, maintaining a maximum penetration depth of 10 nm for each measurement. Our results show a slight decreasing trend of E versus γs (Spearman’s rank correlation coefficient ρ = −0.27187). A total of 90% of the E values are reliable when γs < 10 nm (coefficient of determination R2 > 0.90), although low γs values are associated with significant dispersion around E (γs = 0) = E0 = 1.18 GPa, with variations exceeding 50%. These findings are consistent with a qualitative tip-to-sample contact model that accounts for the pronounced roughness heterogeneity typical of bone topography at the nanoscale. Full article
(This article belongs to the Section Biomaterials and Devices for Healthcare Applications)
Show Figures

Figure 1

13 pages, 2153 KB  
Article
Interaction of MG63 Human Osteosarcoma-Derived Cells on S53P4 Bioactive Glass: An In Vitro Study
by Valentin Schmidt, Beáta Polgár, Vanda Ágnes Nemes, Tímea Dergez, László Janovák, Péter Maróti, Szilárd Rendeki, Kinga Turzó and Balázs Patczai
J. Funct. Biomater. 2025, 16(8), 275; https://doi.org/10.3390/jfb16080275 - 29 Jul 2025
Viewed by 731
Abstract
Bioactive glass materials have been used for decades in orthopedic surgery, traumatology, and oral and maxillofacial surgery to repair bone defects. This study aimed to evaluate in vitro the survival and proliferation of MG63 human osteosarcoma-derived cells on S53P4 bioactive glass (BonAlive® [...] Read more.
Bioactive glass materials have been used for decades in orthopedic surgery, traumatology, and oral and maxillofacial surgery to repair bone defects. This study aimed to evaluate in vitro the survival and proliferation of MG63 human osteosarcoma-derived cells on S53P4 bioactive glass (BonAlive® granules). Microscopic visualization was performed to directly observe the interactions between the cells and the material. Osteoblast-like cells were examined on non-adherent test plates, on tissue culture (TC)-treated plates and on the surface of the bioglass to assess the differences. Cell survival and proliferation were monitored using a CCK-8 optical density assay. Comparing the mean OD of MG63 cells in MEM on TC-treated plates with cells on BG, we detected a significant difference (p < 0.05), over each time of observation. The sustained cell proliferation confirmed the non-cytotoxic property of the bioglass, as the cell number increased continuously at 48, 72, 96, and 168 h and even did not plateau after 168 h. Since the properties of bioglasses can vary significantly depending on their composition and environment, a thorough characterization of their biocompatibility is crucial to ensure their effective and appropriate application—for example, during hip and knee prosthesis insertion. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

Previous Issue
Back to TopTop