Mesoporous Nanomaterials for Bone Tissue Engineering

A special issue of Journal of Functional Biomaterials (ISSN 2079-4983). This special issue belongs to the section "Bone Biomaterials".

Deadline for manuscript submissions: closed (31 March 2025) | Viewed by 6554

Special Issue Editors


E-Mail Website
Guest Editor
Department of Orthopaedic Surgery, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore 119288, Singapore
Interests: nanoparticles; tissue engineering; biomaterials; regenerative medicine; orthopaedic surgery

E-Mail Website
Guest Editor
School of Biomedical Engineering, Hainan University, Haikou 570228, China
Interests: flexible electronics; biosensing; bioprinting; organoids; in vitro neuronal networks
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Mesoporous nanomaterials have emerged as promising candidates for bone tissue engineering due to their unique properties, such as a high surface area, tunable pore size, and biocompatibility. Recent studies have focused on improving the properties of these materials for better tissue regeneration.

One issue that has been addressed is the need for better control over the pore size of the materials. Researchers have explored different synthesis methods, such as sol–gel and template methods, that are used to achieve a more uniform pore size distribution.

Another challenge is the need for these materials to have appropriate mechanical properties to support bone regeneration. To address this, researchers have incorporated various reinforcement materials, such as graphene, into mesoporous nanomaterials in order to enhance their mechanical strength.

Furthermore, the use of mesoporous nanomaterials for drug delivery has also been explored. Researchers have incorporated drugs such as antibiotics and growth factors into the pores of these materials to provide localized and sustained release for better tissue regeneration.

The aim of this Special Issue is to present various aspects of mesoporous nanomaterials, from physicochemical evaluations to biological in vitro and in vivo assessments to even clinical uses for improving tissue regeneration.

Dr. Chee Hoe Kong
Prof. Dr. Dong Wang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Functional Biomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bone tissue engineering
  • mesoporous nanomaterials
  • functionalised nanomaterials
  • drug delivery vehicles
  • biocompatibility
  • in vitro testing
  • in vivo testing
  • translational medicine

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 7192 KiB  
Article
Osteoblastic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells on P3HT Thin Polymer Film
by Paola Campione, Maria Giovanna Rizzo, Luana Vittoria Bauso, Ileana Ielo, Grazia Maria Lucia Messina and Giovanna Calabrese
J. Funct. Biomater. 2025, 16(1), 10; https://doi.org/10.3390/jfb16010010 - 2 Jan 2025
Viewed by 3821
Abstract
Bone defects restoration has always been an arduous challenge in the orthopedic field due to the limitations of conventional grafts. Bone tissue engineering offers an alternative approach by using biomimetic materials, stem cells, and growth factors that are able to improve the regeneration [...] Read more.
Bone defects restoration has always been an arduous challenge in the orthopedic field due to the limitations of conventional grafts. Bone tissue engineering offers an alternative approach by using biomimetic materials, stem cells, and growth factors that are able to improve the regeneration of bone tissue. Different biomaterials have attracted great interest in BTE applications, including the poly(3-hexylthiofene) (P3HT) conductive polymer, whose primary advantage is its capability to provide a native extracellular matrix-like environment. Based on this evidence, in this study, we evaluated the biological response of human adipose-derived mesenchymal stem cells cultured on P3HT thin polymer film for 14 days. Our results suggest that P3HT represents a good substrate to induce osteogenic differentiation of osteoprogenitor cells, even in the absence of specific inductive growth factors, thus representing a promising strategy for bone regenerative medicine. Therefore, the system provided may offer an innovative platform for next-generation biocompatible materials for regenerative medicine. Full article
(This article belongs to the Special Issue Mesoporous Nanomaterials for Bone Tissue Engineering)
Show Figures

Figure 1

12 pages, 2475 KiB  
Article
Calcium Phosphate Loaded with Curcumin Prodrug and Selenium Is Bifunctional in Osteosarcoma Treatments
by Mingjie Wang, Chunfeng Xu, Dong Xu, Chang Du and Yuelian Liu
J. Funct. Biomater. 2024, 15(11), 327; https://doi.org/10.3390/jfb15110327 - 3 Nov 2024
Viewed by 1518
Abstract
Although SeO32− ions have been loaded onto calcium phosphate to treat a wide range of cancers, the quest to promote bone tissue regeneration is still ongoing. Curcumin (cur), an herbal extraction, can selectively inhibit tumor cells and promote osteogenesis. In this [...] Read more.
Although SeO32− ions have been loaded onto calcium phosphate to treat a wide range of cancers, the quest to promote bone tissue regeneration is still ongoing. Curcumin (cur), an herbal extraction, can selectively inhibit tumor cells and promote osteogenesis. In this study, SeO32− ions were co-precipitated in biomimetic calcium phosphate (Se@BioCaP), and modified curcumin prodrug (mcur) was adsorbed on diverse Se@BioCaP surfaces (mcur-Se@BioCaP-Ads). Co-precipitation yielded Se@BioCaP with a significantly higher Se content and exhibited a tailorable micro-/nanostructure. The favorable pH-responsive release of Se and mcur from mcur-Se@BioCaP-Ads showed a synergistic anticancer efficiency in OS cells, enhancing OS cell inhibition more than a single dose of them, which might be associated with ROS production in OS cells. In addition, increased alkaline phosphatase activity and calcium nodule formation in MC3T3-E1 pre-osteoblasts were also verified. These results suggest this novel mcur-Se@BioCaP-Ads has promising and widespread potential in OS treatments. Full article
(This article belongs to the Special Issue Mesoporous Nanomaterials for Bone Tissue Engineering)
Show Figures

Graphical abstract

Review

Jump to: Research

21 pages, 5152 KiB  
Review
Therapeutic Potential of Nano-Sustained-Release Factors for Bone Scaffolds
by Haoran Jiang, Meng Zhang, Yang Qu, Bohan Xing, Bojiang Wang, Yanqun Liu and Peixun Zhang
J. Funct. Biomater. 2025, 16(4), 136; https://doi.org/10.3390/jfb16040136 - 9 Apr 2025
Viewed by 442
Abstract
Research on nano-sustained-release factors for bone tissue scaffolds has significantly promoted the precision and efficiency of bone-defect repair by integrating biomaterials science, nanotechnology, and regenerative medicine. Current research focuses on developing multifunctional scaffold materials and intelligent controlled-release systems to optimize the spatiotemporal release [...] Read more.
Research on nano-sustained-release factors for bone tissue scaffolds has significantly promoted the precision and efficiency of bone-defect repair by integrating biomaterials science, nanotechnology, and regenerative medicine. Current research focuses on developing multifunctional scaffold materials and intelligent controlled-release systems to optimize the spatiotemporal release characteristics of growth factors, drugs, and genes. Nano slow-release bone scaffolds integrate nano slow-release factors, which are loaded with growth factors, drugs, genes, etc., with bone scaffolds, which can significantly improve the efficiency of bone repair. In addition, these drug-loading systems have also been extended to the fields of anti-infection and anti-tumor. However, the problem of heterotopic ossification caused by high doses has led to a shift in research towards a low-dose multi-factor synergistic strategy. Multiple Phase II clinical trials are currently ongoing, evaluating the efficacy and safety of nano-hydroxyapatite scaffolds. Despite significant progress, this field still faces a series of challenges: the immunity risks of the long-term retention of nanomaterials, the precise matching of multi-factor release kinetics, and the limitations of the large-scale production of personalized scaffolds. Future development directions in this area include the development of responsive sustained-release systems, biomimetic sequential release design, the more precise regeneration of injury sites through a combination of gene-editing technology and self-assembled nanomaterials, and precise drug loading and sustained release through microfluidic and bioprinting technologies to reduce the manufacturing cost of bone scaffolds. The progress of these bone scaffolds has gradually changed bone repair from morphology-matched filling regeneration to functional recovery, making the clinical transformation of bone scaffolds safer and more universal. Full article
(This article belongs to the Special Issue Mesoporous Nanomaterials for Bone Tissue Engineering)
Show Figures

Graphical abstract

Back to TopTop