Feature Papers in Biomaterials for Tissue Engineering and Regenerative Medicine
Share This Topical Collection
Editor
Prof. Dr. Daniel X.B. Chen
Prof. Dr. Daniel X.B. Chen
E-Mail
Website
Collection Editor
Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada
Interests: biofabrication; tissue engineering scaffolds; mechanical properties; 3D printing
Special Issues, Collections and Topics in MDPI journals
Topical Collection Information
Dear Colleagues,
This Topical Collection focuses on biomaterial sciences, methods/technologies to engineer scaffolds/constructs from biomaterial, and biomaterial-based tissue regeneration and visualization. Topics of interest include, but are not limited to, biomaterial physical, mechanical, and biological sciences; biomaterial innovation; biomaterial interactions with host environments; biomaterial printing and bioprinting; biomaterial-based tissue engineering, modeling, and cancer therapies; and advanced imaging methods/technologies to visualize and track biomaterial or scaffold-treated tissue regeneration in animal models and human patients.
This Topical Collection will comprise important contributions by scholars in the field of biomaterials for tissue engineering and regenerative medicine, resulting in a comprehensive array of the latest findings in this field; thus, we encourage submissions of high-quality research papers, communications, or review articles.
Prof. Dr. Daniel X.B. Chen
Collection Editor
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Functional Biomaterials is an international peer-reviewed open access monthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript.
The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs).
Submitted papers should be well formatted and use good English. Authors may use MDPI's
English editing service prior to publication or during author revisions.
Keywords
- biomaterials
- tissue engineering
- regenerative medicine
- bioink
- bioprinting
- advanced imaging
Published Papers (2 papers)
2025
Open AccessArticle
Improving the Biocompatibility of Plant-Derived Scaffolds for Tissue Engineering Using Heat Treatment
by
Arvind Ramsamooj, Nicole Gorbenko, Cristian Olivares, Sashane John and Nick Merna
Abstract
Small-diameter vascular grafts often fail due to thrombosis and compliance mismatch. Decellularized plant scaffolds are a biocompatible, sustainable alternative. Leatherleaf viburnum leaves provide natural architecture and mechanical integrity suitable for tissue-engineered vessels. However, the persistence of immunogenic plant biomolecules and limited degradability remain
[...] Read more.
Small-diameter vascular grafts often fail due to thrombosis and compliance mismatch. Decellularized plant scaffolds are a biocompatible, sustainable alternative. Leatherleaf viburnum leaves provide natural architecture and mechanical integrity suitable for tissue-engineered vessels. However, the persistence of immunogenic plant biomolecules and limited degradability remain barriers to clinical use. This study tested whether mild heat treatment improves scaffold biocompatibility without compromising mechanical performance. Decellularized leatherleaf viburnum scaffolds were treated at 30–40 °C in 5% NaOH for 15–60 min and then evaluated via tensile testing, burst pressure analysis, scanning electron microscopy, histology, and in vitro assays with white blood cells and endothelial cells. Scaffold properties were compared to those of untreated controls. Heat treatment did not significantly affect scaffold thickness but decreased fiber area fraction and diameter across all anatomical layers. Scaffolds treated at 30–35 °C for ≤30 min retained >90% of tensile strength and achieved burst pressures ≥820 mmHg, exceeding physiological arterial pressures. Heat treatment reduced surface fractal dimension while increasing entropy and lacunarity, producing a smoother but more heterogeneous microarchitecture. White blood cell viability increased up to 2.5-fold and endothelial cell seeding efficiency improved with treatment duration, with 60 min producing near-confluent monolayers. Mild alkaline heat treatment therefore improved immune compatibility and endothelialization while preserving mechanical integrity, offering a simple, scalable modification to advance plant-derived scaffolds for grafting.
Full article
►▼
Show Figures
Open AccessEditor’s ChoiceArticle
Effect of Hyaluronan in Collagen Biomaterials on Human Macrophages and Fibroblasts In Vitro
by
Nancy Avila-Martinez, Maren Pfirrmann, Madalena L. N. P. Gomes, Roman Krymchenko, Elly M. M. Versteeg, Marcel Vlig, Martijn Verdoes, Toin H. van Kuppevelt, Bouke K. H. L. Boekema and Willeke F. Daamen
Viewed by 1786
Abstract
In adults, scars are formed after deep skin wound injuries like burns. However, the fetal microenvironment allows for scarless skin regeneration. One component that is abundantly present in the fetal extracellular matrix is hyaluronan (HA). To study whether biomaterials with HA improve wound
[...] Read more.
In adults, scars are formed after deep skin wound injuries like burns. However, the fetal microenvironment allows for scarless skin regeneration. One component that is abundantly present in the fetal extracellular matrix is hyaluronan (HA). To study whether biomaterials with HA improve wound healing, type I collagen scaffolds with and without HA were prepared and characterized. Their immune effect was tested using macrophages and their phenotypes were analyzed through cell surface markers and cytokine expression after 48 h. Since fibroblasts are the main cellular component in the dermis, adult, fetal and eschar-derived cells were cultured on scaffolds for 14 days and evaluated using histology, gene and protein expression analyses. Biochemical assays demonstrated that HA was successfully incorporated and evenly distributed throughout the scaffolds. Macrophages (M0) cultured on Col I+HA scaffolds exhibited a profile resembling the M2c-like phenotype (CD206
high, CD163
high and IL10
high). HA did not significantly affect gene expression in adult and fetal fibroblasts, but significantly reduced scarring-related genes, such as transforming growth factor beta 1 (TGFB1) and type X collagen alpha 1 chain (COL10A1), in myofibroblast-like eschar cells. These findings highlight the potential of incorporating HA into collagen-based skin substitutes to improve the wound healing response.
Full article
►▼
Show Figures