Controlled Fabrication of pH-Visualised Silk Fibroin–Sericin Dual-Network Hydrogels for Urine Detection in Diapers
Abstract
1. Introduction
2. Results and Discussion
2.1. Construction of Double-Network SF-Seri/RB Hydrogels
2.1.1. Fabrication of a Single-Network SF/RB Hydrogel
2.1.2. Construction and Structure–Property Characterisation of Dual-Network SF-Seri/RB Hydrogels
2.2. Optimisation of SF-Seri/RB Hydrogel Fabrication
2.2.1. Influence of Precursor Solution Parameters on Gel Network Formation and Mechanical Properties
2.2.2. Effect of pH on Pore Morphology and Network Properties of SF-Seri/RB Hydrogels
2.3. Construction and Evaluation of pH-Responsive SF-Seri/RB@Cy Hydrogels
2.3.1. Analysis of Anthocyanin Loading and Colourimetric Response Performance
2.3.2. Regulation of Anthocyanin Loading Conditions on the Colourimetric Response of Hydrogels
2.3.3. Integration of Hydrogel in Diapers and Evaluation of Urine Detection Performance
3. Conclusions
4. Materials and Methods
4.1. Controlled Preparation of Degummed Silk Fibroin Fibres with Varied Sericin Contents
4.2. Construction of SF-Seri/RB Composite Hydrogel
4.3. Fabrication of pH-Responsive SF-Seri/RB@Cy Hydrogels
4.4. Physicochemical Characterisation and Functional Evaluation of the Hydrogels
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Athanasiou, L.V.; Katsoulos, P.D.; Katsogiannou, E.G.; Polizopoulou, Z.S.; Diamantaki, M.; Kamatsos, C.; Christodoulopoulos, G. Comparison between the urine dipstick and the pH-meter to assess urine pH in sheep and dogs. Vet. Clin. Pathol. 2018, 47, 284–288. [Google Scholar] [CrossRef]
- Edinliljegren, A.; Grenabo, L.; Hedelin, H.; Pettersson, S.; Wang, Y.H. The influence of pH and urine composition on urease enzymatic-activity in human urine. Urol. Res. 1992, 20, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Wockenfus, A.M.; Koch, C.D.; Conlon, P.M.; Sorensen, L.D.; Cambern, K.L.; Chihak, A.J.; Zmolek, J.A.; Petersen, A.E.; Burns, B.E.; Lieske, J.C.; et al. Discordance between urine pH measured by dipstick and pH meter: Implications for methotrexate administration protocols. Clin. Biochem. 2013, 46, 152–154. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Wang, L.P.; Yu, Y.L.; Chen, S. A 3D-printed dual-mode gel microspheres kit for multipath smart detection of multiple targets in urine. Talanta 2025, 292, 0039–9140. [Google Scholar] [CrossRef]
- Mansouri, K.; Hanh, T.; Hahn, A. Hydration meets regulation: Insights into bicarbonate mineral water and acid-base balance. Nutrients 2025, 17, 2291. [Google Scholar] [CrossRef]
- Nakajima, K.; Oda, E.; Kanda, E. Latent association between low urine pH and low body weight in an apparently healthy population. Scand. J. Clin. Lab. Investig. 2016, 76, 58–63. [Google Scholar] [CrossRef]
- Patel, N.D.; Ward, R.D.; Calle, J.; Remer, E.M.; Monga, M. Vascular disease and kidney stones: Abdominal aortic calcifications are associated with low urine ph and hypocitraturia. J. Endourol. 2017, 31, 956–961. [Google Scholar] [CrossRef] [PubMed]
- Shimodaira, M.; Okaniwa, S.; Nakayama, T. Association of low urine pH with insulin resistance in non-diabetic Japanese subjects. Exp. Clin. Endocrinol. Diabetes 2018, 126, 357–361. [Google Scholar] [CrossRef]
- He, Y.W.; Xue, X.M.; Terkeltaub, R.; Dalbeth, N.; Merriman, T.R.; Mount, D.B.; Feng, Z.; Li, X.D.; Cui, L.L.; Liu, Z.; et al. Association of acidic urine pH with impaired renal function in primary gout patients: A Chinese population-based cross-sectional study. Arthritis Res. Ther. 2022, 24, 32. [Google Scholar] [CrossRef]
- Yamashita, T.; Shimizu, S.; Koyama, M.; Ohno, K.; Mita, T.; Tobisawa, T.; Takada, A.; Togashi, N.; Ohnuma, Y.; Hasegawa, T.; et al. Screening of primary aldosteronismby clinical features and daily laboratory tests: Combination of urine pH, sex, and serum K+. J. Hypertens. 2018, 36, 326–334. [Google Scholar] [CrossRef]
- Mecitoglu, Z.; Senturk, S.; Kara, C.; Akgul, G.; Uzabaci, E. Prepartum urine pH as a predictor of left displacement of abomasum. J. Anim. Plant Sci. 2016, 26, 320–324. [Google Scholar]
- Menezes, C.J.; Worcester, E.M.; Coe, F.L.; Asplin, J.; Bergsland, K.J.; Ko, B. Mechanisms for falling urine pH with age in stone formers. Am. J. Physiol.-Ren. Physiol. 2019, 317, F65–F72. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, N.; Fukui, M.; Tanaka, M.; Toda, H.; Imai, S.; Yamazaki, M.; Hasegawa, G.; Oda, Y.; Nakamura, N. Low urine pH is a predictor of chronic kidney disease. Kidney Blood Press. Res. 2012, 35, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Counts, J.L.; Helmes, C.T.; Kenneally, D.; Otts, D.R. Modern disposable diaper construction: Innovations in performance help maintain healthy diapered skin. Clin. Pediatr. 2014, 53, 10S–13S. [Google Scholar] [CrossRef]
- O’Connor, R.J.; Sanchez, V.; Wang, Y.; Gibb, R.; Nofziger, D.L.; Bailey, M.; Carr, A.N. Evaluation of the impact of 2 disposable diapers in the “natural” diaper category on diapered skin condition. Clin. Pediatr. 2019, 58, 806–815. [Google Scholar] [CrossRef]
- Renkert, S.R.; Filippone, R. The carework of cloth diapering: Opportunities and challenges for mitigating diaper need. Hum. Organ. 2023, 82, 142–152. [Google Scholar] [CrossRef]
- Chen, B.J.; Zhu, Y.; Yu, R.J.; Feng, Y.X.; Han, Z.P.; Liu, C.; Zhu, P.C.; Lu, L.J.; Mao, Y.C. Recent progress of biomaterial-based hydrogels for wearable and implantable bioelectronics. Gels 2025, 11, 442. [Google Scholar] [CrossRef] [PubMed]
- Elsherif, M.; Hassan, M.U.; Yetisen, A.K.; Butt, H. Hydrogel optical fibers for continuous glucose monitoring. Biosens. Bioelectron. 2019, 137, 25–32. [Google Scholar] [CrossRef]
- Fan, J.P.; Lai, Z.T.; Mao, D.Y.; Xie, C.F.; Chen, H.P.; Peng, H.L. Preparation of a silk fibroin/gelatin composite hydrogel for high-selectively adsorbing bovine hemoglobin. Colloids Surf. A-Physicochem. Eng. Asp. 2023, 660, 130869. [Google Scholar] [CrossRef]
- Fitria, G.; Yoon, J. Mechanically tough dry-free ionic hydrogel microfibers swollen in aqueous electrolyte prepared by microfluidic devices. J. Polym. Sci. 2022, 60, 1758–1766. [Google Scholar] [CrossRef]
- Thiele, J.; Ma, Y.J.; Bruekers, S.M.C.; Ma, S.H.; Huck, W.T.S. 25th anniversary article: Designer hydrogels for cell cultures: A materials selection guide. Adv. Mater. 2014, 26, 125–148. [Google Scholar] [CrossRef]
- Ribeiro, V.P.; Pina, S.; Oliveira, J.M.; Reis, R.L. Silk fibroin-based hydrogels and scaffolds for osteochondral repair and regeneration. In Osteochondral Tissue Engineering: Nanotechnology, Scaffolding-Related Developments and Translation; Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2018; Volume 1058, pp. 305–325. [Google Scholar] [CrossRef]
- Qiu, W.; Liu, X.Y. Recent progress of applying mesoscopic functionalization engineering principles to spin advanced regenerated silk fibroin fibers. Adv. Fiber Mater. 2022, 4, 390–403. [Google Scholar] [CrossRef]
- Tao, H.; Kaplan, D.L.; Omenetto, F.G. Silk materials-a road to sustainable high technology. Adv. Mater. 2012, 24, 2824–2837. [Google Scholar] [CrossRef]
- Katona, G.; Sipos, B.; Csóka, I. Advancements in the field of protein-based hydrogels: Main types, characteristics, and their applications. Gels 2025, 11, 306. [Google Scholar] [CrossRef] [PubMed]
- Phuagkhaopong, S.; Mendes, L.; Müller, K.; Wobus, M.; Bornhäuser, M.; Carswell, H.V.O.; Duarte, I.F.; Seib, F.P. Silk hydrogel substrate stress relaxation primes mesenchymal stem cell behavior in 2D. ACS Appl. Mater. Interfaces 2021, 13, 30420–30433. [Google Scholar] [CrossRef]
- Shen, C.Y.; Zhou, Z.Y.; Li, R.Y.; Yang, S.K.; Zhou, D.Y.; Zhou, F.J.; Geng, Z.; Su, J.C. Silk fibroin-based hydrogels for cartilage organoids in osteoarthritis treatment. Theranostics 2025, 15, 560–584. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, Y.H.; Yao, J.R.; Shao, Z.Z.; Chen, X. Strong collagen hydrogels by oxidized dextran modification. ACS Sustain. Chem. Eng. 2014, 2, 1318–1324. [Google Scholar] [CrossRef]
- Enomoto-Rogers, Y.; Kimura, S.; Iwata, T. Soft, tough, and flexible curdlan hydrogels and organogels fabricated by covalent cross-linking. Polymer 2016, 100, 143–148. [Google Scholar] [CrossRef]
- Hong, Y.; Song, H.Q.; Gong, Y.H.; Mao, Z.W.; Gao, C.Y.; Shen, J.C. Covalently crosslinked chitosan hydrogel:: Properties of in vitro degradation and chondrocyte encapsulation. Acta Biomater. 2007, 3, 23–31. [Google Scholar] [CrossRef]
- Münchow, E.A.; Meereis, C.T.W.; da Rosa, W.L.D.; da Silva, A.F.; Piva, E. Polymerization shrinkage stress of resin-based dental materials: A systematic review and meta-analyses of technique protocol and photo- activation strategies. J. Mech. Behav. Biomed. Mater. 2018, 82, 77–86. [Google Scholar] [CrossRef]
- Chen, W.; Fu, M.; Zhu, X.X.; Liu, Q.Y. Protein recognition by polydopamine-based molecularly imprinted hollow spheres. Biosens. Bioelectron. 2019, 142, 111492. [Google Scholar] [CrossRef]
- Chen, W.; Fu, M.; Zhu, X.X.; Liu, Q.Y. A close-packed imprinted colloidal array for naked-eye detection of glycoproteins under physiological pH. Biosens. Bioelectron. 2019, 142, 111499. [Google Scholar] [CrossRef]
- Kato, Y.; Uchida, K.; Kawakishi, S. Aggregation of collagen exposed to uva in the presence of riboflavin-a plausible role of tyrosine modification. Photochem. Photobiol. 1994, 59, 343–349. [Google Scholar] [CrossRef]
- Fathi-Achachelouei, M.; Keskin, D.; Bat, E.; Vrana, N.E.; Tezcaner, A. Dual growth factor delivery using plga nanoparticles in silk fibroin/PEGDMA hydrogels for articular cartilage tissue engineering. J. Biomed. Mater. Res. Part B-Appl. Biomater. 2020, 108, 2041–2062. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Mandal, B.B.; Bhardwaj, N. 3D bioprinting of photo-crosslinkable silk methacrylate (silma)-polyethylene glycol diacrylate (pegda) bioink for cartilage tissue engineering. J. Biomed. Mater. Res. Part A 2022, 110, 884–898. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, J.L.; Dutta, N.K.; Zannettino, A.; Choudhury, N.R. Engineering dn hydrogels from regenerated silk fibroin and poly(N-vinylcaprolactam). J. Mater. Chem. B 2016, 4, 5519–5533. [Google Scholar] [CrossRef] [PubMed]
- Min, Q.; Tian, D.L.; Zhang, Y.C.; Wang, C.C.; Wan, Y.; Wu, J.L. Strong and elastic chitosan/silk fibroin hydrogels incorporated with growth-factor-loaded microspheres for cartilage tissue engineering. Biomimetics 2022, 7, 41. [Google Scholar] [CrossRef] [PubMed]
- Srisawasdi, T.; Petcharoen, K.; Sirivat, A.; Jamieson, A.M. Electromechanical response of silk fibroin hydrogel and conductive polycarbazole/silk fibroin hydrogel composites as actuator material. Mater. Sci. Eng. C-Mater. Biol. Appl. 2015, 56, 1–8. [Google Scholar] [CrossRef]
- Elliott, W.H.; Bonani, W.; Maniglio, D.; Motta, A.; Tan, W.; Migliaresi, C. Silk hydrogels of tunable structure and viscoelastic properties using different chronological orders of genipin and physical cross-linking. ACS Appl. Mater. Interfaces 2015, 7, 12099–12108. [Google Scholar] [CrossRef]
- Min, Q.; Wang, C.C.; Zhang, Y.C.; Tian, D.L.; Wan, Y.; Wu, J.L. Strong and elastic hydrogels from dual-crosslinked composites composed of glycol chitosan and amino-functionalized bioactive glass nanoparticles. Nanomaterials 2022, 12, 1874. [Google Scholar] [CrossRef]
- Piluso, S.; Gomez, D.F.; Dokter, I.; Texeira, L.M.; Li, Y.; Leijten, J.; van Weeren, R.; Vermonden, T.; Karperien, M.; Malda, J. Rapid and cytocompatible cell-laden silk hydrogel formation via riboflavin-mediated crosslinking. J. Mater. Chem. B 2020, 8, 9566–9575. [Google Scholar] [CrossRef] [PubMed]
- Applegate, M.B.; Partlow, B.P.; Coburn, J.; Marelli, B.; Pirie, C.; Pineda, R.; Kaplan, D.L.; Omenetto, F.G. Photocrosslinking of silk fibroin using riboflavin for ocular prostheses. Adv. Mater. 2016, 28, 2417–2420. [Google Scholar] [CrossRef]
- Lim, K.S.; Galarraga, J.H.; Cui, X.L.; Lindberg, G.C.J.; Burdick, J.A.; Woodfield, T.B.F. Fundamentals and applications of photo-cross-linking in bioprinting. Chem. Rev. 2020, 120, 10637–10669. [Google Scholar] [CrossRef]
- Huang, R.Y.; Hua, J.H.; Ru, M.; Yu, M.; Wang, L.; Huang, Y.; Yan, S.Q.; Zhang, Q.; Xu, W.L. Superb silk hydrogels with high adaptability, bioactivity, and versatility enabled by photo-cross-linking. ACS Nano 2024, 18, 15312–15325. [Google Scholar] [CrossRef]
- Wang, Z.X.; Yin, X.Y.; Zhuang, C.Y.; Wu, K.; Wang, H.R.; Shao, Z.Z.; Tian, B.; Lin, H. Injectable regenerated silk fibroin micro/nanosphere with enhanced permeability and stability for osteoarthritis therapy. Small 2024, 20, 2405049. [Google Scholar] [CrossRef]
- Luo, K.Y.; Yang, Y.H.; Shao, Z.Z. Physically crosslinked biocompatible silk-fibroin-based hydrogels with high mechanical performance. Adv. Funct. Mater. 2016, 26, 872–880. [Google Scholar] [CrossRef]
- Liu, J.; Shi, L.; Deng, Y.; Zou, M.Z.; Cai, B.; Song, Y.; Zheng, W.; Wang, L. Silk sericin-based materials for biomedical applications. Biomaterials 2022, 287, 121638. [Google Scholar] [CrossRef] [PubMed]
- Byram, P.K.; Mukherjee, M.; Rahaman, M.; Bora, H.; Kaushal, M.; Dhara, S.; Chakravorty, N. Bioactive self-assembling silk fibroin-sericin films for skin tissue engineering. Biomed. Mater. 2024, 19, 025009. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Gong, J.J.; Yu, Y.X.; Xu, J.M.; Yin, Y.; Wang, A.Q.; Wang, J.N. Sericin/silk fibroin composite aerogel for hemostatic application. Appl. Mater. Today 2024, 41, 102514. [Google Scholar] [CrossRef]
- Greenfield, N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1, 2876–2890. [Google Scholar] [CrossRef]
- Wolff, J.O.; Grawe, I.; Wirth, M.; Karstedt, A.; Gorb, S.N. Spider’s super-glue: Thread anchors are composite adhesives with synergistic hierarchical organization. Soft Matter 2015, 11, 2394–2403. [Google Scholar] [CrossRef]
- Muindi, M.P.; Lee, J.H.; Kweon, H.; Kasina, M. Effect of extraction ingredients on the conformation and stability of silk sericin (ss). Polymers 2022, 14, 4118. [Google Scholar] [CrossRef]
- Su, D.H.; Yao, M.; Liu, J.; Zhong, Y.M.; Chen, X.; Shao, Z.Z. Enhancing mechanical properties of silk fibroin hydrogel through restricting the growth of β-sheet domains. ACS Appl. Mater. Interfaces 2017, 9, 17490–17499. [Google Scholar] [CrossRef]
- Lou, J.Z.; Mooney, D.J. Chemical strategies to engineer hydrogels for cell culture. Nat. Rev. Chem. 2022, 6, 726–744. [Google Scholar] [CrossRef]
- Zhan, S.Q.; Liu, H.Y.; Bo, Y.Y.; Yuan, R.Z.; Zhang, Y.T.; Zhang, D.X.; Yang, H.M.; Tian, X.; Wang, S.W.; Zhang, M.Y. Preparation and application of high strength, high transparency, and high impact resistance polyurethane elastomers by controlled cross-linking. Polymer 2025, 318, 128001. [Google Scholar] [CrossRef]
- Marquez, L.A.; Dunford, H.B. Kinetics of oxidation of tyrosine and dityrosine by myeloperoxidase compounds i and ii-implications for lipoprotein peroxidation studies. J. Biol. Chem. 1995, 270, 30434–30440. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, J.K.; Hasturk, O.; Falcucci, T.; Kaplan, D.L. Silk chemistry and biomedical material designs. Nat. Rev. Chem. 2023, 7, 302–318. [Google Scholar] [CrossRef]
- Lee, H.; Ahn, D.; Jeon, E.; Fam, D.W.H.; Lee, J.; Lee, W.J. Macroscopic assembly of sericin toward self-healable silk. Biomacromolecules 2021, 22, 4337–4346. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.W.; Sun, H.W.; Peng, Y.W.; Chen, L.G.; Xu, W.; Shao, R. Preparation and characterization of natural silk fibroin hydrogel for protein drug delivery. Molecules 2022, 27, 3418. [Google Scholar] [CrossRef]
- Safitri, E.A.; Mahendra, I.P.; Putra, A.E.; Ghifari, M.A.; Yanti, D.D.; Yusnaidar, Y.; Ariwahjoedi, B.; Mendez, J.A. Multicolor pegda/lcnf hydrogel in the presence of red cabbage anthocyanin extract. Gels 2021, 7, 160. [Google Scholar] [CrossRef] [PubMed]
- Lotfinia, F.; Norouzi, M.R.; Ghasemi-Mobarakeh, L.; Naeimirad, M. Anthocyanin/honey-incorporated alginate hydrogel as a bio-based pH-responsive/antibacterial/antioxidant wound dressing. J. Funct. Biomater. 2023, 14, 72. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.M.; Wang, Y.X.; Yang, X.Y.; Li, L. Edible blueberry anthocyanin-loaded soybean protein nanofibers/sodium alginate hydrogel beads: Freshness detection of high protein drinks. Food Chem. 2025, 475, 143130. [Google Scholar] [CrossRef]
- Tang, Q.S.; Hu, J.W.; Liu, F.; Gui, X.F.; Tu, Y.Y. Preparation of a colorimetric hydrogel indicator reinforced with modified aramid nanofiber employing natural anthocyanin to monitor shrimp freshness. J. Food Sci. 2024, 89, 5461–5472. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.H.; Zhu, J.X.; Tian, S.Q.; Ding, S. A pH-sensitive polyurethane hydrogel incorporated with anthocyanins for wound dressing. MRS Commun. 2022, 12, 850–855. [Google Scholar] [CrossRef]
- Vo, T.V.; Dang, T.H.; Chen, B.H. Synthesis of intelligent pH indicative films from chitosan/poly(vinyl alcohol)/anthocyanin extracted from red cabbage. Polymers 2019, 11, 1088. [Google Scholar] [CrossRef]
- Li, W.J.; Bie, Q.Q.; Zhang, K.H.; Linli, F.Z.; Yang, W.Y.; Chen, X.G.; Chen, P.F.; Qi, Q. Regulated anthocyanin release through novel pH-responsive peptide hydrogels in simulated digestive environment. Food Chem.-X 2024, 23, 101645. [Google Scholar] [CrossRef]
- Mao, S.F.; Ren, Y.M.; Chen, S.G.; Liu, D.H.; Ye, X.Q.; Tian, J.H. Development and characterization of pH responsive sodium alginate hydrogel containing metal-phenolic network for anthocyanin delivery. Carbohydr. Polym. 2023, 320, 0144–8617. [Google Scholar] [CrossRef] [PubMed]
Hydrogel Components | Water Absorption | Anthocyanin Loading Method/Rate | Colour-Change Interval | Reference |
---|---|---|---|---|
PEGDA/LCNF | 12.5% | soak/- | pH 7~14 | [61] |
Alginate | 250% | mix/- | pH 4, 7, 9 | [62] |
SNF/SA | - | encapsulate/87.43% | pH 2~7, ΔE < 8 | [63] |
PVA/SA | - | Dye/- | pH 2~12 | [64] |
PUH-DCT | - | Mix/- | pH 5~9 | [65] |
Chitosan/Poly (vinyl alcohol) | Within 20 min, 40~120% | Mix/- | pH 1~12 | [66] |
Fmoc-FDFD | - | encapsulate/98.27 ± 0.87% | pH 1.5~6.8 | [67] |
SA/PCA/Fe | within an hour <25 g/g | encapsulate/62~82% | pH 2~9 | [68] |
SF-Seri/RB * | Maximum 566% | Maximum 140% | pH 3~12,The minimum ΔE > 5 | - |
Sample Code | Na2CO3 Concentration (wt.%) | De-Gumming Time (min) | Debonding Rate (%) | Seri Content (%) |
---|---|---|---|---|
SF-Seri28 | 0.2 | 0 | 0 | 28 |
SF-Seri14 | 15 | 14 | 14 | |
SF-Seri10 | 30 | 18 | 10 | |
SF-Seri8 | 45 | 20 | 8 | |
SF-Seri3 | 60 | 25 | 3 | |
SF-Seri0 | 0.5 | 60 | 28 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhan, K.; Chen, J.; Dong, Y.; Yan, T.; Zhang, X.; Pan, Z. Controlled Fabrication of pH-Visualised Silk Fibroin–Sericin Dual-Network Hydrogels for Urine Detection in Diapers. Gels 2025, 11, 671. https://doi.org/10.3390/gels11080671
Liu Y, Zhan K, Chen J, Dong Y, Yan T, Zhang X, Pan Z. Controlled Fabrication of pH-Visualised Silk Fibroin–Sericin Dual-Network Hydrogels for Urine Detection in Diapers. Gels. 2025; 11(8):671. https://doi.org/10.3390/gels11080671
Chicago/Turabian StyleLiu, Yuxi, Kejing Zhan, Jiacheng Chen, Yu Dong, Tao Yan, Xin Zhang, and Zhijuan Pan. 2025. "Controlled Fabrication of pH-Visualised Silk Fibroin–Sericin Dual-Network Hydrogels for Urine Detection in Diapers" Gels 11, no. 8: 671. https://doi.org/10.3390/gels11080671
APA StyleLiu, Y., Zhan, K., Chen, J., Dong, Y., Yan, T., Zhang, X., & Pan, Z. (2025). Controlled Fabrication of pH-Visualised Silk Fibroin–Sericin Dual-Network Hydrogels for Urine Detection in Diapers. Gels, 11(8), 671. https://doi.org/10.3390/gels11080671