-
Enhancing Deforestation Detection Through Multi-Domain Adaptation with Uncertainty Estimation
-
A Standardized Framework to Estimate Drought-Induced Vulnerability and Its Temporal Variation in Woody Plants Based on Growth
-
Carbon Flux Modeling with the Calibrated Biome-BGCMuSo in China’s Tropical Forests: Natural and Rubber-Planted Forests
Journal Description
Forests
Forests
is an international, peer-reviewed, open access journal on forestry and forest ecology published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), Ei Compendex, GEOBASE, PubAg, AGRIS, PaperChem, and other databases.
- Journal Rank: JCR - Q2 (Forestry) / CiteScore - Q1 (Forestry)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 17.1 days after submission; acceptance to publication is undertaken in 2.4 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Testimonials: See what our editors and authors say about Forests.
Impact Factor:
2.5 (2024);
5-Year Impact Factor:
2.7 (2024)
Latest Articles
Xylem Functional Anatomy of Pure-Species and Interspecific Hybrid Clones of Eucalyptus Differing in Drought Resistance
Forests 2025, 16(8), 1267; https://doi.org/10.3390/f16081267 (registering DOI) - 2 Aug 2025
Abstract
Climate extremes threaten the resilience of Eucalyptus plantations, yet hybridization with drought-tolerant species may enhance stress tolerance. This study analyzed xylem anatomical and functional drought responses in commercial Eucalyptus grandis (GG) clones and hybrids: E. grandis × camaldulensis (GC), E. grandis × tereticornis
[...] Read more.
Climate extremes threaten the resilience of Eucalyptus plantations, yet hybridization with drought-tolerant species may enhance stress tolerance. This study analyzed xylem anatomical and functional drought responses in commercial Eucalyptus grandis (GG) clones and hybrids: E. grandis × camaldulensis (GC), E. grandis × tereticornis (GT), and E. grandis × urophylla (GU1, GU2). We evaluated vessel traits (water transport), fibers (mechanical support), and wood density (D) in stems and branches. Theoretical stem hydraulic conductivity (kStheo), vessel lumen fraction (F), vessel composition (S), and associations with previous hydraulic and growth data were assessed. While general drought responses occurred, GC had the most distinct xylem profile. This may explain it having the highest performance in different irrigation conditions. Red gum hybrids (GC, GT) maintained kStheo under drought, with stable F and a narrower vessel size, especially in branches. Conversely, GG and GU2 reduced F and S; and stem kStheo declined for a similar F in these clones, indicating vascular reconfiguration aligning the stem with the branch xylem. Almost all clones increased D under drought in any organ, with the highest increase in red gum hybrids. These results reveal diverse anatomical adjustments to drought among clones, partially explaining their growth responses.
Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
►
Show Figures
Open AccessReview
Arbuscular Mycorrhizal Fungi in the Ecological Restoration of Tropical Forests: A Bibliometric Review
by
Yajaira Arévalo, María Eugenia Avila-Salem, Paúl Loján, Narcisa Urgiles-Gómez, Darwin Pucha-Cofrep, Nikolay Aguirre and César Benavidez-Silva
Forests 2025, 16(8), 1266; https://doi.org/10.3390/f16081266 (registering DOI) - 2 Aug 2025
Abstract
Arbuscular mycorrhizal fungi (AMF) play a vital role in the restoration of tropical forests by enhancing soil fertility, facilitating plant establishment, and improving ecosystem resilience. This study presents a comprehensive bibliometric analysis of global scientific output on AMF in the context of ecological
[...] Read more.
Arbuscular mycorrhizal fungi (AMF) play a vital role in the restoration of tropical forests by enhancing soil fertility, facilitating plant establishment, and improving ecosystem resilience. This study presents a comprehensive bibliometric analysis of global scientific output on AMF in the context of ecological restoration, based on 3835 publications indexed in the Web of Science and Scopus databases from 2001 to 2024. An average annual growth rate of approximately 9.45% was observed, with contributions from 10,868 authors across 880 journals. The most prominent journals included Mycorrhiza (3.34%), New Phytologist (3.00%), and Applied Soil Ecology (2.79%). Thematically, dominant research areas encompassed soil–plant interactions, phytoremediation, biodiversity, and microbial ecology. Keyword co-occurrence analysis identified “arbuscular mycorrhizal fungi,” “diversity,” “soil,” and “plant growth” as core topics, while emerging topics such as rhizosphere interactions and responses to abiotic stress showed increasing prominence. Despite the expanding body of literature, key knowledge gaps remain, particularly concerning AMF–plant specificity, long-term restoration outcomes, and integration of microbial community dynamics. These findings offer critical insights into the development of AMF research and underscore its strategic importance in tropical forest restoration, providing a foundation for future studies and informing ecosystem management policies.
Full article
(This article belongs to the Section Forest Biodiversity)
►▼
Show Figures

Figure 1
Open AccessArticle
Effects of Different Phosphorus Addition Levels on Physiological and Growth Traits of Pinus massoniana (Masson Pine) Seedlings
by
Zhenya Yang and Hui Wang
Forests 2025, 16(8), 1265; https://doi.org/10.3390/f16081265 (registering DOI) - 2 Aug 2025
Abstract
Soil phosphorus (P) availability is an important determinant of productivity in Pinus massoniana (Masson pine) forests. The mechanistic bases governing the physiological and growth responses of Masson pine to varying soil P conditions remain insufficiently characterized. This study aims to decipher the adaptive
[...] Read more.
Soil phosphorus (P) availability is an important determinant of productivity in Pinus massoniana (Masson pine) forests. The mechanistic bases governing the physiological and growth responses of Masson pine to varying soil P conditions remain insufficiently characterized. This study aims to decipher the adaptive strategies of Masson pine to different soil P levels, focusing on root morphological–architectural plasticity and the allocation dynamics of nutrient elements and photosynthetic assimilates. One-year-old potted Masson pine seedlings were exposed to four P addition treatments for one year: P0 (0 mg kg−1), P1 (25 mg kg−1), P2 (50 mg·kg−1), and P3 (100 mg kg−1). In July and December, measurements were conducted on seedling organ biomass, root morphological indices [root length (RL), root surface area (RSA), root diameter (RD), specific root length (SRL), and root length ratio (RLR) for each diameter grade], root architectural indices [number of root tips (RTs), fractal dimension (FD), root branching angle (RBA), and root topological index (TI)], as well as the content of nitrogen (N), phosphorus (P), carbon (C), and non-structural carbohydrates (NSCs) in roots, stems, and leaves. Compared with the P0 treatment, P2 and P3 significantly increased root biomass, root–shoot ratio, RL, RSA, RTs, RLR of finer roots (diameter ≤ 0.4 mm), nutrient accumulation ratio in roots, and starch (ST) content in roots, stems and leaves. Meanwhile, they decreased soluble sugar (SS) content, SS/ST ratio, C and N content, and N/P and C/P ratios in stems and leaves, as well as nutrient accumulation ratio in leaves. The P3 treatment significantly reduced RBA and increased FD and SRL. Our results indicated that Masson pine adapts to low P by developing shallower roots with a reduced branching intensity and promoting the conversion of ST to SS. P’s addition effectively alleviates growth limitations imposed by low P, stimulating root growth, branching, and gravitropism. Although a sole P addition promotes short-term growth and P uptake, it triggers a substantial consumption of N, C, and SS, leading to significant decreases in N/P and C/P ratios and exacerbating N’s limitation, which is detrimental to long-term growth. Under high-P conditions, Masson pine strategically prioritizes allocating limited N and SS to roots, facilitating the formation of thinner roots with low C costs.
Full article
(This article belongs to the Special Issue Adaptive Mechanisms of Tree Seedlings to Adapt to Stress—Second Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Effects of Nitrogen and Phosphorus Additions on the Stability of Soil Carbon Fractions in Subtropical Castanopsis sclerophylla Forests
by
Yunze Dai, Xiaoniu Xu and LeVan Cuong
Forests 2025, 16(8), 1264; https://doi.org/10.3390/f16081264 (registering DOI) - 2 Aug 2025
Abstract
Soil organic carbon (SOC) pool plays an extremely important role in regulating the global carbon (C) cycle and climate change. Atmospheric nitrogen (N) and phosphorus (P) deposition caused by human activities has significant impacts on soil C sequestration potential of terrestrial ecosystem. To
[...] Read more.
Soil organic carbon (SOC) pool plays an extremely important role in regulating the global carbon (C) cycle and climate change. Atmospheric nitrogen (N) and phosphorus (P) deposition caused by human activities has significant impacts on soil C sequestration potential of terrestrial ecosystem. To investigate the effects of N and P deposition on soil C sequestration and C-N coupling relationship in broad-leaved evergreen forests, a 6-year field nutrient regulation experiment was implemented in subtropical Castanopsis sclerophylla forests with four different N and P additions: N addition (100 kg N·hm−2·year−1), N + P (100 kg N·hm−2·year−1 + 50 kg P·hm−2·year−1), P addition (50 kg P·hm−2·year−1), and CK (0 kg N·hm−2·year−1). The changes in the C and N contents and stable isotope distributions (δ13C and δ15N) of different soil organic fractions were examined. The results showed that the SOC and total nitrogen (STN) (p > 0.05) increased with N addition, while SOC significantly decreased with P addition (p < 0.05), and N + P treatment has low effect on SOC, STN (p > 0.05). By density grouping, it was found that N addition significantly increased light fraction C and N (LFOC, LFN), significantly decreased the light fraction C to N ratio (LFOC/N) (p < 0.05), and increased heavy fraction C and N (HFOC, HFN) accumulation and light fraction to total organic C ratio (LFOC/SOC, p > 0.05). Contrary to N addition, P addition was detrimental to the accumulation of LFOC, LFN and reduced LFOC/SOC. It was found that different reactive oxidized carbon (ROC) increased under N addition but ROC/SOC did not change, while N + P and P treatments increased ROC/SOC, resulting in a decrease in SOC chemical stability. Stable isotope analysis showed that N addition promoted the accumulation of new soil organic matter, whereas P addition enhanced the transformation and utilization of C and N from pre-existing organic matter. Additionally, N addition indirectly increased LFOC by significantly decreasing pH; significantly contributed to LFOC and ROC by increasing STN accumulation promoted by NO3−-N and NH4+-N; and decreased light fraction δ13C by significantly increasing dissolved organic C (p < 0.05). P addition had directly significant negative effect on LFOC and SOC (p < 0.05). In conclusion, six-year N deposition enhances soil C and N sequestration while the P enrichment reduces the content of soil C, N fractions and stability in Castanopsis sclerophylla forests. The results provide a scientific basis for predicting the soil C sink function of evergreen broad-leaved forest ecosystem under the background of future climate change.
Full article
(This article belongs to the Section Forest Soil)
►▼
Show Figures

Figure 1
Open AccessArticle
Ecological Restoration Reshapes Ecosystem Service Interactions: A 30-Year Study from China’s Southern Red-Soil Critical Zone
by
Gaigai Zhang, Lijun Yang, Jianjun Zhang, Chongjun Tang, Yuanyuan Li and Cong Wang
Forests 2025, 16(8), 1263; https://doi.org/10.3390/f16081263 (registering DOI) - 2 Aug 2025
Abstract
Situated in the southern hilly-mountain belt of China’s “Three Zones and Four Belts Strategy”, Gannan region is a critical ecological shelter belt for the Ganjiang River. Decades of intensive mineral extraction and irrational agricultural development have rendered it into an ecologically fragile area.
[...] Read more.
Situated in the southern hilly-mountain belt of China’s “Three Zones and Four Belts Strategy”, Gannan region is a critical ecological shelter belt for the Ganjiang River. Decades of intensive mineral extraction and irrational agricultural development have rendered it into an ecologically fragile area. Consequently, multiple restoration initiatives have been implemented in the region over recent decades. However, it remains unclear how relationships among ecosystem services have evolved under these interventions and how future ecosystem management should be optimized based on these changes. Thus, in this study, we simulated and assessed the spatiotemporal dynamics of five key ESs in Gannan region from 1990 to 2020. Through integrated correlation, clustering, and redundancy analyses, we quantified ES interactions, tracked the evolution of ecosystem service bundles (ESBs), and identified their socio-ecological drivers. Despite a 31% decline in water yield, ecological restoration initiatives drove substantial improvements in key regulating services: carbon storage increased by 6.9 × 1012 gC while soil conservation rose by 4.8 × 108 t. Concurrently, regional habitat quality surged by 45% in mean scores, and food production increased by 2.1 × 105 t. Critically, synergistic relationships between habitat quality, soil retention, and carbon storage were progressively strengthened, whereas trade-offs between food production and habitat quality intensified. Further analysis revealed that four distinct ESBs—the Agricultural Production Bundle (APB), Urban Development Bundle (UDB), Eco-Agriculture Transition Bundle (ETB), and Ecological Protection Bundle (EPB)—were shaped by slope, forest cover ratio, population density, and GDP. Notably, 38% of the ETB transformed into the EPB, with frequent spatial interactions observed between the APB and UDB. These findings underscore that future ecological restoration and conservation efforts should implement coordinated, multi-service management mechanisms.
Full article
(This article belongs to the Special Issue Forest Restoration for Resilient Landscapes and Enhanced Ecosystem Services)
►▼
Show Figures

Figure 1
Open AccessArticle
Carbon Footprint and Economic Trade-Offs in Traditional Greek Silvopastoral Systems: An Integrated Life Cycle Assessment Approach
by
Emmanouil Tziolas, Andreas Papadopoulos, Vasiliki Lappa, Georgios Bakogiorgos, Stavroula Galanopoulou, María Rosa Mosquera-Losada and Anastasia Pantera
Forests 2025, 16(8), 1262; https://doi.org/10.3390/f16081262 (registering DOI) - 2 Aug 2025
Abstract
Silvopastoral systems, though ecologically beneficial, remain underrepresented in the European Union’s Common Agricultural Policy and are seldom studied in Mediterranean contexts. The current study assesses both the environmental and economic aspects of five typical silvopastoral systems in central Greece, encompassing cattle, sheep, and
[...] Read more.
Silvopastoral systems, though ecologically beneficial, remain underrepresented in the European Union’s Common Agricultural Policy and are seldom studied in Mediterranean contexts. The current study assesses both the environmental and economic aspects of five typical silvopastoral systems in central Greece, encompassing cattle, sheep, and goat farming. A Life Cycle Assessment approach was implemented to quantify greenhouse gas emissions using economic allocation, distributing impacts between milk and meat outputs. Enteric fermentation was the major emission source, accounting for up to 65.14% of total emissions in beef-based systems, while feeding and soil emissions were more prominent in mixed and small ruminant systems. Total farm-level emissions ranged from 60,609 to 273,579 kg CO2eq per year. Economically, only beef-integrated systems achieved an average annual profitability above EUR 20,000 per farm, based on financial data averaged over the last five years (2020–2024) from selected case studies in central Greece, while the remaining systems fell below the national poverty threshold for an average household, underscoring concerns about their economic viability. The findings underline the dual challenges of economic viability and policy neglect, stressing the need for targeted support if these multifunctional systems are to add value to EU climate goals and rural sustainability.
Full article
(This article belongs to the Special Issue Forestry in the Contemporary Bioeconomy)
►▼
Show Figures

Figure 1
Open AccessArticle
Physical-Hydric Properties of a Planosols Under Long-Term Integrated Crop–Livestock–Forest System in the Brazilian Semiarid
by
Valter Silva Ferreira, Flávio Pereira de Oliveira, Pedro Luan Ferreira da Silva, Adriana Ferreira Martins, Walter Esfrain Pereira, Djail Santos, Tancredo Augusto Feitosa de Souza, Robson Vinício dos Santos and Milton César Costa Campos
Forests 2025, 16(8), 1261; https://doi.org/10.3390/f16081261 (registering DOI) - 2 Aug 2025
Abstract
The objective of this study was to evaluate the physical-hydric properties of a Planosol under an Integrated Crop–Livestock–Forest (ICLF) system in the Agreste region of Paraíba, Brazil, after eight years of implementation, and to compare them with areas under a conventional cropping system
[...] Read more.
The objective of this study was to evaluate the physical-hydric properties of a Planosol under an Integrated Crop–Livestock–Forest (ICLF) system in the Agreste region of Paraíba, Brazil, after eight years of implementation, and to compare them with areas under a conventional cropping system and secondary native vegetation. The experiment was conducted at the experimental station located in Alagoinha, in the Agreste mesoregion of the State of Paraíba, Brazil. The experimental design adopted was a randomized block design (RBD) with five treatments and four replications (5 × 4 + 2). The treatments consisted of: (1) Gliricidia (Gliricidia sepium (Jacq.) Steud) + Signal grass (Urochloa decumbens) (GL+SG); (2) Sabiá (Mimosa caesalpiniaefolia Benth) + Signal grass (SB+SG); (3) Purple Ipê (Handroanthus avellanedae (Lorentz ex Griseb.) Mattos) + SG (I+SG); (4) annual crop + SG (C+SG); and (5) Signal grass (SG). Two additional treatments were included for statistical comparison: a conventional cropping system (CC) and a secondary native vegetation area (NV), both located near the experimental site. The CC treatment showed the lowest bulk density (1.23 g cm−3) and the lowest degree of compaction (66.3%) among the evaluated treatments, as well as a total porosity (TP) higher than 75% (0.75 m3 m−3). In the soil under the integration system, the lowest bulk density (1.38 g cm−3) and the highest total porosity (0.48 m3 m−3) were observed in the SG treatment at the 0.0–0.10 m depth. High S-index values (>0.035) and a low relative field capacity (RFc < 0.50) and Kθ indicate high structural quality and low soil water storage capacity. It was concluded that the SG, I+SG, SB+SG, and CC treatments presented the highest values of soil bulk and degree of compaction in the layers below 0.10 m. The I+SG and C+SG treatments showed the lowest hydraulic conductivities and macroaggregation. The SG and C+SG treatments had the lowest available water content and available water capacity across the three analyzed soil layers.
Full article
(This article belongs to the Special Issue Forest Soil Physical, Chemical, and Biological Properties)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Persistence of Phytoplasma and Control Efficacy of Oxytetracycline Tree Injection for Elaeocarpus sylvestris (Lour.) Poir. var. ellipticus (Thunb.) H.Hara Decline Disease
by
Geon-Woo Lee, Kyung-Don Kang, Yeong-Don Lee, Sun-Keun Lee and Sang-Sub Han
Forests 2025, 16(8), 1260; https://doi.org/10.3390/f16081260 (registering DOI) - 1 Aug 2025
Abstract
Elaeocarpus sylvestris (Lour.) Poir. var. ellipticus (Thunb.) H.Hara, an evergreen tree species native to Jeju Island, South Korea, has experienced a progressive decline associated with phytoplasma infection. This study aimed to evaluate the efficacy of oxytetracycline-based tree injection for suppressing phytoplasma and improving
[...] Read more.
Elaeocarpus sylvestris (Lour.) Poir. var. ellipticus (Thunb.) H.Hara, an evergreen tree species native to Jeju Island, South Korea, has experienced a progressive decline associated with phytoplasma infection. This study aimed to evaluate the efficacy of oxytetracycline-based tree injection for suppressing phytoplasma and improving tree vitality. Two formulations—oxytetracycline hydrochloride (4.3%) and oxytetracycline calcium alkyltrimethyl ammonium (17%)—were administered to 40 infected individuals across two sites using a gravity-fed injection system. Treatment efficacy was evaluated based on chlorophyll content as an indicator of physiological recovery, while phytoplasma presence was assessed by PCR at 150 days after injection. The oxytetracycline hydrochloride group showed the highest suppression, with a 70% phytoplasma non-detection rate as determined by PCR analysis. Treated trees exhibited significantly higher chlorophyll content compared to untreated infected controls. These findings suggest that minimally invasive tree injection using oxytetracycline can provide temporary suppression of phytoplasma and support physiological recovery in E. sylvestris.
Full article
(This article belongs to the Special Issue Forest Pathogen Detection, Diagnosis and Control)
Open AccessArticle
First Assessment of the Biodiversity of True Slime Molds in Swamp Forest Stands of the Knyszyn Forest (Northeast Poland) Using the Moist Chambers Detection Method
by
Tomasz Pawłowicz, Igor Żebrowski, Gabriel Michał Micewicz, Monika Puchlik, Konrad Wilamowski, Krzysztof Sztabkowski and Tomasz Oszako
Forests 2025, 16(8), 1259; https://doi.org/10.3390/f16081259 (registering DOI) - 1 Aug 2025
Abstract
True slime molds (Eumycetozoa) remain under-explored globally, particularly in water-logged forest habitats. Despite evidence suggesting a high biodiversity potential in the Knyszyn Forest of north-eastern Poland, no systematic effort had previously been undertaken there. In the present survey, plant substrates from
[...] Read more.
True slime molds (Eumycetozoa) remain under-explored globally, particularly in water-logged forest habitats. Despite evidence suggesting a high biodiversity potential in the Knyszyn Forest of north-eastern Poland, no systematic effort had previously been undertaken there. In the present survey, plant substrates from eight swampy sub-compartments were incubated for over four months, resulting in the detection of fifteen slime mold species. Four of these taxa are newly reported for northern and north-eastern Poland, while several have been recorded only a handful of times in the global literature. These findings underscore how damp, nutrient-rich conditions foster Eumycetozoa and demonstrate the effectiveness of moist-chamber culturing in revealing rare or overlooked taxa. Current evidence shows that, although slime molds may occasionally colonize living plant or fungal tissues, their influence on crop productivity and tree vitality is negligible; they are therefore better regarded as biodiversity indicators than as pathogens or pests. By establishing a replicable framework for studying water-logged environments worldwide, this work highlights the ecological importance of swamp forests in sustaining microbial and slime mold diversity.
Full article
(This article belongs to the Special Issue Advances in Detection and Identification of Insect Pests and Pathogens: 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Coordinated Roles of Osmotic Adjustment, Antioxidant Defense, and Ion Homeostasis in the Salt Tolerance of Mulberry (Morus alba L. ‘Tailai Sang’) Seedlings
by
Nan Xu, Tiane Wang, Yuan Wang, Juexian Dong and Yu Shaopeng
Forests 2025, 16(8), 1258; https://doi.org/10.3390/f16081258 (registering DOI) - 1 Aug 2025
Abstract
Soil salinization severely limits plant growth and productivity. Mulberry (Morus alba L.), an economically and ecologically important tree, is widely cultivated, yet its salt-tolerance mechanisms at the seedling stage remain insufficiently understood. This study investigated the physiological and biochemical responses of two-year-old
[...] Read more.
Soil salinization severely limits plant growth and productivity. Mulberry (Morus alba L.), an economically and ecologically important tree, is widely cultivated, yet its salt-tolerance mechanisms at the seedling stage remain insufficiently understood. This study investigated the physiological and biochemical responses of two-year-old mulberry (‘Tailai Sang’) seedlings subjected to six NaCl treatments (0, 50, 100, 150, 200, and 300 mmol L−1) for 28 days. Results showed that growth parameters and photosynthetic gas exchange exhibited dose-dependent declines. The reduction in net photosynthetic rate (Pn) was attributed to both stomatal limitations (decreased stomatal conductance) and non-stomatal limitations, as evidenced by a significant decrease in the maximum quantum efficiency of photosystem II (Fv/Fm) under high salinity. To cope with osmotic stress, seedlings accumulated compatible solutes, including soluble sugars, proteins, and proline. Critically, mulberry seedlings demonstrated effective ion homeostasis by sequestering Na+ in the roots to maintain a high K+/Na+ ratio in leaves, a mechanism that was compromised above 150 mmol L−1. Concurrently, indicators of oxidative stress—malondialdehyde (MDA) and H2O2—rose significantly with salinity, inducing the activities of antioxidant enzymes (SOD, CAT, APX, and GR), which peaked at 150 mmol L−1 before declining under extreme stress. A biomass-based LC50 of 179 mmol L−1 NaCl was determined. These findings elucidate that mulberry salt tolerance is a coordinated process involving three key mechanisms: osmotic adjustment, selective ion distribution, and a robust antioxidant defense system. This study establishes an indicative tolerance threshold under controlled conditions and provides a physiological basis for further field-based evaluations of ‘Tailai Sang’ mulberry for cultivation on saline soils.
Full article
(This article belongs to the Special Issue Adaptive Mechanisms of Tree Seedlings to Adapt to Stress—Second Edition)
►▼
Show Figures

Figure 1
Open AccessReview
Patterns in Root Phenology of Woody Plants Across Climate Regions: Drivers, Constraints, and Ecosystem Implications
by
Qiwen Guo, Boris Rewald, Hans Sandén and Douglas L. Godbold
Forests 2025, 16(8), 1257; https://doi.org/10.3390/f16081257 (registering DOI) - 1 Aug 2025
Abstract
Root phenology significantly influences ecosystem processes yet remains poorly characterized across biomes. This study synthesized data from 59 studies spanning Arctic to tropical ecosystems to identify woody plants root phenological patterns and their environmental drivers. The analysis revealed distinct climate-specific patterns. Arctic regions
[...] Read more.
Root phenology significantly influences ecosystem processes yet remains poorly characterized across biomes. This study synthesized data from 59 studies spanning Arctic to tropical ecosystems to identify woody plants root phenological patterns and their environmental drivers. The analysis revealed distinct climate-specific patterns. Arctic regions had a short growing season with remarkably low temperature threshold for initiation of root growth (0.5–1 °C). Temperate forests displayed pronounced spring-summer growth patterns with root growth initiation occurring at 1–9 °C. Mediterranean ecosystems showed bimodal patterns optimized around moisture availability, and tropical regions demonstrate seasonality primarily driven by precipitation. Root-shoot coordination varies predictably across biomes, with humid continental ecosystems showing the highest synchronous above- and belowground activity (57%), temperate regions exhibiting leaf-before-root emergence (55%), and Mediterranean regions consistently showing root-before-leaf patterns (100%). Winter root growth is more widespread than previously recognized (35% of studies), primarily in tropical and Mediterranean regions. Temperature thresholds for phenological transitions vary with climate region, suggesting adaptations to environmental conditions. These findings provide a critical, region-specific framework for improving models of terrestrial ecosystem responses to climate change. While our synthesis clarifies distinct phenological strategies, its conclusions are drawn from data focused primarily on Northern Hemisphere woody plants, highlighting significant geographic gaps in our current understanding. Bridging these knowledge gaps is essential for accurately forecasting how belowground dynamics will influence global carbon sequestration, nutrient cycling, and ecosystem resilience under changing climatic regimes.
Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
►▼
Show Figures

Figure 1
Open AccessArticle
Demography and Biomass Productivity in Colombian Sub-Andean Forests in Cueva de los Guácharos National Park (Huila): A Comparison Between Primary and Secondary Forests
by
Laura I. Ramos, Cecilia M. Prada and Pablo R. Stevenson
Forests 2025, 16(8), 1256; https://doi.org/10.3390/f16081256 (registering DOI) - 1 Aug 2025
Abstract
Understanding species composition and forest dynamics is essential for predicting biomass productivity and informing conservation in tropical montane ecosystems. We evaluated floristic, demographic, and biomass changes in eighteen 0.1 ha permanent plots in the Colombian Sub-Andean forest, including both primary (ca. 60 y
[...] Read more.
Understanding species composition and forest dynamics is essential for predicting biomass productivity and informing conservation in tropical montane ecosystems. We evaluated floristic, demographic, and biomass changes in eighteen 0.1 ha permanent plots in the Colombian Sub-Andean forest, including both primary (ca. 60 y old) and secondary forests (ca. 30 years old). Two censuses of individuals (DBH ≥ 2.5 cm) were conducted over 7–13 years. We recorded 516 species across 202 genera and 89 families. Floristic composition differed significantly between forest types (PERMANOVA, p = 0.001), and black oak (Trigonobalanus excelsa Lozano, Hern. Cam. & Henao) forests formed distinct assemblages. Demographic rates were higher in secondary forests, with mortality (4.17% yr), recruitment (4.51% yr), and relative growth rate (0.02% yr) exceeding those of primary forests. The mean aboveground biomass accumulation and the rate of annual change were higher in primary forests (447.5 Mg ha−1 and 466.8 Mg ha−1 yr−1, respectively) than in secondary forests (217.2 Mg ha−1 and 217.2 Mg ha−1 yr−1, respectively). Notably, black oak forests showed the greatest biomass accumulation and rate of change in biomass. Annual net biomass production was higher in secondary forests (8.72 Mg ha−1 yr−1) than in primary forests (5.66 Mg ha−1 yr−1). These findings highlight the ecological distinctiveness and recovery potential of secondary Sub-Andean forests and underscore the value of multitemporal monitoring to understand forest resilience and assess vulnerability to environmental change.
Full article
(This article belongs to the Special Issue Forest Inventory: The Monitoring of Biomass and Carbon Stocks)
►▼
Show Figures

Figure 1
Open AccessArticle
Determining Early Warning Thresholds to Detect Tree Mortality Risk in a Southeastern U.S. Bottomland Hardwood Wetland
by
Maricar Aguilos, Jiayin Zhang, Miko Lorenzo Belgado, Ge Sun, Steve McNulty and John King
Forests 2025, 16(8), 1255; https://doi.org/10.3390/f16081255 (registering DOI) - 1 Aug 2025
Abstract
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions
[...] Read more.
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions between hydrological drivers and ecosystem responses by analyzing daily eddy covariance flux data from a wetland forest in North Carolina, USA, spanning 2009–2019. We analyzed temporal patterns of net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RE) under both flooded and non-flooded conditions and evaluated their relationships with observed tree mortality. Generalized Additive Modeling (GAM) revealed that groundwater table depth (GWT), leaf area index (LAI), NEE, and net radiation (Rn) were key predictors of mortality transitions (R2 = 0.98). Elevated GWT induces root anoxia; declining LAI reduces productivity; elevated NEE signals physiological breakdown; and higher Rn may amplify evapotranspiration stress. Receiver Operating Characteristic (ROC) analysis revealed critical early warning thresholds for tree mortality: GWT = 2.23 cm, LAI = 2.99, NEE = 1.27 g C m−2 d−1, and Rn = 167.54 W m−2. These values offer a basis for forecasting forest mortality risk and guiding early warning systems. Our findings highlight the dominant role of hydrological variability in ecosystem degradation and offer a threshold-based framework for early detection of mortality risks. This approach provides insights into managing coastal forest resilience amid accelerating sea level rise.
Full article
(This article belongs to the Special Issue Water and Carbon Cycles and Their Coupling in Forest)
►▼
Show Figures

Figure 1
Open AccessArticle
How to Compensate Forest Ecosystem Services Through Restorative Justice: An Analysis Based on Typical Cases in China
by
Haoran Gao and Tenglong Lin
Forests 2025, 16(8), 1254; https://doi.org/10.3390/f16081254 (registering DOI) - 1 Aug 2025
Abstract
The ongoing degradation of global forests has severely weakened ecosystem service functions, and traditional judicial remedies have struggled to quantify intangible ecological losses. China has become an important testing ground for restorative justice through the establishment of specialized environmental courts and the practice
[...] Read more.
The ongoing degradation of global forests has severely weakened ecosystem service functions, and traditional judicial remedies have struggled to quantify intangible ecological losses. China has become an important testing ground for restorative justice through the establishment of specialized environmental courts and the practice of environmental public interest litigation. Since 2015, China has actively explored and institutionalized the application of the concept of restorative justice in its environmental justice reform. This concept emphasizes compensating environmental damages through actual ecological restoration acts rather than relying solely on financial compensation. This shift reflects a deep understanding of the limitations of traditional environmental justice and an institutional response to China’s ecological civilization construction, providing critical support for forest ecosystem restoration and enabling ecological restoration activities, such as replanting and re-greening, habitat reconstruction, etc., to be enforced through judicial decisions. This study conducts a qualitative analysis of judicial rulings in forest restoration cases to systematically evaluate the effectiveness of restorative justice in compensating for losses in forest ecosystem service functions. The findings reveal the following: (1) restoration measures in judicial practice are disconnected from the types of ecosystem services available; (2) non-market values and long-term cumulative damages are systematically underestimated, with monitoring mechanisms exhibiting fragmented implementation and insufficient effectiveness; (3) management cycles are set in violation of ecological restoration principles, and acceptance standards lack function-oriented indicators; (4) participation of key stakeholders is severely lacking, and local knowledge and professional expertise have not been integrated. In response, this study proposes a restorative judicial framework oriented toward forest ecosystem services, utilizing four mechanisms: independent recognition of legal interests, function-matched restoration, application of scientific assessment tools, and multi-stakeholder collaboration. This framework aims to drive a paradigm shift from formal restoration to substantive functional recovery, providing theoretical support and practical pathways for environmental judicial reform and global forest governance.
Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
►▼
Show Figures

Figure 1
Open AccessArticle
Spatially Explicit Tactical Planning for Redwood Harvest Optimization Under Continuous Cover Forestry in New Zealand’s North Island
by
Horacio E. Bown, Francesco Latterini, Rodolfo Picchio and Michael S. Watt
Forests 2025, 16(8), 1253; https://doi.org/10.3390/f16081253 (registering DOI) - 1 Aug 2025
Abstract
Redwood (Sequoia sempervirens (Lamb. ex D. Don) Endl.) is a fast-growing, long-lived conifer native to a narrow coastal zone along the western seaboard of the United States. Redwood can accumulate very high amounts of carbon in plantation settings and continuous cover forestry
[...] Read more.
Redwood (Sequoia sempervirens (Lamb. ex D. Don) Endl.) is a fast-growing, long-lived conifer native to a narrow coastal zone along the western seaboard of the United States. Redwood can accumulate very high amounts of carbon in plantation settings and continuous cover forestry (CCF) represents a highly profitable option, particularly for small-scale forest growers in the North Island of New Zealand. We evaluated the profitability of conceptual CCF regimes using two case study forests: Blue Mountain (109 ha, Taranaki Region, New Zealand) and Spring Creek (467 ha, Manawatu-Whanganui Region, New Zealand). We ran a strategic harvest scheduling model for both properties and used its results to guide a tactical-spatially explicit model harvesting small 0.7 ha units over a period that spanned 35 to 95 years after planting. The internal rates of return (IRRs) were 9.16 and 10.40% for Blue Mountain and Spring Creek, respectively, exceeding those considered robust for other forest species in New Zealand. The study showed that small owners could benefit from carbon revenue during the first 35 years after planting and then switch to a steady annual income from timber, maintaining a relatively constant carbon stock under a continuous cover forestry regime. Implementing adjacency constraints with a minimum green-up period of five years proved feasible. Although small coupes posed operational problems, which were linked to roading and harvesting, these issues were not insurmountable and could be managed with appropriate operational planning.
Full article
(This article belongs to the Section Forest Operations and Engineering)
►▼
Show Figures

Figure 1
Open AccessArticle
Higher Winter Precipitation and Temperature Are Associated with Smaller Earlywood Vessel Size but Wider Latewood Width in Quercus faginea Lam.
by
Ignacio García-González, Filipe Campelo, Joana Vieira and Cristina Nabais
Forests 2025, 16(8), 1252; https://doi.org/10.3390/f16081252 - 1 Aug 2025
Abstract
Quercus faginea Lam., a winter-deciduous oak native to the Iberian Peninsula, typically grows under a Mediterranean climate. To identify the main drivers influencing radial wood increment, we analyzed the climatic signals in tree-ring width and wood anatomical traits using increment cores. Winter conditions
[...] Read more.
Quercus faginea Lam., a winter-deciduous oak native to the Iberian Peninsula, typically grows under a Mediterranean climate. To identify the main drivers influencing radial wood increment, we analyzed the climatic signals in tree-ring width and wood anatomical traits using increment cores. Winter conditions influenced both latewood width and earlywood vessel size in the first row. Latewood was positively correlated with precipitation and temperature, with the long-term positive effect of winter water supply supported by SPEI. In contrast, vessel size showed negative correlations, also reflecting a long-term negative effect of winter precipitation. Consequently, conditions that enhanced latewood width and overall tree-ring growth appear to be associated with the formation of smaller earlywood vessels. Although ample winter precipitation replenishes soil water reserves and supports prolonged wood formation, it may also induce anaerobic soil conditions that promote root fermentation, depleting carbohydrates needed for cell turgor and expansion, and ultimately regulating earlywood vessel size. This physiological decoupling may help explain the lack of a significant correlation between latewood width and earlywood vessel size, underscoring their independent responses to environmental influences. Our findings highlighted the complex interplay between various climatic conditions affecting Q. faginea, with implications for understanding its adaptive capacity in changing climates.
Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
►▼
Show Figures

Figure 1
Open AccessArticle
From Climate Liability to Market Opportunity: Valuing Carbon Sequestration and Storage Services in the Forest-Based Sector
by
Attila Borovics, Éva Király, Péter Kottek, Gábor Illés and Endre Schiberna
Forests 2025, 16(8), 1251; https://doi.org/10.3390/f16081251 - 1 Aug 2025
Abstract
Ecosystem services—the benefits humans derive from nature—are foundational to environmental sustainability and economic well-being, with carbon sequestration and storage standing out as critical regulating services in the fight against climate change. This study presents a comprehensive financial valuation of the carbon sequestration, storage
[...] Read more.
Ecosystem services—the benefits humans derive from nature—are foundational to environmental sustainability and economic well-being, with carbon sequestration and storage standing out as critical regulating services in the fight against climate change. This study presents a comprehensive financial valuation of the carbon sequestration, storage and product substitution ecosystem services provided by the Hungarian forest-based sector. Using a multi-scenario framework, four complementary valuation concepts are assessed: total carbon storage (biomass, soil, and harvested wood products), annual net sequestration, emissions avoided through material and energy substitution, and marketable carbon value under voluntary carbon market (VCM) and EU Carbon Removal Certification Framework (CRCF) mechanisms. Data sources include the National Forestry Database, the Hungarian Greenhouse Gas Inventory, and national estimates on substitution effects and soil carbon stocks. The total carbon stock of Hungarian forests is estimated at 1289 million tons of CO2 eq, corresponding to a theoretical climate liability value of over EUR 64 billion. Annual sequestration is valued at approximately 380 million EUR/year, while avoided emissions contribute an additional 453 million EUR/year in mitigation benefits. A comparative analysis of two mutually exclusive crediting strategies—improved forest management projects (IFMs) avoiding final harvesting versus long-term carbon storage through the use of harvested wood products—reveals that intensified harvesting for durable wood use offers higher revenue potential (up to 90 million EUR/year) than non-harvesting IFM scenarios. These findings highlight the dual role of forests as both carbon sinks and sources of climate-smart materials and call for policy frameworks that integrate substitution benefits and long-term storage opportunities in support of effective climate and bioeconomy strategies.
Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
►▼
Show Figures

Figure 1
Open AccessArticle
Evaluating the Potential of Cuscuta japonica as Biological Control Agent for Derris trifoliata Management in Mangrove Forests
by
Huiying Wu, Yunhong Xue and Wenai Liu
Forests 2025, 16(8), 1250; https://doi.org/10.3390/f16081250 - 1 Aug 2025
Abstract
Climbing vines have recently induced increasing threats to forest growth under favourable environmental changes. In mangrove forests, the native vine Derris trifoliata became invasive and is now one of the main threats. Yet current management relies on manual removal with low efficiency. Exploring
[...] Read more.
Climbing vines have recently induced increasing threats to forest growth under favourable environmental changes. In mangrove forests, the native vine Derris trifoliata became invasive and is now one of the main threats. Yet current management relies on manual removal with low efficiency. Exploring an alternative, cost-effective method is required. To assess the potential of a proposed biological control method, this study performed a pot-plant experiment using Cuscuta japonica to infect D. trifoliata and three common mangrove species in Beihai, China. Results showed that D. trifoliata had a higher infection rate and high host mortality (90%) than mangrove (0%). It also had significantly decreased moisture by 4%, nitrogen by 14%, phosphorus by 27%, potassium by 49% and increased soluble sugar by 49% and protein by 20%, whereas only moisture (2% reduction) and one or two minerals of Excoecaria agallocha and Aegiceras corniculatum were influenced. Only Kandelia obovata had neither effective haustoria nor any nutrients impact from the infection. This study indicated that C. japonica can cause more damage to D. trifoliata than to mangrove species and has the potential to be used as a biological control agent for the threatened mangrove forests of A. corniculatum and K. obovata with monitoring and control. Further field tests are required to bring this method into practice.
Full article
(This article belongs to the Special Issue Forest Invasive Species: Distribution, Control and Management)
►▼
Show Figures

Figure 1
Open AccessArticle
Structural Diversity and Biodiversity of Forest and Hedgerow in Areas Managed for Pheasant Shooting Across the UK
by
Peter R. Long, Leo Petrokofsky, William J. Harvey, Paul Orsi, Matthew W. Jordon and Gillian Petrokofsky
Forests 2025, 16(8), 1249; https://doi.org/10.3390/f16081249 - 1 Aug 2025
Abstract
Management for pheasant shooting is a widespread land use in the UK, with potential implications for forest and hedgerow habitats. This study evaluates whether sites managed for pheasant shooting differ ecologically from similar sites not used for shooting. A systematic evidence evaluation of
[...] Read more.
Management for pheasant shooting is a widespread land use in the UK, with potential implications for forest and hedgerow habitats. This study evaluates whether sites managed for pheasant shooting differ ecologically from similar sites not used for shooting. A systematic evidence evaluation of comparative studies was combined with a spatial analysis using remote sensing data (2010–2024). The literature review identified only 32 studies meeting strict criteria for comparability, revealing inconsistent and often weak evidence, with few studies reporting detailed forest management or statistically robust outcomes. While some studies noted increased or decreased biodiversity associated with pheasant shooting, the evidence base was generally of low quality. Remote sensing assessed forest structural and spectral diversity, intactness, and hedgerow density across 1131 pheasant-managed and 1131 matched control sites. Biodiversity data for birds, plants, and butterflies were sourced from GBIF records. Structural diversity and hedgerow density were significantly higher on pheasant-managed sites, while no significant differences were found in forest spectral diversity, intactness, or biodiversity indicators. Pheasant management may shape certain habitat features but has limited demonstrable effects on overall biodiversity. Further field-based, controlled studies are required to understand causal mechanisms and inform ecologically sustainable shooting practices.
Full article
(This article belongs to the Special Issue Biodiversity and Ecosystem Functions in Forests)
►▼
Show Figures

Figure 1
Open AccessArticle
Forest Fire Detection Method Based on Dual-Branch Multi-Scale Adaptive Feature Fusion Network
by
Qinggan Wu, Chen Wei, Ning Sun, Xiong Xiong, Qingfeng Xia, Jianmeng Zhou and Xingyu Feng
Forests 2025, 16(8), 1248; https://doi.org/10.3390/f16081248 - 31 Jul 2025
Abstract
There are significant scale and morphological differences between fire and smoke features in forest fire detection. This paper proposes a detection method based on dual-branch multi-scale adaptive feature fusion network (DMAFNet). In this method, convolutional neural network (CNN) and transformer are used to
[...] Read more.
There are significant scale and morphological differences between fire and smoke features in forest fire detection. This paper proposes a detection method based on dual-branch multi-scale adaptive feature fusion network (DMAFNet). In this method, convolutional neural network (CNN) and transformer are used to form a dual-branch backbone network to extract local texture and global context information, respectively. In order to overcome the difference in feature distribution and response scale between the two branches, a feature correction module (FCM) is designed. Through space and channel correction mechanisms, the adaptive alignment of two branch features is realized. The Fusion Feature Module (FFM) is further introduced to fully integrate dual-branch features based on the two-way cross-attention mechanism and effectively suppress redundant information. Finally, the Multi-Scale Fusion Attention Unit (MSFAU) is designed to enhance the multi-scale detection capability of fire targets. Experimental results show that the proposed DMAFNet has significantly improved in mAP (mean average precision) indicators compared with existing mainstream detection methods.
Full article
(This article belongs to the Section Natural Hazards and Risk Management)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Forests Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Climate, Diversity, Forests, Plants, Sustainability, Earth
Responses of Trees and Forests to Climate Change
Topic Editors: Qinglai Dang, Ilona Mészáros, Lei WangDeadline: 30 August 2025
Topic in
Diversity, Forests, Genes, IJPB, Plants
Plant Chloroplast Genome and Evolution
Topic Editors: Chao Shi, Lassaâd Belbahri, Shuo WangDeadline: 31 August 2025
Topic in
Agriculture, Agronomy, Forests, Remote Sensing, Sustainability
Challenges, Development and Frontiers of Smart Agriculture and Forestry—2nd Volume
Topic Editors: Xiaoli Zhang, Dengsheng Lu, Xiujuan Chai, Guijun Yang, Langning HuoDeadline: 30 September 2025
Topic in
Economies, Forests, Land, Smart Cities, Urban Science, Sustainability
Sustainable Investments in Urban, Peri-Urban and Industrial Areas: Novel Approaches and Methods
Topic Editors: Francesco Sica, Elena Di Pirro, Maria Rosaria Sessa, Francesco Tajani, Maria Rosaria Guarini, Alessio Russo, Debora AnelliDeadline: 31 October 2025

Conferences
Special Issues
Special Issue in
Forests
Specialized Metabolites and Structure of Woody Plants
Guest Editors: Zorica S. Mitić, Dalibor BallianDeadline: 15 August 2025
Special Issue in
Forests
Before and After the Flames: An Ecological Examination of the Factors That Influence Forest Fire Effects and Post-Fire Recovery and Resilience
Guest Editor: John N. WilliamsDeadline: 15 August 2025
Special Issue in
Forests
Long-Term Monitoring and Driving Forces of Forest Cover
Guest Editors: Jianwan Ji, Bing Guo, Eshetu Shifaw, Rui ZhangDeadline: 20 August 2025
Special Issue in
Forests
Social and Cultural Benefits of Forests Contributing to Human Health and Well-Being
Guest Editors: Kangning Xiong, Xiaofang Zhou, Mingjun LiDeadline: 20 August 2025
Topical Collections
Topical Collection in
Forests
Forests Carbon Fluxes and Sequestration
Collection Editor: Mark Harmon
Topical Collection in
Forests
Forest Sustainable Management in Europe
Collection Editor: Ignacio Diaz-Maroto
Topical Collection in
Forests
Historical Wood: Structure, Properties and Conservation
Collection Editor: Magdalena Broda
Topical Collection in
Forests
Reviews and Meta-Analyses in Forest Meteorology and Climate Change
Collection Editors: Giacomo Alessandro Gerosa, Riccardo Marzuoli