Low-Cost Production of Brazilian Mahogany Clones Based on Indole-3-Butyric Acid Use, Clonal Mini-Hedge Nutrition and Vegetative Propagule Type
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Area
2.2. Clonal Mini-Hedge
- Y5cm = the number of mini-cuttings with the minimum length required for rooting;
- Hi = the length of the i-th sprout;
- N = the total number of sprouts, and 5 = minimum adopted cutting length (in cm);
- U.E. = experimental unit (number of plants per plot).
2.3. Mini-Cutting Rooting
- TDM = total dry mass (g);
- H:CD = collar height/diameter ratio;
- SDM:RDM = shoot/root dry mass ratio (g).
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- The low-cost mini-cutting technique showed high potential for the clonal propagation of Swietenia macrophylla King (Brazilian mahogany), with a mean survival rate higher than 90% across all treatments, which confirmed the effectiveness of the developed low-cost mini-greenhouse system.
- High nutrient solution (200%) concentrations led to higher shoot production and highlighted the positive influence of increased nutrient availability on mini-stump yield.
- Clone dry biomass showed increasing trend up to the intermediate IBA dose at 4000 ppm. This was followed by a decline at higher concentrations, which suggested its likely phytotoxicity at excessive doses.
- Basal cuttings recorded equal or superior morphophysiological performance in comparison to apical cuttings, mainly under higher nutrient levels. This finding reinforced their preferential use in clonal propagation systems set for this species.
- The Dickson Quality Index ranged from 0.31 to 0.64, exceeded the minimum reference value (0.20) and confirmed the high quality of the produced clones, which recorded performance superior to that reported for other Amazonian species under similar conditions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IBA | Indole-3-butyric acid |
TDM | Total Dry Mass |
SDM | Shoot Dry Mass |
RDM | Root Dry Mass |
RBT | Root at the Bottom of the Propagation Tube |
H | Height |
CD | Collar Diameter |
DQI | Dickson Quality Index |
References
- Carvalho, P.E.R. Espécies Arbóreas Brasileiras; Coleção Espécies Arbóreas Brasileiras, v. 2; Embrapa Informação Tecnológica: Brasília, Brazil; Embrapa Florestas: Colombo, PR, Brazil, 2006; 627p. [Google Scholar]
- CITES. Apéndices I, II and III of CITES; Secretariat of the Convention on International Trade in Endangered Species of Wild Fauna and Flora: Geneva, Switzerland, 2019. [Google Scholar]
- Ministério do Meio Ambiente. Plano Nacional de Recuperação da Vegetação Nativa—Planaveg; MMA: Brasília, Brazil, 2018; 76p.
- Da Silva, A.P.M.; Schweizer, D.; Marques, H.R.; Teixeira, A.M.C.; Santos, T.V.M.N.d.; Sambuichi, R.H.R.; Badari, C.G.; Gaudare, U.; Brancalion, P.H.S. Can current native-tree seedling production and infrastructure meet an increasing forest-restoration demand in Brazil? Restor. Ecol. 2016, 25, 509–515. [Google Scholar] [CrossRef]
- ORR—Observatório da Restauração e Reflorestamento. Dashboard de Monitoramento da Restauração Florestal no Brasil. 2025. Available online: https://observatoriodarestauracao.org.br/dashboard (accessed on 15 July 2025).
- Xavier, A.; Wendling, I.; Silva, R.L. Silvicultura Clonal: Princípios e Técnicas, 3rd ed.; Editora UFV: Viçosa, Brazil, 2021; p. 407. [Google Scholar]
- Xu, X.; Li, X.; Hu, X.; Wu, T.; Wang, Y.; Xu, X.; Zhang, X.; Han, Z. High miR156 expression is required for auxin-induced adventitious root formation via MxSPL26 independent of PINs and ARFs in Malus xiaojinensis. Front. Plant Sci. 2017, 8, 1059. [Google Scholar] [CrossRef]
- Borelli, K.; Rocha, J.H.T.; Silva, M.R.; Scaloppi, E.J., Jr.; Gonçalves, A.N.; Tecchio, M.A. Rubber tree mini clonal garden: Electric conductivity of the nutritional solution in the production of propagules. Rev. Árvore. 2024, 48, e4811. [Google Scholar] [CrossRef]
- Freire, J.M.; Varíssimo, L.N.; Pereira, B.R.; Rouws, J.R.C.; Arthur, J.C.A., Jr. Vegetative propagation of Hymenaea courbaril L. and Apuleia leiocarpa (Vogel) J. F. Macbr. by mini-cutting. Rev. Árvore 2020, 44, e4405. [Google Scholar] [CrossRef]
- Sant’Ana, B.T.; Berude, M.C.; Feletti, T.A.; Caldeira, M.V.W.; Gonçalves, E.O. Produtividade de minicepas e enraizamento de miniestacas de sapucaia (Lecythis lanceolata). Pesq. Florest. Bras. 2023, 43, e4304. [Google Scholar]
- Villalobos, J.M.; Melara, M.V.; Díaz, E.G.; Umaña, J.M.Z.; Arias, A.G. Review of biotechnological advances in mahogany (Swietenia macrophylla King): In vitro culture and genetic transformation. Plant Cell Tissue Organ Cult. 2025, 160, 78. [Google Scholar] [CrossRef]
- Torres, V.G.; Gaona, N.; Ordoñez, L.; García, P.; Mendoza, W.; Saavedra, J.; Macedo, W.; Reátegui, K.; Baselly, J.R.; Marín, C. Cutting propagation technique of mahogany (Swietenia macrophylla) in microtunnels from the Peruvian Amazon. Bosque 2024, 45, 485–495. [Google Scholar] [CrossRef]
- Azad, S.; Matin, A. Effect of indole-3-butyric acid on clonal propagation of Swietenia macrophylla through branch cutting. J. Bot. 2015, 2015, 249308. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.C.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Vencovsky, R. Tamanho efetivo populacional na coleta e preservação de germoplasmas de espécies alógamas. Indo-Pac. Econ. Framew. 1987, 35, 79–84. [Google Scholar]
- Filho, J.B.; Di Carvalho, M.A.; de Oliveira, L.S.; Konzen, E.R.; Brondani, G.E. Mini-cutting technique for Khaya anthotheca: Selection of suitable IBA concentration and nutrient solution for its vegetative propagation. J. For. Res. 2017, 29, 73–84. [Google Scholar] [CrossRef]
- Hartmann, H.T.; Kester, D.E.; Davies, F.T.; Geneve, R.L. Plant Propagation: Principles and Practices, 9th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2017; p. 1024. [Google Scholar]
- Dickson, A.; Leaf, A.L.; Hosner, J.F. Quality appraisal of white-spruce and white-pine seedling stock in nurseries. For. Chron. 1960, 36, 10–13. [Google Scholar] [CrossRef]
- Alfenas, A.C.; Zauza, E.A.V.; Mafia, R.G.; Assis, T.F. Clonagem e Doenças do Eucalipto, 2nd ed.; UFV: Viçosa, Brazil, 2009; pp. 1–500. [Google Scholar]
- Oliveira, T.P.d.F.d.; Barroso, D.G.; Lamônica, K.R.; Carneiro, J.G.d.A.; de Oliveira, M.A. Productivity of polyclonal minigarden and rooting of Handroanthus heptaphyllus Mattos minicuttings. Rev. Bras. Ciênc. Agrar. 2015, 10, 553–558. [Google Scholar] [CrossRef]
- Dias, P.C.; de Oliveira, L.S.; Xavier, A.; Wendling, I. Estaquia e miniestaquia de espécies florestais lenhosas do Brasil. Pesq. Florest. Bras. 2012, 32, 453–465. [Google Scholar] [CrossRef]
- Vilasboa, J.; Da Costa, C.T.; Fett-Neto, A.G. Environmental modulation of mini-clonal gardens for cutting production and propagation of hard- and easy-to-root Eucalyptus spp. Plants 2022, 11, 3281. [Google Scholar] [CrossRef]
- Rocha, F.M.; Maravilha, L.F.; Titon, M.; Fernandes, S.J.O.; Machado, E.L.M.; Martins, N.S. Productivity of mini-cuttings of a hybrid clone of Eucalyptus urophylla × Eucalyptus pellita as a function of exposure time of mini-stumps to mini-tunnel. Bosque 2023, 44, 595–603. [Google Scholar] [CrossRef]
- Canguçu, V.S.; Titon, M.; Silva, L.F.M.; Pena, C.A.A.; Assis, S.L.A., Jr.; Santos, P.H.R.; Oliveira, M.L.R. Mini-tunnel models influence the productivity of eucalyptus mini-stumps? Bosque 2022, 43, 211–219. [Google Scholar] [CrossRef]
- Brondani, G.E.; Wendling, I.; Brondani, A.E.; Araujo, M.A.; da Silva, A.L.L.; Gonçalves, A.N. Dynamics of adventitious rooting in mini-cuttings of Eucalyptus benthamii × Eucalyptus dunnii. Bosque 2012, 33, 129–137. [Google Scholar] [CrossRef]
- Wendling, I.; Warburton, P.M.; Trueman, S.J. Maturation in Corymbia torelliana × C. citriodora stock plants: Effects of pruning height on shoot production, adventitious rooting capacity, stem anatomy, and auxin and abscisic acid concentrations. Forests 2015, 24, e032. [Google Scholar] [CrossRef]
- Costella, C.; Araujo, M.M.; Aimi, S.C.; Barghetti, A.L.P.; Griebeler, A.M.; Lima, M.S.; Gasparin, E.; Santos, O.P.; Valente, B.M.R.T. Mini-tunnel and season influence in clonal garden on the production of clonal seedlings for two subtropical clones: Eucalyptus saligna and Corymbia torelliana × Corymbia citriodora. iForest 2025, 18, 154–162. [Google Scholar] [CrossRef]
- Hossain, M.A.; Islam, M.A.; Hossain, M.M. Rooting ability of cuttings of Swietenia macrophylla King and Chukrasia velutina Wight et Arn as influenced by exogenous hormone. Int. J. Agric. Biol. 2004, 6, 560–564. [Google Scholar]
- Broetto, F.; Gomes, E.R.; Joca, T.A.C. O Estresse das Plantas: Teoria & Prática; Cultura Acadêmica: São Paulo, Brazil, 2017; p. 194. [Google Scholar]
- Ninemets, Ü. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. For. Ecol. Manag. 2010, 260, 1623–1639. [Google Scholar] [CrossRef]
- Cordeiro, I.M.C.C.; Lameira, O.A. Propagação de mogno (Swietenia macrophylla King) por miniestaquia. In Proceedings of the Congresso Brasileiro de Recursos Genéticos, Belém, PA, Brazil, 24–28 September 2012; Sociedade Brasileira de Recursos Genéticos: Brasília, Brazil, 2012. [Google Scholar]
- Oliveira, T.P.F.; Barroso, D.G.; Lamônica, K.R.; Carvalho, G.C.M.W. Aplicação de AIB e tipo de miniestacas na produção de mudas de Handroanthus heptaphyllus Mattos. Ciênc. Florest. 2016, 26, 313–320. [Google Scholar]
- Maldonado, S.S.; Casas, M.J.; Upton, J.L.; Upton, J.L.; Monsalvo, V.S.; Mata, J.J.; Martínez, A.E.; Martínez, C.R.C. Enraizado de miniestacas de Cedrela odorata L. Agrociencia 2016, 50, 919–929. [Google Scholar]
- Dias, P.C.; Xavier, A.; Oliveira, L.S.; Paiva, H.N.; Correia, A.C.G. Propagação vegetativa de progênies de meios-irmãos de angico-vermelho (Anadenanthera macrocarpa (Benth) Brenan) por miniestaquia. Rev. Árvore 2012, 36, 485–494. [Google Scholar] [CrossRef]
- Lima, C.C.; Ohashi, S.T.; Silveira, A.S. Efeito de diferentes concentrações de aib e procedências geográficas no enraizamento de estacas de paricá. Ciênc. Florest. 2018, 28, 1282–1292. [Google Scholar] [CrossRef]
- Haase, D. Seedling Root Targets. In National Proceedings of the Forest and Conservation Nursery Associations—2010; Riley, L.E., Haase, D.L., Pinto, J.R., Eds.; United States Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2011; pp. 80–82. [Google Scholar]
- Silva, C.P.; Pistori, M.F.; Blini, R.C.B.; Santana, A.P.L. Reguladores vegetais no crescimento in vitro. In Agricultura 4.0, 1st ed.; Zuffo, A.M., Aguilera, J.G., Eds.; Pantanal Editora: Nova Xavantina, Brazil, 2020; pp. 46–57. [Google Scholar]
- Hussain, I.; Assis, A.M.; Yamanoto, L.Y.; Koyama, R.; Roberto, S.R. Indole butyric acid and substrates influence on multiplication of blackberry ‘Xavante’. Ciênc. Rural 2014, 44, 1761–1765. [Google Scholar] [CrossRef]
- Bastos, F.E.A.; Grimaldi, F.; Kretzschmar, A.; Rufato, L. Propagation of native plants with ornamental potential from Serra do Oratório, Santa Catarina State, Brazil. Ornam. Hortic. 2020, 26, 298–305. [Google Scholar] [CrossRef]
- Xavier, A.; Santos, G.A.; Wendling, I.; Oliveira, M.L. Propagação vegetativa de cedro-rosa por miniestaquia. Rev. Árvore 2003, 27, 139–143. [Google Scholar] [CrossRef]
- Gonçalves, J.L.M.; Santarelli, E.G.; Moraes Neto, S.P.; Manara, M.P. Produção de mudas de espécies nativas: Substrato, nutrição, sombreamento e fertilização. In Nutrição e Fertilização Florestal, 1st ed.; IPEF: Piracicaba, Brazil, 2000; pp. 427–450. [Google Scholar]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Plant Physiology and Development, 6th ed.; Sinauer: Sunderland, MA, USA, 2014; p. 700. [Google Scholar]
- Lana, R.M.Q.; Garcia, S.L.R.; Sampaio, R.L.; Leite, I.T. Doses do ácido indolbutírico no enraizamento e crescimento de estacas de eucalipto (Eucalyptus urophylla). Biosci. J. 2008, 24, 13–18. [Google Scholar]
- Sahoo, G.; Swamy, S.L.; Singh, A.K.; Mishra, A. Propagation of Pongamia pinnata (L.) Pierre: Effect of auxins, age, season and C/N ratio on rooting of stem cuttings. Trees For. People 2021, 5, 100091. [Google Scholar] [CrossRef]
- Biasi, L.A.; Pereira, J.R.; Cosmo, A.C.; Ayub, R.A. Minicutting Is an Efficient Method for Blueberry Propagation. Int. J. Plant Biol. 2024, 15, 855–864. [Google Scholar] [CrossRef]
- Araújo, E.F.; Gonçalves, E.O.; Santos, A.R.; Gibson, E.L.; Caldeira, M.V.W.; Pezzopane, J.E.M. Controlled release fertilizer in the rooting and performance of clones of Paratecoma peroba. CERNE 2020, 26, 202–211. [Google Scholar] [CrossRef]
- Mantovani, N.; Roveda, M.; Tres, L.; Fortes, F.O.; Grando, M.F. Cultivo de canafístula (Peltophorum dubium) em minijardim clonal e propagação por miniestacas. Ciênc. Florest. 2017, 27, 225–236. [Google Scholar] [CrossRef]
- Quan, J.; Meng, S.; Guo, E.; Zhang, S.; Zhao, Z.; Yang, X. De novo sequencing and comparative transcriptome analysis of adventitious root development induced by indole-3-butyric acid in cuttings of tetraploid black locust. BMC Genom. 2017, 18, 179. [Google Scholar] [CrossRef] [PubMed]
- Wendling, I.; Brooks, P.R.; Trueman, S.J. Topophysis in Corymbia torelliana × C. citriodora seedlings: Adventitious rooting capacity, stem anatomy, and auxin and abscisic acid concentrations. New For. 2015, 46, 107–120. [Google Scholar] [CrossRef]
- Azevedo, M.L.; Titon, M.; Machado, E.L.M.; Assis Júnior, S.L.; Freitas, E.C.S. Influência do ácido indolbutírico no enraizamento de miniestacas caulinar e foliar de mogno-africano (Khaya grandifoliola C. DC.). Ciênc. Florest. 2021, 31, 898–919. [Google Scholar] [CrossRef]
- Hunt, G.A. Effect of Styroblock design and copper treatment on morphology of conifer seedlings. In Proceedings of the Western Forest Nursery Association, 13–17 August 1990, Roseburg, OR, USA; Rose, R., Campbell, S.J., Landis, T.D., Eds.; Rocky Mountain Forest and Range Experiment Station, Forest Service, United States Department of Agriculture: Fort Collins, CO, USA, 1990; pp. 218–222. [Google Scholar]
- Carvalho, G.C.M.W.; Pessanha, D.S.; Silva, R.D.; Silva, M.K.F.; Barroso, D.G. Mini-cutting of Plathymenia reticulata Benth. with mini-stumps conducted in suspended seedbed and tubes. CERNE 2021, 27, e102584. [Google Scholar] [CrossRef]
- Gomes, J.M.; Paiva, H.N. Viveiros Florestais; UFV: Viçosa, Brazil, 2011; 116p. [Google Scholar]
- Neimog, W.; Gomes, E.P.; Carvalho, M.B.F.; Mendonça, A. Produção de mudas de mogno (Swietenia macrophylla King) em substrato com resíduos de agroindústria. Sci. For. 2022, 50, e3906. [Google Scholar] [CrossRef]
- Liévano, A.D.; Rodríguez, M.A.; Zaragoza, S.E.; Aldrete, A.; Villarreal, A.W.; Pérez de la O., N.B. Substrates and fertilization to produce Swietenia macrophylla King and Tabebuia donnell-smithii Rose plants in trays. Rev. Mex. Cienc. For. 2023, 14, 56–75. [Google Scholar]
- Ahmed, D.A.E.A.; El-Din, A.S.; EL-Dayem, A.A.; Motawee, M.; EL-Atreby, M. The impact of fertilizing Swietenia mahagoni (L.) Jacq. seedlings under water stress with various nitrogen and phosphorous sources. J. Ecol. Environ. 2025, 49, 94–109. [Google Scholar] [CrossRef]
- Cardoso, A.A.S.; Santos, J.Z.L.; Oka, J.M.; Ferreira, M.S.; Barbosa, T.M.B.; Tucci, C.A.F. Ammonium supply enhances growth and phosphorus uptake of mahogany (Swietenia macrophylla) seedlings compared to nitrate. J. Plant Nutr. 2021, 44, 1349–1364. [Google Scholar] [CrossRef]
Solution Concentration (%) | Number of Shoots Per Mini-Stump | Mini-Cutting Production |
---|---|---|
50 | 1.15 a | 1.97 a |
100 | 1.22 a | 1.93 a |
200 | 1.37 a | 2.14 a |
Mean | 1.25 | 2.01 |
CV% | 21 | 18 |
Total Dry Mass (TDM) | ||||
---|---|---|---|---|
Solution concentration (%) | Apical mini-cutting (g/plant) | Basal mini-cutting (g/plant) | ||
50 | 0.73 | bA | 1.05 | bA |
100 | 0.75 | bB | 1.61 | aA |
200 | 1.38 | aA | 1.57 | aA |
Root Dry Mass (RDM) | ||||
Solution concentration (%) | Apical mini-cutting (g/plant) | Basal mini-cutting (g/plant) | ||
50 | 0.27 | aA | 0.35 | bA |
100 | 0.26 | aB | 0.62 | aA |
200 | 0.46 | aA | 0.50 | abA |
IBA Concentration (ppm) | RBT (%) | H (cm) | CD (cm) | SDM:RDM | DQI |
---|---|---|---|---|---|
0 | 9.52 b | 12.04 a | 5.85 a | 3.22 a | 0.40 a |
1000 | 9.52 b | 11.40 a | 4.49 a | 3.41 a | 0.31 a |
2000 | 9.52 b | 12.02 a | 5.46 a | 2.30 a | 0.58 a |
4000 | 28.57 a | 13.55 a | 5.06 a | 2.59 a | 0.64 a |
8000 | 19.05 ab | 12.10 a | 4.57 a | 2.15 a | 0.42 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lienard, R.B.D.; Campos, A.S.d.; Savian, L.G.; Oliveira, B.V.d.; Souza, F.C.d.; Trazzi, P.A. Low-Cost Production of Brazilian Mahogany Clones Based on Indole-3-Butyric Acid Use, Clonal Mini-Hedge Nutrition and Vegetative Propagule Type. Forests 2025, 16, 1292. https://doi.org/10.3390/f16081292
Lienard RBD, Campos ASd, Savian LG, Oliveira BVd, Souza FCd, Trazzi PA. Low-Cost Production of Brazilian Mahogany Clones Based on Indole-3-Butyric Acid Use, Clonal Mini-Hedge Nutrition and Vegetative Propagule Type. Forests. 2025; 16(8):1292. https://doi.org/10.3390/f16081292
Chicago/Turabian StyleLienard, Rafael Barbosa Diógenes, Annanda Souza de Campos, Lucas Graciolli Savian, Barbara Valentim de Oliveira, Felippe Coelho de Souza, and Paulo André Trazzi. 2025. "Low-Cost Production of Brazilian Mahogany Clones Based on Indole-3-Butyric Acid Use, Clonal Mini-Hedge Nutrition and Vegetative Propagule Type" Forests 16, no. 8: 1292. https://doi.org/10.3390/f16081292
APA StyleLienard, R. B. D., Campos, A. S. d., Savian, L. G., Oliveira, B. V. d., Souza, F. C. d., & Trazzi, P. A. (2025). Low-Cost Production of Brazilian Mahogany Clones Based on Indole-3-Butyric Acid Use, Clonal Mini-Hedge Nutrition and Vegetative Propagule Type. Forests, 16(8), 1292. https://doi.org/10.3390/f16081292