Carbon Flux Modeling with the Calibrated Biome-BGCMuSo in China’s Tropical Forests: Natural and Rubber-Planted Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model and Data
2.1.1. Biome-BGCMuSo Model
2.1.2. Observations
2.1.3. Spatial Products
2.2. Fluxnet Sites
2.2.1. Natural Forest Sites (DHS Site and X_a Site)
2.2.2. Rubber Plantation Sites (DZ Site and X_b Site)
2.3. Methods
2.3.1. Sensitivity Analysis
2.3.2. Calibration of Model Parameters
2.3.3. Model Validation
3. Results
3.1. Sensitivity Analysis of Ecophysiological Parameters
3.2. Calibration and Validation of Biome-BGCMuSo
3.3. Inter-Annual and Intra-Annual Carbon Flux Variation of Natural and Planted Rubber Forests
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Number | Parameters | Abbreviation | Default Value | Units |
---|---|---|---|---|
1. | transfer growth period as fraction of growing season (when transferGDD_flag = 0) | TGP | 0.2 | prop. |
2. | litterfall as fraction of growing season (when transferGDD_flag = 0) | LGS | 0.2 | prop |
3. | base temperature | T_BASE | 0 | Celsius |
4. | annual leaf and fine root turnover fraction | LFRT | 0.2 | 1/year |
5. | annual live wood turnover fraction | LWT | 0.70 | 1/year |
6. | annual fire mortality fraction | FM | 0.00 | 1/year |
7. | whole-plant mortality fraction in vegetation period | WPM | 0.001 | 1/vegper |
8. | C:N of leaves | C:Nleaf | 42.0 | kgC/kgN |
9. | C:N of leaf litter, after retranslocation | C:Nlit | 49.0 | kgC/kgN |
10. | C:N of fine roots | C:Nfr | 42.0 | kgC/kgN |
11. | C:N of fruit | C:Nf | 46.6 | kgC/kgN |
12. | C:N of soft stem | C:Nss | 46.6 | kgC/kgN |
13. | C:N of live wood | C:Nlw | 50.0 | kgC/kgN |
14. | C:N of dead wood | C:Ndw | 300.0 | kgC/kgN |
15. | dry matter carbon content of leaves | DMCleaf | 0.4 | kgC/kgDM |
16. | dry matter carbon content of leaf litter | DMClit | 0.4 | kgC/kgDM |
17. | dry matter carbon content of fine roots | DMCfr | 0.4 | kgC/kgDM |
18. | dry matter carbon content of fruit | DMCf | 0.4 | kgC/kgDM |
19. | dry matter carbon content of live wood | DMClw | 0.4 | kgC/kgDM |
20. | dry matter carbon content of dead wood | DMCdw | 0.4 | kgC/kgDM |
21. | leaf litter labile proportion | Llab | 0.32 | DIM |
22. | leaf litter cellulose proportion | Lcel | 0.44 | DIM |
23. | fine root labile proportion | FRlab | 0.30 | DIM |
24. | fine root cellulose proportion | FRcel | 0.45 | DIM |
25. | fruit litter labile proportion | Flab | 0.68 | DIM |
26. | fruit litter cellulose proportion | Fcel | 0.23 | DIM |
27. | dead wood cellulose proportion | DWcel | 0.76 | DIM |
28. | canopy water interception coefficient | Wint | 0.041 | 1/LAI/d |
29. | canopy light extinction coefficient | k | 0.7 | DIM |
30. | all-sided to projected leaf area ratio | Ratio1 | 2.0 | DIM |
31. | ratio of shaded SLA/sunlit SLA | Ratio2 | 2.0 | DIM |
32. | fraction of leaf N in Rubisco | FLNR | 0.06 | DIM |
33. | maximum stomatal conductance (projected area basis) | gsmax | 0.005 | m/s |
34. | cuticular conductance (projected area basis) | cc | 0.00001 | m/s |
35. | boundary layer conductance (projected area basis) | gbl | 0.01 | m/s |
36. | maximum depth of rooting zone | Rdmax | 2.0 | m |
37. | root distribution parameter | RDP | 2.0 | DIM |
38. | growth resp per unit of C grown | GRPC | 0.3 | prop |
39. | maintenance respiration in kgC/day per kg of tissue N | MRpern | 0.218 | kgC/kgN/d |
40. | theoretical maximum prop. of non-structural and structural carbohydrates | NSC:Scmax | 0.1 | DIM |
41. | prop. of non-structural carbohydrates available for maintanance respiration | NSCmr | 0.1 | DIM |
42. | symbiotic + asymbiotic fixation of N | SAFN | 0.0015 | kgN/m2/year |
43. | VWC ratio to calc. soil moisture limit 1 (prop. to FC-WP) | SWC1 | 0.3 | prop |
44. | VWC ratio to calc. soil moisture limit 2 (prop. to SAT-FC) | SWC2 | 0.99 | prop |
45. | vapor pressure deficit: start of conductance reduction | VPDS | 1800 | Pa |
46. | vapor pressure deficit: complete conductance reduction | VPDF | 4800 | Pa |
47. | turnover rate of wilted standing biomass to litter | TRWSBL | 0.01 | prop |
48. | turnover rate of non-woody cut-down biomass to litter | TRNCBL | 0.01 | prop |
49. | turnover rate of woody cut-down biomass to litter | TRWCBL | 0.0009 | prop |
50. | drought tolerance parameter (critical value of DSWS) | DTP | 30 | nday |
51. | canopy average specific leaf area (projected area basis) | SLA | 8 | m2/kgC |
References
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Jackson, R.B. The Structure, Distribution, and Biomass of the World’s Forests. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 593–622. [Google Scholar] [CrossRef]
- Mo, L.; Zohner, C.M.; Reich, P.B.; Liang, J.; De Miguel, S.; Nabuurs, G.-J.; Renner, S.S.; Van Den Hoogen, J.; Araza, A.; Herold, M.; et al. Integrated Global Assessment of the Natural Forest Carbon Potential. Nature 2023, 624, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Ciais, P.; Seneviratne, S.I.; Liu, Z.; Chen, H.Y.H.; Barichivich, J.; Allen, C.D.; Yang, H.; Huang, Y.; Ballantyne, A.P. Field-Based Tree Mortality Constraint Reduces Estimates of Model-Projected Forest Carbon Sinks. Nat. Commun. 2022, 13, 2094. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef]
- Powers, J.S.; Marín-Spiotta, E. Ecosystem Processes and Biogeochemical Cycles in Secondary Tropical Forest Succession. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 497–519. [Google Scholar] [CrossRef]
- Mitchard, E.T.A. The Tropical Forest Carbon Cycle and Climate Change. Nature 2018, 559, 527–534. [Google Scholar] [CrossRef]
- Grainger, A.; Malayang, B.S. A Model of Policy Changes to Secure Sustainable Forest Management and Control of Deforestation in the Philippines. For. Policy Econ. 2006, 8, 67–80. [Google Scholar] [CrossRef]
- Liu, J.; Bowman, K.W.; Schimel, D.S.; Parazoo, N.C.; Jiang, Z.; Lee, M.; Bloom, A.A.; Wunch, D.; Frankenberg, C.; Sun, Y.; et al. Contrasting Carbon Cycle Responses of the Tropical Continents to the 2015–2016 El Niño. Science 2017, 358, eaam5690. [Google Scholar] [CrossRef]
- Feng, Y.; Zeng, Z.; Searchinger, T.D.; Ziegler, A.D.; Wu, J.; Wang, D.; He, X.; Elsen, P.R.; Ciais, P.; Xu, R.; et al. Doubling of Annual Forest Carbon Loss over the Tropics during the Early Twenty-First Century. Nat. Sustain. 2022, 5, 444–451. [Google Scholar] [CrossRef]
- Hofhansl, F.; Chacón-Madrigal, E.; Fuchslueger, L.; Jenking, D.; Morera-Beita, A.; Plutzar, C.; Silla, F.; Andersen, K.M.; Buchs, D.M.; Dullinger, S.; et al. Climatic and Edaphic Controls over Tropical Forest Diversity and Vegetation Carbon Storage. Sci. Rep. 2020, 10, 5066. [Google Scholar] [CrossRef]
- Li, Z.; Ahlström, A.; Tian, F.; Gärtner, A.; Jiang, M.; Xia, J. Minimum Carbon Uptake Controls the Interannual Variability of Ecosystem Productivity in Tropical Evergreen Forests. Glob. Planet. Change 2020, 195, 103343. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Fisher, R.A.; Koven, C.D.; Oleson, K.W.; Swenson, S.C.; Bonan, G.; Collier, N.; Ghimire, B.; van Kampenhout, L.; Kennedy, D.; et al. The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty. J. Adv. Model. Earth Syst. 2019, 11, 4245–4287. [Google Scholar] [CrossRef]
- Guimberteau, M.; Zhu, D.; Maignan, F.; Huang, Y.; Yue, C.; Dantec-Nédélec, S.; Ottlé, C.; Jornet-Puig, A.; Bastos, A.; Laurent, P.; et al. ORCHIDEE-MICT (v8.4.1), a Land Surface Model for the High Latitudes: Model Description and Validation. Geosci. Model. Dev. 2018, 11, 121–163. [Google Scholar] [CrossRef]
- Ahlström, A.; Raupach, M.R.; Schurgers, G.; Smith, B.; Arneth, A.; Jung, M.; Reichstein, M.; Canadell, J.G.; Friedlingstein, P.; Jain, A.K.; et al. The Dominant Role of Semi-Arid Ecosystems in the Trend and Variability of the Land CO2 Sink. Science 2015, 348, 895–899. [Google Scholar] [CrossRef]
- Hidy, D.; Barcza, Z.; Hollós, R.; Dobor, L.; Ács, T.; Zacháry, D.; Filep, T.; Pásztor, L.; Incze, D.; Dencső, M.; et al. Soil-Related Developments of the Biome-BGCMuSo v6.2 Terrestrial Ecosystem Model. Geosci. Model. Dev. 2022, 15, 2157–2181. [Google Scholar] [CrossRef]
- Erb, K.-H.; Fetzel, T.; Plutzar, C.; Kastner, T.; Lauk, C.; Mayer, A.; Niedertscheider, M.; Körner, C.; Haberl, H. Biomass Turnover Time in Terrestrial Ecosystems Halved by Land Use. Nat. Geosci. 2016, 9, 674–678. [Google Scholar] [CrossRef]
- Mao, F.; Zhou, G.; Li, P.; Du, H.; Xu, X.; Shi, Y.; Mo, L.; Zhou, Y.; Tu, G. Optimizing Selective Cutting Strategies for Maximum Carbon Stocks and Yield of Moso Bamboo Forest Using BIOME-BGC Model. J. Environ. Manag. 2017, 191, 126–135. [Google Scholar] [CrossRef]
- Brinck, K.; Fischer, R.; Groeneveld, J.; Lehmann, S.; Dantas De Paula, M.; Pütz, S.; Sexton, J.O.; Song, D.; Huth, A. High Resolution Analysis of Tropical Forest Fragmentation and Its Impact on the Global Carbon Cycle. Nat. Commun. 2017, 8, 14855. [Google Scholar] [CrossRef]
- Liu, S.; Bond-Lamberty, B.; Hicke, J.A.; Vargas, R.; Zhao, S.; Chen, J.; Edburg, S.L.; Hu, Y.; Liu, J.; McGuire, A.D.; et al. Simulating the Impacts of Disturbances on Forest Carbon Cycling in North America: Processes, Data, Models, and Challenges. J. Geophys. Res. 2011, 116, G00K08. [Google Scholar] [CrossRef]
- Fischer, R.; Bohn, F.; Dantas de Paula, M.; Dislich, C.; Groeneveld, J.; Gutiérrez, A.G.; Kazmierczak, M.; Knapp, N.; Lehmann, S.; Paulick, S.; et al. Lessons Learned from Applying a Forest Gap Model to Understand Ecosystem and Carbon Dynamics of Complex Tropical Forests. Ecol. Model. 2016, 326, 124–133. [Google Scholar] [CrossRef]
- Ueyama, M.; Ichii, K.; Hirata, R.; Takagi, K.; Asanuma, J.; Machimura, T.; Nakai, Y.; Ohta, T.; Saigusa, N.; Takahashi, Y.; et al. Simulating Carbon and Water Cycles of Larch Forests in East Asia by the BIOME-BGC Model with AsiaFlux Data. Biogeosciences 2010, 7, 959–977. [Google Scholar] [CrossRef]
- Hidy, D.; Barcza, Z.; Haszpra, L.; Churkina, G.; Pintér, K.; Nagy, Z. Development of the Biome-BGC Model for Simulation of Managed Herbaceous Ecosystems. Ecol. Model. 2012, 226, 99–119. [Google Scholar] [CrossRef]
- Velasco, E.; Roth, M. Cities as Net Sources of CO2: Review of Atmospheric CO2 Exchange in Urban Environments Measured by Eddy Covariance Technique: Urban CO2 Flux Measurements by Eddy Covariance. Geogr. Compass 2010, 4, 1238–1259. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-Km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- White, M.A.; Thornton, P.E.; Running, S.W.; Nemani, R.R. Parameterization and Sensitivity Analysis of the BIOME–BGC Terrestrial Ecosystem Model: Net Primary Production Controls. Earth Interact. 2000, 4, 1–85. [Google Scholar] [CrossRef]
- Li, S.; Wang, G.; Sun, S.; Chen, H.; Bai, P.; Zhou, S.; Huang, Y.; Wang, J.; Deng, P. Assessment of Multi-Source Evapotranspiration Products over China Using Eddy Covariance Observations. Remote Sens. 2018, 10, 1692. [Google Scholar] [CrossRef]
- Zhou, G.; Houlton, B.Z.; Wang, W.; Huang, W.; Xiao, Y.; Zhang, Q.; Liu, S.; Cao, M.; Wang, X.; Wang, S.; et al. Substantial Reorganization of China’s Tropical and Subtropical Forests: Based on the Permanent Plots. Glob. Change Biol. 2014, 20, 240–250. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Wang, S.; Yuan, G.; Yang, Y.; Cao, M. Evapotranspiration of a Tropical Rain Forest in Xishuangbanna, Southwest China. Hydrol. Process. 2010, 24, 2405–2416. [Google Scholar] [CrossRef]
- Sun, R.; Wu, Z.; Lan, G.; Yang, C.; Fraedrich, K. Effects of Rubber Plantations on Soil Physicochemical Properties on Hainan Island, China. J. Environ. Qual. 2021, 50, 1351–1363. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Brancalion, P.H.S.; Laestadius, L.; Bennett-Curry, A.; Buckingham, K.; Kumar, C.; Moll-Rocek, J.; Vieira, I.C.G.; Wilson, S.J. When Is a Forest a Forest? Forest Concepts and Definitions in the Era of Forest and Landscape Restoration. Ambio 2016, 45, 538–550. [Google Scholar] [CrossRef]
- Azizan, F.A.; Kiloes, A.M.; Astuti, I.S.; Abdul Aziz, A. Application of Optical Remote Sensing in Rubber Plantations: A Systematic Review. Remote Sens. 2021, 13, 429. [Google Scholar] [CrossRef]
- Zagayevskiy, Y.; Deutsch, C.V. A Methodology for Sensitivity Analysis Based on Regression: Applications to Handle Uncertainty in Natural Resources Characterization. Nat. Resour. Res. 2015, 24, 239–274. [Google Scholar] [CrossRef]
- Ashley, R.A.; Parmeter, C.F. Sensitivity Analysis of an OLS Multiple Regression Inference with Respect to Possible Linear Endogeneity in the Explanatory Variables, for Both Modest and for Extremely Large Samples. Econometrics 2020, 8, 11. [Google Scholar] [CrossRef]
- Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; de Freitas, N. Taking the Human Out of the Loop: A Review of Bayesian Optimization. Proc. IEEE 2016, 104, 148–175. [Google Scholar] [CrossRef]
- Falkner, S.; Klein, A.; Hutter, F. BOHB: Robust and Efficient Hyperparameter Optimization at Scale. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018. [Google Scholar]
- Raj, R.; Hamm, N.A.S.; van der Tol, C.; Stein, A. Variance-Based Sensitivity Analysis of BIOME-BGC for Gross and Net Primary Production. Ecol. Model. 2014, 292, 26–36. [Google Scholar] [CrossRef]
- Dagon, K.; Sanderson, B.M.; Fisher, R.A.; Lawrence, D.M. A Machine Learning Approach to Emulation and Biophysical Parameter Estimation with the Community Land Model, Version 5. Adv. Stat. Climatol. Meteorol. Oceanogr. 2020, 6, 223–244. [Google Scholar] [CrossRef]
- Ferlian, O.; Wirth, C.; Eisenhauer, N. Leaf and Root C-to-N Ratios Are Poor Predictors of Soil Microbial Biomass C and Respiration across 32 Tree Species. Pedobiologia 2017, 65, 16–23. [Google Scholar] [CrossRef]
- Ryan, M.G. Effects of Climate Change on Plant Respiration. Ecol. Appl. 1991, 1, 157–167. [Google Scholar] [CrossRef]
- O’Leary, B.M.; Asao, S.; Millar, A.H.; Atkin, O.K. Core Principles Which Explain Variation in Respiration across Biological Scales. New Phytol. 2019, 222, 670–686. [Google Scholar] [CrossRef]
- Pan, S.; Tian, H.; Dangal, S.R.S.; Ouyang, Z.; Tao, B.; Ren, W.; Lu, C.; Running, S. Modeling and Monitoring Terrestrial Primary Production in a Changing Global Environment: Toward a Multiscale Synthesis of Observation and Simulation. Adv. Meteorol. 2014, 2014, 965936. [Google Scholar] [CrossRef]
- Bonan, G.B.; Doney, S.C. Climate, Ecosystems, and Planetary Futures: The Challenge to Predict Life in Earth System Models. Science 2018, 359, eaam8328. [Google Scholar] [CrossRef] [PubMed]
- Brienen, R.J.W.; Caldwell, L.; Duchesne, L.; Voelker, S.; Barichivich, J.; Baliva, M.; Ceccantini, G.; Di Filippo, A.; Helama, S.; Locosselli, G.M.; et al. Forest Carbon Sink Neutralized by Pervasive Growth-Lifespan Trade-Offs. Nat. Commun. 2020, 11, 4241. [Google Scholar] [CrossRef] [PubMed]
- Hertel, D.; Moser, G.; Culmsee, H.; Erasmi, S.; Horna, V.; Schuldt, B.; Leuschner, C. Below- and above-Ground Biomass and Net Primary Production in a Paleotropical Natural Forest (Sulawesi, Indonesia) as Compared to Neotropical Forests. For. Ecol. Manag. 2009, 258, 1904. [Google Scholar] [CrossRef]
- Du, L.; Zeng, Y.; Ma, L.; Qiao, C.; Wu, H.; Su, Z.; Bao, G. Effects of Anthropogenic Revegetation on the Water and Carbon Cycles of a Desert Steppe Ecosystem. Agric. For. Meteorol. 2021, 300, 108339. [Google Scholar] [CrossRef]
- Fisher, R.A.; Koven, C.D.; Anderegg, W.R.L.; Christoffersen, B.O.; Dietze, M.C.; Farrior, C.E.; Holm, J.A.; Hurtt, G.C.; Knox, R.G.; Lawrence, P.J.; et al. Vegetation Demographics in Earth System Models: A Review of Progress and Priorities. Glob. Change Biol. 2018, 24, 35–54. [Google Scholar] [CrossRef]
- Powers, J.S.; Corre, M.D.; Twine, T.E.; Veldkamp, E. Geographic Bias of Field Observations of Soil Carbon Stocks with Tropical Land-Use Changes Precludes Spatial Extrapolation. Proc. Natl. Acad. Sci. USA 2011, 108, 6318–6322. [Google Scholar] [CrossRef]
- Melbourne-Thomas, J.; Johnson, C.R.; Fulton, E.A. Characterizing Sensitivity and Uncertainty in a Multiscale Model of a Complex Coral Reef System. Ecol. Model. 2011, 222, 3320–3334. [Google Scholar] [CrossRef]
- Ma, H.; Ma, C.; Li, X.; Yuan, W.; Liu, Z.; Zhu, G. Sensitivity and Uncertainty Analyses of Flux-Based Ecosystem Model towards Improvement of Forest GPP Simulation. Sustainability 2020, 12, 2584. [Google Scholar] [CrossRef]
- Fodor, N.; Pásztor, L.; Szabó, B.; Laborczi, A.; Pokovai, K.; Hidy, D.; Hollós, R.; Kristóf, E.; Kis, A.; Dobor, L.; et al. Input Database Related Uncertainty of Biome-BGCMuSo Agro-Environmental Model Outputs. Int. J. Digit. Earth 2021, 14, 1582–1601. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, J.; Zhou, Y.; Zheng, Y.; Li, J.; Xiao, H. Drought Events and Their Effects on Vegetation Productivity in China. Ecosphere 2016, 7, e01591. [Google Scholar] [CrossRef]
- Imvitthaya, C. Calibration of a Biome-Biogeochemical Cycles Model for Modeling the Net Primary Production of Teak Forests through Inverse Modeling of Remotely Sensed Data. J. Appl. Remote Sens. 2011, 5, 053516. [Google Scholar] [CrossRef]
- Gough, C.M.; Atkins, J.W.; Bond-Lamberty, B.; Agee, E.A.; Dorheim, K.R.; Fahey, R.T.; Grigri, M.S.; Haber, L.T.; Mathes, K.C.; Pennington, S.C.; et al. Forest Structural Complexity and Biomass Predict First-Year Carbon Cycling Responses to Disturbance. Ecosystems 2021, 24, 699–712. [Google Scholar] [CrossRef]
- Singh, A.K.; Liu, W.; Zakari, S.; Wu, J.; Yang, B.; Jiang, X.J.; Zhu, X.; Zou, X.; Zhang, W.; Chen, C.; et al. A Global Review of Rubber Plantations: Impacts on Ecosystem Functions, Mitigations, Future Directions, and Policies for Sustainable Cultivation. Sci. Total Environ. 2021, 796, 148948. [Google Scholar] [CrossRef] [PubMed]
Name of Input File | Context |
---|---|
INI file | Site latitude, elevation, period of simulation, atmospheric CO2 concentration and N deposition. |
MET file | Daily precipitation, daily maximum temperature, daily minimum temperature, daily average temperature, and radiation. |
EPC file | Yearly turnover and mortality; carbon allocation; carbon to nitrogen ratio; allocation of labile, cellulose, and lignin; parameters of leaf and canopy; conductance, water potential, and VPD. |
Soil file | Soil depth, sand and silt percentage, soil PH. |
Site | Latitude | Longitude | Elevation (m a.s.l.) | Years of Available Data | Type of Forest | Reference |
---|---|---|---|---|---|---|
DHS (Guangdong Province, China) | 23°10′ N | 112°32′ E | 300 | 2006–2009 | Evergreen breed forest | [27] |
X_a (Yunnan Province, China) | 21°36′ N | 101°34′ E | 750 | 2004–2015 | Evergreen breed forest | [28] |
DZ (Hainan Province, China) | 19°32′ N | 109°28′ E | 114 | 2010–2018 | Rubber plantation | [29] |
X_b (Yunnan Province, China) | 21°54′ N | 101°16′ E | 580 | 2010–2014 | Rubber plantation | [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Zhang, L.; Yan, M.; Ruan, L.; Chen, B. Carbon Flux Modeling with the Calibrated Biome-BGCMuSo in China’s Tropical Forests: Natural and Rubber-Planted Forests. Forests 2025, 16, 661. https://doi.org/10.3390/f16040661
Yang F, Zhang L, Yan M, Ruan L, Chen B. Carbon Flux Modeling with the Calibrated Biome-BGCMuSo in China’s Tropical Forests: Natural and Rubber-Planted Forests. Forests. 2025; 16(4):661. https://doi.org/10.3390/f16040661
Chicago/Turabian StyleYang, Fan, Li Zhang, Min Yan, Linlin Ruan, and Bowei Chen. 2025. "Carbon Flux Modeling with the Calibrated Biome-BGCMuSo in China’s Tropical Forests: Natural and Rubber-Planted Forests" Forests 16, no. 4: 661. https://doi.org/10.3390/f16040661
APA StyleYang, F., Zhang, L., Yan, M., Ruan, L., & Chen, B. (2025). Carbon Flux Modeling with the Calibrated Biome-BGCMuSo in China’s Tropical Forests: Natural and Rubber-Planted Forests. Forests, 16(4), 661. https://doi.org/10.3390/f16040661