Shrub Extraction in Arid Regions Based on Feature Enhancement and Transformer Network from High-Resolution Remote Sensing Images
Abstract
1. Introduction
2. Study Area and Dataset Construction
2.1. Study Area
2.2. Dataset Construction
3. Methodology
3.1. Network Infrastructure
3.2. Transformer Module
3.3. Feature Enhancement Module
4. Experiment
4.1. Experimental Environment and Evaluation Indicators
4.2. Comparison Experiments
4.3. Ablation Experiments
4.4. Practical Application Scenarios
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, H.; Tao, H.; Zhang, Z. Projected spatial distribution patterns of three dominant desert plants in Xinjiang of Northwest China. Forests 2025, 16, 1031. [Google Scholar] [CrossRef]
- Garcia-Estringana, P.; Alonso-Blázquez, N.; Alegre, J. Water storage capacity, stemflow and water funneling in Mediterranean shrubs. J. Hydrol. 2010, 389, 363–372. [Google Scholar] [CrossRef]
- Kooch, Y.; Zarei, F.D. Soil function indicators below shrublands with different species composition. Catena 2023, 227, 107111. [Google Scholar] [CrossRef]
- Liu, Z.; Shao, Y.; Cui, Q.; Ye, X.; Huang, Z. ‘Fertile island’ effects on the soil microbial community beneath the canopy of Tetraena mongolica, an endangered and dominant shrub in the West Ordos Desert, North China. BMC Plant Biol. 2024, 24, 178. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, L.; Yang, Q.; Zhao, W.; Wang, X. Effect of desert shrubs on fine-scale spatial patterns of understory vegetation in a dry-land. Plant Ecol. 2016, 217, 1141–1155. [Google Scholar] [CrossRef]
- Sun, J.; Zhong, C.; He, H.; Nureman, T.; Li, H. Continuous remote sensing monitoring and changes of land desertification in China from 2000 to 2015. J. Northeast For. Univ. 2021, 49, 87–92. [Google Scholar]
- Liu, Y.; Dong, L.; Wang, J.; Li, J.; Yi, L.; Li, H.; Chai, S.; Han, Z. Spatial heterogeneity affects the spatial distribution patterns of Caragana tibetica scrubs. Forests 2024, 15, 2072. [Google Scholar] [CrossRef]
- Cohen, W.B.; Maiersperger, T.K.; Gower, S.T.; Turner, D.P. An improved strategy for regression of biophysical variables and Landsat ETM+ data. Remote Sens. Environ. 2003, 84, 561–571. [Google Scholar] [CrossRef]
- Ni, Y.; Liu, J.; Cui, J.; Yang, Y.; Wang, X. Edge guidance network for semantic segmentation of high-resolution remote sensing images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 9382–9395. [Google Scholar] [CrossRef]
- Tang, C.; Jiang, X.; Li, G.; Lu, D. Developing a new method to rapidly map Eucalyptus distribution in subtropical regions using Sentinel-2 imagery. Forests 2024, 15, 1799. [Google Scholar] [CrossRef]
- Nasiri, V.; Deljouei, A.; Moradi, F.; Sadeghi, S.M.M.; Borz, S.A. Land use and land cover mapping using Sentinel-2, Landsat-8 satellite images, and Google Earth Engine: A comparison of two composition methods. Remote Sens. 2022, 14, 1977. [Google Scholar] [CrossRef]
- Fan, F.; Shi, Y.; Zhu, X.X. Land cover classification from Sentinel-2 images with quantum-classical convolutional neural networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 12477–12489. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, J.; Ge, Y.; Dong, J. Uncovering the rapid expansion of photovoltaic power plants in China from 2010 to 2022 using satellite data and deep learning. Remote Sens. Environ. 2024, 305, 114100. [Google Scholar] [CrossRef]
- He, J.; Cheng, Y.; Wang, W.; Ren, Z.; Zhang, C.; Zhang, W. A lightweight building extraction approach for contour recovery in complex urban environments. Remote Sens. 2024, 16, 740. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, W.; Ren, Z.; Zhao, Y.; Liao, Y.; Ge, Y.; Wang, J.; He, J.; Gu, Y.; Wang, Y.; et al. Multi-scale feature fusion and Transformer network for urban green space segmentation from high-resolution remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103514. [Google Scholar] [CrossRef]
- Brandt, M.; Tucker, C.J.; Kariryaa, A.; Rasmussen, K.; Abel, C.; Small, J.; Chave, J.; Rasmussen, L.V.; Hiernaux, P.; Diouf, A.A.; et al. An unexpectedly large count of trees in the West African Sahara and Sahel. Nature 2020, 587, 78–82. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Q.; Peng, D. Classification method of tree species based on GF-2 remote sensing images. Remote Sens. Technol. Appl. 2019, 34, 970–982. [Google Scholar]
- Zhang, C.; Liu, J.; Yu, F.; Wan, S.; Han, Y.; Wang, J.; Wang, G. Segmentation model based on convolutional neural networks for extracting vegetation from Gaofen-2 images. J. Appl. Remote Sens. 2018, 12, 042804. [Google Scholar] [CrossRef]
- Wang, W.; Cheng, Y.; Ren, Z.; He, J.; Zhao, Y.; Wang, J.; Zhang, W. A novel hybrid method for urban green space segmentation from high-resolution remote sensing images. Remote Sens. 2023, 15, 5472. [Google Scholar] [CrossRef]
- Xue, X.; Guo, X.; Xue, D.; Ma, Y.; Yang, F. Remote sensing estimation methods for determining FVC in northwest desert arid low disturbance areas based on GF-2 imagery. J. Resour. Ecol. 2023, 14, 833–846. [Google Scholar] [CrossRef]
- Gu, Y.; Hunt, E.; Wardlow, B.; Basara, J.B.; Brown, J.F.; Verdin, J.P. Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data. Geophys. Res. Lett. 2008, 35, L22401. [Google Scholar] [CrossRef]
- Garajeh, M.K.; Feizizadeh, B.; Weng, Q.; Moghaddam, M.H.R.; Garajeh, A.K. Desert landform detection and mapping using a semi-automated object-based image analysis approach. J. Arid Environ. 2022, 199, 104721. [Google Scholar] [CrossRef]
- Meng, J.; Xiong, W.; Zhou, H.; Zhang, X.; Liu, T.; Gao, X. Research on neural network extraction methods for vegetation in the Mu Us Desert. Comput. Digit. Eng. 2024, 52, 206–212. [Google Scholar]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Al-Ali, Z.M.; Abdullah, M.M.; Asadalla, N.B.; Gholoum, M. A comparative study of remote sensing classification methods for monitoring and assessing desert vegetation using a UAV-based multispectral sensor. Environ. Monit. Assess. 2020, 192, 389. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Gao, J.; Yang, J.; Ye, N. Neighborhood linear discriminant analysis. Pattern Recognit. 2022, 123, 108422. [Google Scholar] [CrossRef]
- Zhu, F.; Zhang, W.; Chen, X.; Gao, X.; Ye, N. Large margin distribution multi-class supervised novelty detection. Expert Syst. Appl. 2023, 224, 119937. [Google Scholar] [CrossRef]
- Song, Z.; Lu, Y.; Ding, Z.; Sun, D.; Jia, Y.; Sun, W. A new remote sensing desert vegetation detection index. Remote Sens. 2023, 15, 5742. [Google Scholar] [CrossRef]
- Yue, J.; Mu, G.; Tang, Z.; Yang, X.; Lin, Y.; Xu, L. Empirical model study on remote sensing estimation of vegetation coverage in arid desert areas of Xinjiang based on NDVI. Arid Land Geogr. 2020, 43, 153–160. [Google Scholar]
- Tan, Y.C.; Duarte, L.; Teodoro, A.C. Comparative study of random forest and support vector machine for land cover classification and post-wildfire change detection. Land 2024, 13, 1878. [Google Scholar] [CrossRef]
- Hashim, H.; Abd Latif, Z.; Adnan, N.A.; Che Hashim, I.; Zahari, N.F. Vegetation extraction with pixel-based classification approach in urban park area. Plan. Malays. 2021, 19, 108–120. [Google Scholar] [CrossRef]
- Jawak, S.D.; Devliyal, P.; Luis, A.J. A comprehensive review on pixel-oriented and object-oriented methods for information extraction from remotely sensed satellite images with a special emphasis on cryospheric applications. Adv. Remote Sens. 2015, 4, 177–195. [Google Scholar] [CrossRef]
- Aplin, P.; Smith, G.M. Advances in object-based image classification. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 725–728. [Google Scholar]
- Chen, Z.; Ning, X.; Zhang, J. Urban land cover classification based on WorldView-2 image data. In Proceedings of the 2012 International Symposium on Geomatics for Integrated Water Resource Management, Wuhan, China, 19–21 October 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–5. [Google Scholar]
- Guirado, E.; Tabik, S.; Alcaraz-Segura, D.; Cabello, J.; Herrera, F. Deep-learning versus OBIA for scattered shrub detection with Google Earth imagery: Ziziphus lotus as case study. Remote Sens. 2017, 9, 1220. [Google Scholar] [CrossRef]
- Hossain, M.D.; Chen, D. Segmentation for object-based image analysis (OBIA): A review of algorithms and challenges from remote sensing perspective. ISPRS J. Photogramm. Remote Sens. 2019, 150, 115–134. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Zhang, Y.; Peng, D.; Bruzzone, L. Cost-efficient information extraction from massive remote sensing data: When weakly supervised deep learning meets remote sensing big data. Int. J. Appl. Earth Obs. Geoinf. 2023, 120, 103345. [Google Scholar] [CrossRef]
- Zheng, C.; Jiang, Y.; Lv, X.; Nie, J.; Liang, X.; Wei, Z. SSDT: Scale-separation semantic decoupled transformer for semantic segmentation of remote sensing images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 9037–9052. [Google Scholar] [CrossRef]
- Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef]
- Jiang, C.; Ren, H.; Ye, X.; Zhu, J.; Zeng, H.; Nan, Y.; Sun, M.; Ren, X.; Huo, H. Object detection from UAV thermal infrared images and videos using YOLO models. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102912. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, C.; Li, J.; Fan, W.; Du, J.; Zhong, B. Adaboost-like end-to-end multiple lightweight U-Nets for road extraction from optical remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102341. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Mehta, S.; Rastegari, M.; Shapiro, L.; Hajishirzi, H. ESPNetv2: A light-weight, power efficient, and general purpose convolutional neural network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 9190–9200. [Google Scholar]
- Lee, D.H.; Park, H.Y.; Lee, J. A review on recent deep learning-based semantic segmentation for urban greenness measurement. Sensors 2024, 24, 2245. [Google Scholar] [CrossRef]
- Ouyang, S.; Du, S.; Zhang, X.; Du, S.; Bai, L. MDFF: A method for fine-grained UFZ mapping with multimodal geographic data and deep network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 9951–9966. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Li, S.; Wang, S.; Wang, P. A small object detection algorithm for traffic signs based on improved YOLOv7. Sensors 2023, 23, 7145. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, M.; Zhu, G.; Liu, Y.; Guo, P.; Yan, J. FFCA-YOLO for small object detection in remote sensing images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–15. [Google Scholar] [CrossRef]
- Abdullayev, I.N. Flora and faunas of Uzbekistan. Mountain, lakes, rivers, deserts and steppes. The “Redbook” of Uzbekistan. Mod. Educ. Dev. 2024, 1, 353–360. [Google Scholar]
- Kapustina, L.A. Biodiversity, ecology, and microelement composition of Kyzylkum Desert shrubs (Uzbekistan). In Shrubland Ecosystem Genetics and Biodiversity: Proceedings of the Conference, Provo, UT, USA, 13–15 June 2000; McArthur, E.D., Fairbanks, D.J., Eds.; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2001; pp. 98–103. [Google Scholar]
- Ortiqova, L. Diversity of ecological conditions of the Kyzylkum Desert with pasture phytomelioration. Arkhiv Nauchnykh Publikatsii JSPI 2020, 8, 34–41. [Google Scholar]
- Okin, G.S.; Roberts, D.A.; Murray, B.; Okin, W.J. Practical limits on hyperspectral vegetation discrimination in arid and semiarid environments. Remote Sens. Environ. 2001, 77, 212–225. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning (ICML), Long Beach, CA, USA, 9–15 June 2019; PMLR: New York, NY, USA, 2019; pp. 6105–6114. [Google Scholar]
- Pan, J.; Bulat, A.; Tan, F.; Zhu, X.; Dudziak, L.; Li, H.; Tzimiropoulos, G.; Martinez, B. EdgeViTs: Competing light-weight CNNs on mobile devices with vision transformers. In Proceedings of the European Conference on Computer Vision (ECCV), Tel Aviv, Israel, 23–27 October 2022; Springer Nature: Cham, Switzerland, 2022; pp. 294–311. [Google Scholar]
- Cheng, S.; Li, B.; Sun, L.; Chen, Y. HRRNet: Hierarchical refinement residual network for semantic segmentation of remote sensing images. Remote Sens. 2023, 15, 1244. [Google Scholar] [CrossRef]
- Li, H.; Xiong, P.; Fan, H.; Sun, J. DFANet: Deep feature aggregation for real-time semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 9522–9531. [Google Scholar]
- Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep high-resolution representation learning for human pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 5693–5703. [Google Scholar]
- Park, H.; Sjösund, L.L.; Yoo, Y.; Bang, J.; Kwak, N. ExtremeC3Net: Extreme lightweight portrait segmentation networks using advanced C3-modules. arXiv 2019, arXiv:1908.03093. [Google Scholar]
- Shi, T.; Gong, J.; Hu, J.; Zhi, X.; Zhang, W.; Zhang, Y.; Zhang, P.; Bao, G. Feature-enhanced CenterNet for small object detection in remote sensing images. Remote Sens. 2022, 14, 5488. [Google Scholar] [CrossRef]
Method | PA (%) | MPA (%) | F1 (%) | MIOU (%) | FWIOU (%) |
---|---|---|---|---|---|
HRRNet | 92.89 | 69.33 | 69.89 | 63.60 | 89.53 |
DFANet | 93.27 | 70.63 | 70.68 | 64.59 | 89.87 |
DeepLabv3+ | 94.16 | 77.62 | 76.39 | 70.77 | 90.52 |
HRNet | 95.46 | 83.02 | 81.67 | 76.62 | 92.24 |
FCN16s | 95.53 | 83.79 | 81.98 | 77.14 | 92.30 |
ESPNetv2 | 95.88 | 86.34 | 83.35 | 79.14 | 92.71 |
ExtremeC3Net | 96.53 | 89.51 | 85.79 | 82.34 | 93.69 |
FCN8s | 97.25 | 90.53 | 88.75 | 85.29 | 94.97 |
SegNet | 98.55 | 94.67 | 93.78 | 91.53 | 97.25 |
FETNet | 98.72 | 95.42 | 94.46 | 92.49 | 97.56 |
Method | PA (%) | MIOU (%) | Flops (G) | Params (M) |
---|---|---|---|---|
baseline | 98.50 | 91.30 | 2.46 | 5.83 |
baseline + EdgeViT | 98.61 | 91.60 | 2.71 | 6.3 |
baseline + FEM | 98.67 | 92.12 | 2.68 | 6.21 |
baseline + FEM + EdgeViT | 98.72 | 92.49 | 2.93 | 6.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Zhang, W.; Cheng, Y.; He, J.; Shao, H.; Bai, S.; Wang, W.; Zhou, D.; Zhu, F.; Samatov, N.; et al. Shrub Extraction in Arid Regions Based on Feature Enhancement and Transformer Network from High-Resolution Remote Sensing Images. Forests 2025, 16, 1288. https://doi.org/10.3390/f16081288
Liu H, Zhang W, Cheng Y, He J, Shao H, Bai S, Wang W, Zhou D, Zhu F, Samatov N, et al. Shrub Extraction in Arid Regions Based on Feature Enhancement and Transformer Network from High-Resolution Remote Sensing Images. Forests. 2025; 16(8):1288. https://doi.org/10.3390/f16081288
Chicago/Turabian StyleLiu, Hao, Wenjie Zhang, Yong Cheng, Jiaxin He, Haoyun Shao, Sen Bai, Wei Wang, Di Zhou, Fa Zhu, Nuriddin Samatov, and et al. 2025. "Shrub Extraction in Arid Regions Based on Feature Enhancement and Transformer Network from High-Resolution Remote Sensing Images" Forests 16, no. 8: 1288. https://doi.org/10.3390/f16081288
APA StyleLiu, H., Zhang, W., Cheng, Y., He, J., Shao, H., Bai, S., Wang, W., Zhou, D., Zhu, F., Samatov, N., Pulatov, B., & Inamov, A. (2025). Shrub Extraction in Arid Regions Based on Feature Enhancement and Transformer Network from High-Resolution Remote Sensing Images. Forests, 16(8), 1288. https://doi.org/10.3390/f16081288