The Performance of a Novel Automated Algorithm in Estimating Truckload Volume Based on LiDAR Data
Abstract
1. Introduction
2. Materials and Methods
2.1. The Study Area, the Experimental Design, and the Data Collection
- Trial 1 (T1): The evaluation of a professional mobile laser scanning (MLS GeoSLAM Zeb Revo Horizon—manufactured by GeoSLAM Ltd., headquartered in Nottingham (Ruddington), UK) platform, compared against detailed manual measurements for 28 truckloads;
- Trial 2 (T2): The evaluation of a smartphone-based iPhone 14 Pro Max LiDAR sensor, paired with the 3D Scanner App, Version 1.1.6 (https://3dscannerapp.com/, accessed on 30 July 2025), compared against the factory-installed Microtec system’s values for 20 truckloads.
2.2. Manual and Factory Reference Measurements
2.3. The LiDAR Scanning Procedure
2.4. The Algorithm Workflow
- Scene Isolation: The truck is extracted from the background using bounding geometry constraints.
- Orientation Adjustment: The truck axis is aligned with the coordinate axes by rotating and translating the point cloud.
- Load Segmentation: Color-based labels are used to identify the cabin and 1–4 loads. White dotted planes delineate individual loads.
- Cross-Projections: For each load, multiple orthogonal 2D projections (start, middle, end) are generated to define the envelope.
- Three-Dimensional Modeling: Occluded or partially visible regions (e.g., top or back) are approximated using geometric interpolation and a closed 3D shape is reconstructed to compute the volume.
2.5. The Performance Assessment Methodology
3. Results
3.1. The Performance Assessment
3.2. Agreement
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scholz, J.; De Meyer, A.; Marques, A.S.; Pihno, T.M.; Boaventura-Cunha, J.; Orshoven, J.V.; Rosset, C.; Künzi, J.; Kaarle, J.; Nummila, K. Digital technologies for forest supply chain optimization: Existing solutions and future trends. Environ. Manag. 2018, 62, 1108–1133. [Google Scholar] [CrossRef]
- D’Amours, S.; Rönnqvist, M.; Weintraub, A. Using operations research for supply chain planning in the forest products industry. Inf. Syst. Oper. Res. 2008, 46, 265–281. [Google Scholar]
- Rauch, P.; Borz, S.A. Reengineering the Romanian timber supply chain from a process management perspective. Croat. J. For. Eng. 2020, 41, 85–94. [Google Scholar] [CrossRef]
- Windisch, J.; Röser, D.; Mola-Yudego, B.; Sikanen, L.; Asikainen, A. Business process mapping and discrete-event simulation of two forest biomass supply chains. Biomass Bioenergy 2013, 56, 370–381. [Google Scholar] [CrossRef]
- Müller, F.; Jaeger, D.; Hanewinkel, M. Digitization in wood supply—A review of how Industry 4.0 will change the forest value chain. Comput. Electron. Agric. 2019, 162, 206–218. [Google Scholar] [CrossRef]
- Borz, S.A.; Proto, A.R. Application and accuracy of smart technologies for measurements of roundwood: Evaluation of time consumption and efficiency. Comput. Electron. Agric. 2022, 197, 106990. [Google Scholar] [CrossRef]
- Lyons, C.K.; Borz, S.A.; Harvey, C.; Ramantswana, M.; Sakai, H.; Visser, R. Forest roads: Regional perspectives from around the world. Int. J. For. Eng. 2023, 34, 190–203. [Google Scholar] [CrossRef]
- Palander, T.; Haavikko, H.; Kortelainen, E.; Kärhä, K.; Borz, S.A. Improving environmental and energy efficiency in wood transportation for a carbon-neutral forest industry. Forests 2021, 11, 1194. [Google Scholar] [CrossRef]
- Palander, T.; Borz, S.A.; Kärhä, K. Impacts of Road Infrastructure on the Environmental Efficiency of High Capacity Transportation in Harvesting of Renewable Wood Energy. Energies 2021, 14, 453. [Google Scholar] [CrossRef]
- Chabanet, S.; Bril El-Haouzi, H.; Morin, M.; Gaudreault, J.; Thomas, P. Toward digital twins for sawmill production planning control: Benefits opportunities challenges. Int. J. Prod. Res. 2023, 61, 2190–2213. [Google Scholar] [CrossRef]
- Moskalik, T.; Borz, S.A.; Dvořák, J.; Ferencik, M.; Glushkov, S.; Muiste, P.; Lazdiņš, A.; Styranivsky, O. Timber harvesting methods in Eastern European countries: A review. Croat. J. For. Eng. 2017, 38, 231–241. [Google Scholar]
- Niţă, M.D.; Borz, S.A. Accuracy of a Smartphone-based freeware solution and two shape reconstruction algorithms in log volume measurements. Comput. Electron. Agric. 2023, 205, 107653. [Google Scholar] [CrossRef]
- Sandberg, D.; Fink, G.; Hasener, J.; Kairi, M.; Marhenke, T.; Ross, R.J.; Steiger, R.; Wang, X. Process Control Grading in Primary Wood Processing; Springer Handbooks: Berlin/Heidelberg, Germany, 2023; pp. 1019–1073. [Google Scholar]
- Acuna, M.; Sosa, A. Automated volumetric measurements of truckloads through multi-view photogrammetry 3D reconstruction software. Croat. J. For. Eng. 2019, 40, 151–162. [Google Scholar]
- Carratù, M.; Gallo, V.; Liguori, C.; Lundgren, J.; O’Nils, M.; Pietrosanto, A. Vision-based system for measuring the diameter of wood logs. IEEE Open J. Instrum. Meas. 2023, 2, 5000112. [Google Scholar] [CrossRef]
- Carvalho, F.D.; Correia, B.A.B.; Davies, R.; Rodrigues, F.C.; Freitas, J.C.A. Image processing system for the measurement of timber truck loads. In Proceedings of the International Conference on Manufacturing Automation, Hongkong, China, 18 January 1993; Volume 1713, pp. 86–92. [Google Scholar] [CrossRef]
- Li, H.; Xiong, P.; An, J.; Wang, L. Pyramid attention network for semantic segmentation. In Proceedings of the British Machine Vision Conference 2018, BMVC 2018, Newcastle, UK, 3–6 September 2018. [Google Scholar]
- Maturana, D.; Scherer, S. VoxNet: A 3D convolutional neural network for real-time object recognition. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Hamburg, Germany, 28 September–2 October 2018; pp. 922–928. [Google Scholar] [CrossRef]
- Mohammadi, S.S.; Wang, Y.; Bue, A.D. 2021. POINTVIEW-GCN: 3D shape classification with multi-view point clouds. In Proceedings of the Proceedings—International Conference on Image Processing, ICIP, Anchorage, AK, USA, 19–22 September 2021; pp. 3103–3107. [Google Scholar] [CrossRef]
- Xu, D.; Li, F.; Wei, H. 2019. 3D point cloud plane segmentation method based on RANSAC and support vector machine. In Proceedings of the 14th IEEE Conference on Industrial Electronics and Applications, ICIEA 2019, Xi’an, China, 19–21 June 2019; pp. 943–948. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, C.; Tian, S.; Lu, B.; Zhang, L.; Ning, X.; Bai, X. Deep learning-based 3D point cloud classification: A systematic survey and outlook. Displays 2023, 79, 102456. [Google Scholar] [CrossRef]
- Sikora, J.; Fojtik, D.; Gebauer, J.; Podesva, P.; Mihola, M. Preparation of 3D models of trucks for timber load analysis. In Proceedings of the 2019 20th International Carpathian Control Conference, ICCC 2019, Krakow-Wieliczka, Poland, 26–29 May 2019. [Google Scholar] [CrossRef]
- Measuring Results—LoadMon. Available online: https://loadmon.com/measuring-results/ (accessed on 1 November 2023).
- Väyrynen, S. Timspect-Konenäköjärjestelmän Tarkkuus Puutavara-Autokuormien Tilavuuden Mittaamisessa. 2022. Available online: https://erepo.uef.fi/handle/123456789/26724 (accessed on 30 July 2025).
- Borz, S.A.; Toaza, J.M.M.; Forkuo, G.O.; Marcu, M.V. Potential of Measure app in estimating log biometrics: A comparison with conventional log measurement. Forests 2022, 13, 1028. [Google Scholar] [CrossRef]
- Fojtík, D.; Podešva, P.; Mahdal, M.; Mihola, M. Scanning of trucks to produce 3D models for analysis of timber loads. In Proceedings of the 2016 17th International Carpathian Control Conference, ICCC 2016, Tatranska Lomnica, Slovakia, 29 May–1 June 2016; pp. 194–199. [Google Scholar] [CrossRef]
- Agarwal, S.; Awan, A.; Roth, D. Learning to detect objects in images via a sparse, part-based representation. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1475–1490. [Google Scholar] [CrossRef]
- Nájera-Luna, J.A.; Méndez-González, J.; Corral-Rivas, S.; Hernández, F.J. Productivity of manual loading system of logs in El Salto, Durango, México. Rev. Chapingo Ser. Cienc. For. Ambient. 2023, 29, 119–131. [Google Scholar] [CrossRef]
- Niță, M.D. Testing forestry digital twinning workflow based on mobile lidar scanner and ai platform. Forests 2021, 12, 1576. [Google Scholar] [CrossRef]
- Zhao, H.; Sha, J.; Zhao, Y.; Xi, J.; Cui, J.; Zha, H.; Shibasaki, R. Detection and tracking of moving objects at intersections using a network of laser scanners. IEEE Trans. Intell. Transp. Syst. 2012, 13, 655–670. [Google Scholar] [CrossRef]
- Svilans, T.; Tamke, M.; Thomsen, M.R.; Runberger, J.; Strehlke, K.; Antemann, M. New workflows for digital timber. In Digital Wood Design: Innovative Techniques of Representation in Architectural Design; Springer International Publishing: Cham, Switzerland, 2019; Volume 24, pp. 93–134. [Google Scholar]
- Lehtomäki, M.; Jaakkola, A.; Hyyppä, J.; Lampinen, J.; Kaartinen, H.; Kukko, K.; Puttonen, E.; Hyyppä, H. Object classification recognition from mobile laser scanning point clouds in a road environment. IEEE Trans. Geosci. Remote. Sens. 2016, 56, 1226–1239. [Google Scholar] [CrossRef]
- de Miguel-Díez, F.; Reder, S.; Wallor, E.; Bahr, H.; Blasko, L.; Mund, J.-P.; Cremer, T. Further application of using a personal laser scanner simultaneous localization mapping technology to estimate log’s volume its comparison with traditional methods. Int. J. Appl. Earth Obs. Geoinf. 2022, 109, 102779. [Google Scholar] [CrossRef]
- Posit PBC. R Studio: Integrated Development Environment for R; Posit PBC: Boston, MA, USA, 2012; pp. 165–171. [Google Scholar]
- Wilmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean squared error (RMSE) in assessing the average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Kärhä, K.; Donagh, P.M.; Acuna, M.; Kanzian, C.; Petković, V.; Robert, R.C.G.; Costa, L.H.S.; da Cruz, R.C.; Krumov, T.; Bradley, A.; et al. Overview of global long-distance road transportation of industrial roundwood. Croat. J. For. Eng. 2024, 45, 217–236. [Google Scholar] [CrossRef]
- Hohmann, F.; Ligocki, A.; Frerichs, L. Harvester measuring system for trunk volume determination: Comparison with the real trunk volume and applicability in the forest industry. Bull. Transilv. Univ. Bras. Spec. Issue Ser. II For.—Wood Ind.—Agric. Food Eng. 2017, 10, 27–34. [Google Scholar]
- Hartsch, F.; Kemmerer, J.; Labelle, E.R.; Jaeger, D.; Wagner, T. Integration of harvester production data in German wood supply chains: Legal, social and economic requirements. Forests 2021, 12, 460. [Google Scholar] [CrossRef]
- Kemmerer, J.; Labelle, E.R. Using harvester data from on-board computers: A review of key findings opportunities challenges. Eur. J. For. Res. 2021, 140, 1–17. [Google Scholar] [CrossRef]
- Florea, S.C.; Dutca, I.; Nita, M.D. Tradeoffs and limitations in determining tree characteristics using 3D pointclouds from terrestrial laser scanning: A comparison of reconstruction algorithms on European bech (Fagus sylvatica L.) trees. Ann. For. Res. 2024, 67, 185–199. [Google Scholar] [CrossRef]
- Baban, G.; Niţă, M.D. Measuring forest height from space. Opportunities and limitations observed in natural forests. Measurement 2023, 211, 112593. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual comparisons by ranking methods. Biom. Bull. 1945, 1, 80–83. [Google Scholar] [CrossRef]
- Næsset, E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens. Environ. 2002, 80, 88–99. [Google Scholar] [CrossRef]
- Askar, C.; Sternberg, H. Use of smartphone lidar technology for low-cost 3D building documentation with iPhone 13 pro: A comparative analysis of mobile scanning applications. Geomatics 2023, 3, 563–579. [Google Scholar] [CrossRef]
- Balenović, I.; Liang, X.; Jurjević, L.; Hyyppä, J.; Seletković, A.; Kukko, A. Hand-held personal laser scanning—Current status perspectives for forest inventory application. Croat. J. For. Eng. 2021, 42, 165–183. [Google Scholar] [CrossRef]
- Si, H.; Qiu, J.; Li, Y. A review of point cloud registration algorithms for laser scanners: Applications in large-scale aircraft measurement. Appl. Sci. 2022, 12, 10247. [Google Scholar] [CrossRef]
- Abreu, N.; Pinto, A.; Matos, A.; Pires, M. Procedural point cloud modelling in scan-to-BIM and scan-vs-BIM applications: A review. ISPRS Int. J. Geo-Inf. 2023, 12, 260. [Google Scholar] [CrossRef]
- Gunawan, T.S.; Babiker, A.B.F.; Ismail, N.; Effendi, M.R. Development of intelligent telegram chatbot using Natural Language Processing. In Proceedings of the 2021 7th International Conference on Wireless and Telematics (ICWT), Bandung, Indonesia, 19–20 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5. [Google Scholar]
- Naser, R.S.; Lam, M.C.; Qamar, F.; Zaidan, B.B. Smartphone-based indoor localization systems: A systematic literature review. Electronics 2023, 12, 1814. [Google Scholar] [CrossRef]
- Ullah, H.; Uzair, M.; Jan, Z.; Ullah, M. Integrating industry 4.0 technologies in defense manufacturing: Challenges, solutions, and potential opportunities. Array 2024, 23, 100358. [Google Scholar] [CrossRef]
- Mazzochin, J.V.; Vitor, G.B.; Tiecker, G.; Diniz, E.M.; Oliveira, G.A.; Trentin, M.; Rodrigues, É.O. A Novel Approach for the Counting of Wood Logs Using cGANs and Image Processing Techniques. Forests 2025, 16, 237. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niţă, M.D.; Cucu-Dumitrescu, C.; Candrea, B.; Grama, B.; Iuga, I.; Borz, S.A. The Performance of a Novel Automated Algorithm in Estimating Truckload Volume Based on LiDAR Data. Forests 2025, 16, 1281. https://doi.org/10.3390/f16081281
Niţă MD, Cucu-Dumitrescu C, Candrea B, Grama B, Iuga I, Borz SA. The Performance of a Novel Automated Algorithm in Estimating Truckload Volume Based on LiDAR Data. Forests. 2025; 16(8):1281. https://doi.org/10.3390/f16081281
Chicago/Turabian StyleNiţă, Mihai Daniel, Cătălin Cucu-Dumitrescu, Bogdan Candrea, Bogdan Grama, Iulian Iuga, and Stelian Alexandru Borz. 2025. "The Performance of a Novel Automated Algorithm in Estimating Truckload Volume Based on LiDAR Data" Forests 16, no. 8: 1281. https://doi.org/10.3390/f16081281
APA StyleNiţă, M. D., Cucu-Dumitrescu, C., Candrea, B., Grama, B., Iuga, I., & Borz, S. A. (2025). The Performance of a Novel Automated Algorithm in Estimating Truckload Volume Based on LiDAR Data. Forests, 16(8), 1281. https://doi.org/10.3390/f16081281