Previous Issue
Volume 16, June
 
 

Forests, Volume 16, Issue 7 (July 2025) – 118 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
25 pages, 28482 KiB  
Article
Optimized MaxEnt Modeling of Catalpa bungei Habitat for Sustainable Management Under Climate Change in China
by Xiaomeng Shi, Jingshuo Zhao, Yanlin Wang, Guichun Wu, Yingjie Hou and Chunyan Yu
Forests 2025, 16(7), 1150; https://doi.org/10.3390/f16071150 - 11 Jul 2025
Abstract
Catalpa bungei C. A. Mey, an economically and ecologically important tree species endemic to China, exhibits notable drought resistance; however, the spatial dynamics of its habitat under future climate change have not been thoroughly investigated. We employed a parameter-optimized MaxEnt modeling framework to [...] Read more.
Catalpa bungei C. A. Mey, an economically and ecologically important tree species endemic to China, exhibits notable drought resistance; however, the spatial dynamics of its habitat under future climate change have not been thoroughly investigated. We employed a parameter-optimized MaxEnt modeling framework to project current and future suitable habitats for C. bungei under two Shared Socioeconomic Pathway scenarios, SSP126 (low-emission) and SSP585 (high-emission), based on CMIP6 climate data. We incorporated 126 spatially rarefied occurrence records and 22 environmental variables into a rigorous modeling workflow that included multicollinearity assessment and systematic variable screening. Parameter optimization was performed using the kuenm package in R version 4.2.3, and the best-performing model configuration was selected (Regularization Multiplier = 2.5; Feature Combination = LQT) based on the AICc, omission rate, and evaluation metrics (AUC, TSS, and Kappa). Model validation demonstrated robust predictive accuracy. Four primary environmental predictors obtained from WorldClim version 2.1—the minimum temperature of the coldest month (Bio6), annual precipitation (Bio12), maximum temperature of the warmest month (Bio5), and elevation—collectively explained over 90% of habitat suitability. Currently, the optimal habitats are concentrated in central and eastern China. By the 2090s, the total suitable habitats are projected to increase by approximately 4.25% under SSP126 and 18.92% under SSP585, coupled with a significant northwestward shift in the habitat centroid. Conversely, extremely suitable habitats are expected to markedly decline, particularly in southern China, due to escalating climatic stress. These findings highlight the need for adaptive afforestation planning and targeted conservation strategies to enhance the climate resilience of C. bungei under future climate change. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
37 pages, 2658 KiB  
Article
The Development of a Forest Tourism Attractiveness Model and a Foundational Framework for Forest Climatic Spa Resorts: An Attributive Theory Approach
by Darija Cvikl
Forests 2025, 16(7), 1149; https://doi.org/10.3390/f16071149 - 11 Jul 2025
Abstract
To date, there has been a noticeable lack of a systematic and structured approach to the development of forest therapy tourism. This study addresses this problem by introducing a forest tourism attractiveness model and an evidence-based framework for the conceptual development of Forest [...] Read more.
To date, there has been a noticeable lack of a systematic and structured approach to the development of forest therapy tourism. This study addresses this problem by introducing a forest tourism attractiveness model and an evidence-based framework for the conceptual development of Forest Climatic Spa Resorts. Based on an attributive theory approach, a comprehensive set of forest tourism attractiveness attributes is defined, a model of forest tourism attractiveness is developed, and theoretical and conceptual foundations to support the criteria for the development of Forest Climatic Spa Resorts are presented. This research contributes to the ongoing discourse on sustainable tourism practices and emphasises the role of forest environments in promoting health and well-being in therapeutic tourism activities. Ultimately, our findings offer valuable insights for policymakers, tourism developers, and practitioners in the field of forest therapy tourism, providing a foundation for future initiatives aimed at enhancing the appeal and sustainability of forest-based tourism experiences. Full article
(This article belongs to the Section Urban Forestry)
13 pages, 2863 KiB  
Article
Fungi Associated with Dying Buckthorn in North America
by Ryan D. M. Franke, Nickolas N. Rajtar and Robert A. Blanchette
Forests 2025, 16(7), 1148; https://doi.org/10.3390/f16071148 - 11 Jul 2025
Abstract
Common buckthorn (Rhamnus cathartica L.) is a small tree that forms dense stands, displacing native plant species and threatening natural forest habitats in its introduced range in North America. Removal via cutting is labor intensive and often ineffective due to vigorous resprouting. [...] Read more.
Common buckthorn (Rhamnus cathartica L.) is a small tree that forms dense stands, displacing native plant species and threatening natural forest habitats in its introduced range in North America. Removal via cutting is labor intensive and often ineffective due to vigorous resprouting. Although chemical control methods are effective, they can negatively affect sensitive ecosystems. A mycoherbicide that selectively kills buckthorn would provide an additional method for control. In the present study, fungi were collected from dying buckthorn species (Frangula alnus Mill., Rhamnus cathartica, Ventia alnifolia L’Hér) located at 19 sites across Minnesota and Wisconsin for their potential use as mycoherbicides for common buckthorn. A total of 412 fungi were isolated from samples of diseased tissue and identified via DNA extraction and sequencing. These fungi were identified as 120 unique taxa belonging to 81 genera. Of these fungi, 46 species belonging to 26 genera were considered to be canker or root-rot pathogens of woody plants, including species in Cytospora, Diaporthe, Diplodia, Dothiorella, Eutypella, Fusarium, Hymenochaete, Irpex, Phaeoacemonium, and others. A future study testing the pathogenicity of these putative pathogens of buckthorn is now needed to assess their utility as potential mycoherbicide agents for control of common buckthorn. Full article
(This article belongs to the Special Issue Pathogenic Fungi in Forest)
Show Figures

Figure 1

17 pages, 36560 KiB  
Article
Comparative Calculation of Spectral Indices for Post-Fire Changes Using UAV Visible/Thermal Infrared and JL1 Imagery in Jinyun Mountain, Chongqing, China
by Juncheng Zhu, Yijun Liu, Xiaocui Liang and Falin Liu
Forests 2025, 16(7), 1147; https://doi.org/10.3390/f16071147 - 11 Jul 2025
Abstract
This study used Jilin-1 satellite data and unmanned aerial vehicle (UAV)-collected visible-thermal infrared imagery to calculate twelve spectral indices and evaluate their effectiveness in distinguishing post-fire forest areas and identifying human-altered land-cover changes in Jinyun Mountain, Chongqing. The research goals included mapping wildfire [...] Read more.
This study used Jilin-1 satellite data and unmanned aerial vehicle (UAV)-collected visible-thermal infrared imagery to calculate twelve spectral indices and evaluate their effectiveness in distinguishing post-fire forest areas and identifying human-altered land-cover changes in Jinyun Mountain, Chongqing. The research goals included mapping wildfire impacts with M-statistic separability, measuring land-cover distinguishability through Jeffries–Matusita (JM) distance analysis, classifying land-cover types using the random forest (RF) algorithm, and verifying classification accuracy. Cumulative human disturbances—such as land clearing, replanting, and road construction—significantly blocked the natural recovery of burn scars, and during long-term human-assisted recovery periods over one year, the Red Green Blue Index (RGBI), Green Leaf Index (GLI), and Excess Green Index (EXG) showed high classification accuracy for six land-cover types: road, bare soil, deadwood, bamboo, broadleaf, and grass. Key accuracy measures showed producer accuracy (PA) > 0.8, user accuracy (UA) > 0.8, overall accuracy (OA) > 90%, and a kappa coefficient > 0.85. Validation results confirmed that visible-spectrum indices are good at distinguishing photosynthetic vegetation, thermal bands help identify artificial surfaces, and combined thermal-visible indices solve spectral confusion in deadwood recognition. Spectral indices provide high-precision quantitative evidence for monitoring post-fire land-cover changes, especially under human intervention, thus offering important data support for time-based modeling of post-fire forest recovery and improvement of ecological restoration plans. Full article
(This article belongs to the Special Issue Wildfire Behavior and the Effects of Climate Change in Forests)
Show Figures

Figure 1

18 pages, 2591 KiB  
Article
The Impact of Compound Drought and Heatwave Events on the Gross Primary Productivity of Rubber Plantations
by Qinggele Bao, Ziqin Wang and Zhongyi Sun
Forests 2025, 16(7), 1146; https://doi.org/10.3390/f16071146 - 11 Jul 2025
Abstract
Global climate change has increased the frequency of compound drought–heatwave events (CDHEs), seriously threatening tropical forest ecosystems. However, due to the complex structure of natural tropical forests, related research remains limited. To address this, we focused on rubber plantations on Hainan Island, which [...] Read more.
Global climate change has increased the frequency of compound drought–heatwave events (CDHEs), seriously threatening tropical forest ecosystems. However, due to the complex structure of natural tropical forests, related research remains limited. To address this, we focused on rubber plantations on Hainan Island, which have simpler structures, to explore the impacts of CDHEs on their primary productivity. We used Pearson and Spearman correlation analyses to select the optimal combination of drought and heatwave indices. Then, we constructed a Compound Drought–Heatwave Index (CDHI) using Copula functions to describe the temporal patterns of CDHEs. Finally, we applied a Bayes–Copula conditional probability model to estimate the probability of GPP loss under CDHE conditions. The main findings are as follows: (1) The Standardized Precipitation Evapotranspiration Index (SPEI-3) and Standardized Temperature Index (STI-1) formed the best index combination. (2) The CDHI successfully identified typical CDHEs in 2001, 2003–2005, 2010, 2015–2016, and 2020. (3) Temporally, CDHEs significantly increased the probability of GPP loss in April and May (0.58 and 0.64, respectively), while the rainy season showed a reverse trend due to water buffering (lowest in October, at 0.19). (4) Spatially, the northwest region showed higher GPP loss probabilities, likely due to topographic uplift. This study reveals how tropical plantations respond to compound climate extremes and provides theoretical support for the monitoring and management of tropical ecosystems. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

12 pages, 2220 KiB  
Article
The Effects of Tree Species on Soil Organic Carbon Mineralization in Reservoir Water-Level Drawdown Zones
by Jiayi Zhang, Fang Wang, Jia Yang, Yanting Zhang, Li Qiu, Ziting Chen, Xi Wang, Tianya Zhang, Songzhe Li, Jiacheng Tong, Shunbao Lu and Yanjie Zhang
Forests 2025, 16(7), 1145; https://doi.org/10.3390/f16071145 - 11 Jul 2025
Abstract
Soil organic carbon (SOC) mineralization is the conversion of SOC to inorganic forms of carbon (C) by microbial decomposition and conversion. It plays an important role in global C cycling. Currently, most of the studies investigating the effects of different tree species on [...] Read more.
Soil organic carbon (SOC) mineralization is the conversion of SOC to inorganic forms of carbon (C) by microbial decomposition and conversion. It plays an important role in global C cycling. Currently, most of the studies investigating the effects of different tree species on SOC mineralization focus on forest ecosystems, and few have focused on reservoir water-level drawdown zones. In this study, we used an indoor incubation method to investigate SOC mineralization in the plantation soils of Glyptostrobus pensilis, Taxodium Zhongshanshan, Taxodium distichum and CK (unplanted plantation) in the reservoir water-level drawdown zones. We aimed to explore the effects of different tree species on the process of SOC mineralization in the reservoir water-level drawdown zones by considering both the biological and chemical processes of the soil. The results showed that the rates of SOC mineralization in the G. pensilis and T. Zhongshanshan plantations were 47% and 37%, respectively, higher than those in CK (p < 0.05), whereas the rate of SOC mineralization in T. distichum soils did not differ from that in CK. The structural equation model’s results showed microbial biomass carbon (MBC) is a key driver of SOC mineralization, while SOC and dissolved organic carbon (DOC) concentrations are also important factors that affect SOC mineralization and follow MBC. Compared to soil biochemical properties, the bacterial community composition has relatively little effect on SOC mineralization. Planted forests can, to a degree, change the biochemical properties of the soil in the reservoir water-level drawdown zones, effectively improving soil pH, and significantly increasing the amount of potential soil C mineralization, the content of SOC and the diversity of the soil bacteria (p < 0.05). Full article
Show Figures

Figure 1

17 pages, 2075 KiB  
Article
Chemical Profiles and Nitric Oxide Inhibitory Activities of the Copal Resin and Its Volatile Fraction of Bursera bipinnata
by Silvia Marquina, Mayra Antunez-Mojica, Judith González-Christen, Antonio Romero-Estrada, Fidel Ocampo-Bautista, Ninfa Yaret Nolasco-Quintana, Araceli Guerrero-Alonso and Laura Alvarez
Forests 2025, 16(7), 1144; https://doi.org/10.3390/f16071144 - 11 Jul 2025
Abstract
Bursera bipinnata (DC.) Engl. (B. bipinnata), commonly known as “copal chino,” is a widely distributed Mexican tree found in transitional zones between pine-oak and deciduous forests. It is valued for its high-quality copal resin, traditionally used in ceremonies and offerings. Additionally, B. bipinnata [...] Read more.
Bursera bipinnata (DC.) Engl. (B. bipinnata), commonly known as “copal chino,” is a widely distributed Mexican tree found in transitional zones between pine-oak and deciduous forests. It is valued for its high-quality copal resin, traditionally used in ceremonies and offerings. Additionally, B. bipinnata is recognized for its significant value in traditional medicine, particularly in treating ailments associated with inflammation. In this work, the inhibition of nitric oxide (NO) production of the volatile fraction and resin of B. bipinnata in LPS-stimulated RAW 264.7 macrophage cells were demonstrated. In contrast, the volatile fraction exhibited 37.43 ± 7.13% inhibition at a concentration of 40 µg/mL. Chromatographic analyses of the total resin enabled the chemical characterization of eleven pentacyclic triterpenes belonging to the ursane, oleanane, and lupane series, as well as eight monoterpenes. Notably, the structures of compounds 15, 17, and 2935 are reported for the first time from the resin of Bursera bipinnata. The anti-inflammatory activity observed for B. bipinnata resin in this study may be attributed to its high content of the triterpenes α-amyrin (15, 29.7%) and 3-epilupeol (17, 38.1%), both known for their anti-inflammatory properties. These findings support the traditional use of this copal resin. Full article
(This article belongs to the Special Issue Medicinal and Edible Uses of Non-Timber Forest Resources)
Show Figures

Graphical abstract

23 pages, 48857 KiB  
Article
A 36-Year Assessment of Mangrove Ecosystem Dynamics in China Using Kernel-Based Vegetation Index
by Yiqing Pan, Mingju Huang, Yang Chen, Baoqi Chen, Lixia Ma, Wenhui Zhao and Dongyang Fu
Forests 2025, 16(7), 1143; https://doi.org/10.3390/f16071143 - 11 Jul 2025
Abstract
Mangrove forests serve as critical ecological barriers in coastal zones and play a vital role in global blue carbon sequestration strategies. In recent decades, China’s mangrove ecosystems have experienced complex interactions between degradation and restoration under intense coastal urbanization and systematic conservation efforts. [...] Read more.
Mangrove forests serve as critical ecological barriers in coastal zones and play a vital role in global blue carbon sequestration strategies. In recent decades, China’s mangrove ecosystems have experienced complex interactions between degradation and restoration under intense coastal urbanization and systematic conservation efforts. However, the long-term spatiotemporal patterns and driving mechanisms of mangrove ecosystem health changes remain insufficiently quantified. This study developed a multi-temporal analytical framework using Landsat imagery (1986–2021) to derive kernel normalized difference vegetation index (kNDVI) time series—an advanced phenological indicator with enhanced sensitivity to vegetation dynamics. We systematically characterized mangrove growth patterns along China’s southeastern coast through integrated Theil–Sen slope estimation, Mann–Kendall trend analysis, and Hurst exponent forecasting. A Deep Forest regression model was subsequently applied to quantify the relative contributions of environmental drivers (mean annual sea surface temperature, precipitation, air temperature, tropical cyclone frequency, and relative sea-level rise rate) and anthropogenic pressures (nighttime light index). The results showed the following: (1) a nationally significant improvement in mangrove vitality (p < 0.05), with mean annual kNDVI increasing by 0.0072/yr during 1986–2021; (2) spatially divergent trajectories, with 58.68% of mangroves exhibiting significant improvement (p < 0.05), which was 2.89 times higher than the proportion of degraded areas (15.10%); (3) Hurst persistence analysis (H = 0.896) indicating that 74.97% of the mangrove regions were likely to maintain their growth trends, while 15.07% of the coastal zones faced potential degradation risks; and (4) Deep Forest regression id the relative rate of sea-level rise (importance = 0.91) and anthropogenic (nighttime light index, importance = 0.81) as dominant drivers, surpassing climatic factors. This study provides the first national-scale, 30 m resolution assessment of mangrove growth dynamics using kNDVI, offering a scientific basis for adaptive management and blue carbon strategies in subtropical coastal ecosystems. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

13 pages, 2240 KiB  
Article
Multi-Annual Dendroclimatic Patterns for the Desert National Wildlife Refuge, Southern Nevada, USA
by Franco Biondi and James Roberts
Forests 2025, 16(7), 1142; https://doi.org/10.3390/f16071142 - 10 Jul 2025
Abstract
Ponderosa pine (Pinus ponderosa Lawson & C. Lawson) forests in the western United States have experienced reduced fire frequency since Euro-American settlement, usually because of successful fire suppression policies and even without such human impacts at remote sites in the Great Basin [...] Read more.
Ponderosa pine (Pinus ponderosa Lawson & C. Lawson) forests in the western United States have experienced reduced fire frequency since Euro-American settlement, usually because of successful fire suppression policies and even without such human impacts at remote sites in the Great Basin and Mojave Deserts. In an effort to improve our understanding of long-term environmental dynamics in sky-island ecosystems, we developed tree-ring chronologies from ponderosa pines located in the Sheep Mountain Range of southern Nevada, inside the Desert National Wildlife Refuge (DNWR). After comparing those dendrochronological records with other ones available for the south-central Great Basin, we analyzed their climatic response using station-recorded monthly precipitation and air temperature data from 1950 to 2024. The main climatic signal was December through May total precipitation, which was then reconstructed at annual resolution over the past five centuries, from 1490 to 2011 CE. The mean episode duration was 2.6 years, and the maximum drought duration was 11 years (1924–1934; the “Dust Bowl” period), while the longest episode, 19 years (1905–1923), is known throughout North America as the “early 1900s pluvial”. By quantifying multi-annual dry and wet episodes, the period since DNWR establishment was placed in a long-term dendroclimatic framework, allowing us to estimate the potential drought resilience of its unique, tree-dominated environments. Full article
(This article belongs to the Special Issue Environmental Signals in Tree Rings)
Show Figures

Figure 1

27 pages, 3843 KiB  
Article
Phenotypic Variability of Juglans neotropica Diels from Different Provenances During Nursery and Plantation Stages in Southern Ecuador
by Byron Palacios-Herrera, Santiago Pereira-Lorenzo and Darwin Pucha-Cofrep
Forests 2025, 16(7), 1141; https://doi.org/10.3390/f16071141 - 10 Jul 2025
Abstract
Juglans neotropica Diels, an Andean native species classified as endangered by the IUCN, holds significant potential for reforestation and sustainable forest management programs. This study evaluated seed quality, phenotypic variability, and early establishment under nursery and field conditions in southern Ecuador. Three provenance [...] Read more.
Juglans neotropica Diels, an Andean native species classified as endangered by the IUCN, holds significant potential for reforestation and sustainable forest management programs. This study evaluated seed quality, phenotypic variability, and early establishment under nursery and field conditions in southern Ecuador. Three provenance sites—The Tundo, The Victoria, and The Argelia—were evaluated during the nursery phase, and two (The Tundo and The Victoria) in plantations, applying four pre-germination treatments: control, mechanical scarification, hot water, and water-sun exposure. Parameters assessed included seed weight, size, viability, germination, survival, and growth across three planting environments: secondary forest, riparian forest, and pasture. Significant differences in seed morphometry were observed among localities, while germination was influenced by treatment but not provenance. Seed viability remained high for up to six months, decreasing with a 2% loss of moisture. Survival reached 100% with urea application, and 96% of individuals exhibited straight stems after one year. No significant differences in growth were found between localities; however, basal diameter was highest in the pasture (13.2 mm/year−1), and total height was greatest in the secondary forest (54.8 cm/year−1). These findings provide key technical evidence to optimize the propagation and establishment of J. neotropica in ecological restoration and forest production contexts. Full article
(This article belongs to the Special Issue Tree Breeding: Genetic Diversity, Differentiation and Conservation)
Show Figures

Figure 1

24 pages, 4083 KiB  
Article
Employing Aerial LiDAR Data for Forest Clustering and Timber Volume Estimation: A Case Study with Pinus radiata in Northwest Spain
by Alberto López-Amoedo, Henrique Lorenzo, Carolina Acuña-Alonso and Xana Álvarez
Forests 2025, 16(7), 1140; https://doi.org/10.3390/f16071140 - 10 Jul 2025
Abstract
In the case of forest inventory, heterogeneous areas are particularly challenging due to variability in vegetation structure. This is especially true in Galicia (northwest Spain), where land is highly fragmented, complicating the planning and management of single-species plantations such as Pinus radiata. [...] Read more.
In the case of forest inventory, heterogeneous areas are particularly challenging due to variability in vegetation structure. This is especially true in Galicia (northwest Spain), where land is highly fragmented, complicating the planning and management of single-species plantations such as Pinus radiata. This study proposes a cost-effective strategy using open-access tools and data to characterize and estimate wood volume in these plantations. Two stratification approaches—classical and cluster-based—were compared to a modeling method based on Principal Component Analysis (PCA). Data came from open-access national LiDAR point clouds, acquired using manned aerial vehicles under the Spanish National Aerial Orthophoto Plan (PNOA). Moreover, two volume estimation methods were applied: one from the Xunta de Galicia (XdG) and another from Spain’s central administration (4IFN). A Generalized Linear Model (GLM) was also fitted using PCA-derived variables with logarithmic transformation. The results show that although overall volume estimates are similar across methods, cluster-based stratification yielded significantly lower absolute errors per hectare (XdG: 28.04 m3/ha vs. 44.07 m3/ha; 4IFN: 25.64 m3/ha vs. 38.22 m3/ha), improving accuracy by 7% over classical stratification. Moreover, it does not require precise field parcel locations, unlike PCA modeling. Both official volume estimation methods tended to overestimate stock by about 10% compared to PCA. These results confirm that clustering offers a practical, low-cost alternative that improves estimation accuracy by up to 18 m3/ha in fragmented forest landscapes. Full article
Show Figures

Figure 1

13 pages, 2590 KiB  
Article
Summer Cafe: In Vitro Case Study of Biological Repellents Against the Large Pine Weevil
by Ilze Matisone, Kristaps Ozoliņš, Roberts Matisons, Mārtiņš Spāde, Uldis Grīnfelds and Rinalds Trukšs
Forests 2025, 16(7), 1139; https://doi.org/10.3390/f16071139 - 10 Jul 2025
Abstract
Growing environmental concerns have led to the search for alternative biological repellents against the large pine weevil Hylobius abietis L., Europe’s most important coniferous forest regeneration pest. A laboratory study was carried out to assess the effectiveness (damage intensity) of six combinations of [...] Read more.
Growing environmental concerns have led to the search for alternative biological repellents against the large pine weevil Hylobius abietis L., Europe’s most important coniferous forest regeneration pest. A laboratory study was carried out to assess the effectiveness (damage intensity) of six combinations of a novel biological repellent, consisting of plant-based oils, beeswax, calcium carbonate, vanillin, pine bark extractives, terpentine, abrasive particles, solvent, and a viscosity agent, in comparison with commercially available repellent Norfort LDW 115. The application complexity of the repellents, their persistence on seedlings, and the extent of H. abietis damage were evaluated. The five alternative repellents had higher protection compared to the control repellent, highlighting the potential for new alternative repellents. The base (without additives) repellent provided the highest protection, indicating a redundancy of admixtures. A mixed cumulative link model, employed to estimate differences between the repellents, estimated 85% undamaged and none significantly damaged saplings in the case of the base repellent. However, the consistency and hence persistence of certain repellents on plantlets would benefit from improvements; further field studies are needed to upscale the test of the stability and efficiency of high levels in real environments under different H. abietis population pressures. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

14 pages, 2402 KiB  
Article
Application of Machine Learning Models in the Estimation of Quercus mongolica Stem Profiles
by Chiung Ko, Jintaek Kang, Chaejun Lim, Donggeun Kim and Minwoo Lee
Forests 2025, 16(7), 1138; https://doi.org/10.3390/f16071138 - 10 Jul 2025
Abstract
Accurate estimation of stem profiles is critical for forest management, timber yield prediction, and ecological modeling. However, traditional taper equations often fail to capture species-specific growth variability and exhibit significant biases, particularly in the upper stem regions. Machine learning regression models were applied [...] Read more.
Accurate estimation of stem profiles is critical for forest management, timber yield prediction, and ecological modeling. However, traditional taper equations often fail to capture species-specific growth variability and exhibit significant biases, particularly in the upper stem regions. Machine learning regression models were applied to estimate Quercus mongolica stem profiles across South Korea, and performance was compared with that of a traditional taper equation. A total of 2503 sample trees were used to train and validate Random Forest (RF), XGBoost (XGB), Artificial Neural Network (ANN), and Support Vector Regression (SVR) models. Predictive performance was evaluated using root mean square error, mean absolute error, and coefficient of determination metrics, and performance differences were validated statistically. The ANN model exhibited the highest predictive accuracy and stability across all diameter classes, maintaining smooth and consistent stem profiles even in the upper stem regions where the traditional taper model exhibited significant errors. RF and XGB models had moderate performance but exhibited localized fluctuations, whereas the Kozak taper equation tended to overestimate basal diameters and underestimate crown-top diameters. Machine learning models, particularly ANN, offer a robust alternative to fixed-form taper equations, contributing substantially to forest resource inventory, carbon stock assessment, and climate-adaptive forest management planning. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

19 pages, 3570 KiB  
Article
Modeling the Effects of Climate and Site on Soil and Forest Floor Carbon Stocks in Radiata Pine Stands at Harvesting Age
by Daniel Bozo, Rafael Rubilar, Óscar Jara, Marianne V. Asmussen, Rosa M. Alzamora, Juan Pedro Elissetche, Otávio C. Campoe and Matías Pincheira
Forests 2025, 16(7), 1137; https://doi.org/10.3390/f16071137 - 10 Jul 2025
Abstract
Forests are a key terrestrial carbon sink, storing carbon in biomass, the forest floor, and the mineral soil (SOC). Since Pinus radiata D. Don is the most widely planted forest species in Chile, it is important to understand how environmental and soil factors [...] Read more.
Forests are a key terrestrial carbon sink, storing carbon in biomass, the forest floor, and the mineral soil (SOC). Since Pinus radiata D. Don is the most widely planted forest species in Chile, it is important to understand how environmental and soil factors influence these carbon pools. Our objective was to evaluate the effects of climate and site variables on carbon stocks in adult radiata pine plantations across contrasting water and nutrient conditions. Three 1000 m2 plots were installed at 20 sites with sandy, granitic, recent ash, and metamorphic soils, which were selected along a productivity gradient. Biomass carbon stocks were estimated using allometric equations, and carbon stocks in the forest floor and mineral soil (up to 1 m deep) were assessed. SOC varied significantly, from 139.9 Mg ha−1 in sandy soils to 382.4 Mg ha−1 in metamorphic soils. Total carbon stocks (TCS) per site ranged from 331.0 Mg ha−1 in sandy soils to 552.9 Mg ha−1 in metamorphic soils. Across all soil types, the forest floor held the lowest carbon stock. Correlation analyses and linear models revealed that variables related to soil water availability, nitrogen content, precipitation, and stand productivity positively increased SOC and TCS stocks. In contrast, temperature, evapotranspiration, and sand content had a negative effect. The developed models will allow more accurate estimation estimates of C stocks at SOC and in the total stand. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

10 pages, 1611 KiB  
Article
The First Report of Hypogeous Geastrum in Hungary in Mattirolomyces terfezioides-Producing Forests in the Carpathian Basin
by Ádám Heller, Balázs Péter, Péter Cseh, Akale Assamere Habtemariam, István Nagy and Zoltán Bratek
Forests 2025, 16(7), 1136; https://doi.org/10.3390/f16071136 - 10 Jul 2025
Abstract
Hungary has some of the best-researched hypogeous fungal flora in Europe, with a large number of genera and species already having been discovered in this country. In this study, we performed morphological and molecular analysis of unidentified hypogeous fungi samples collected from Hungary. [...] Read more.
Hungary has some of the best-researched hypogeous fungal flora in Europe, with a large number of genera and species already having been discovered in this country. In this study, we performed morphological and molecular analysis of unidentified hypogeous fungi samples collected from Hungary. We confirmed that they belong to the hypogeous earthstar species Geastrum nadalii (Paz et al., 2024), marking the first report of this species in this country and in a continental climate. We also assume that the habitat preference of this mushroom species is similar to the habitat preference of Mattirolomyces terfezioides, with both occurring in planted non-native Robinia pseudoacacia forests, suggesting that these are secondary habitats for these species. We also conclude that this Mediterranean species has appeared only recently in the Hungarian mycota. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

26 pages, 1501 KiB  
Article
How Can Forestry Carbon Sink Projects Increase Farmers’ Willingness to Produce Forestry Carbon Sequestration?
by Yi Hou, Anni He, Hongxiao Zhang, Chen Hu and Yunji Li
Forests 2025, 16(7), 1135; https://doi.org/10.3390/f16071135 - 10 Jul 2025
Abstract
The development of a forestry carbon sink project is an important way to achieve carbon neutrality and carbon reduction, and the collective forest carbon sink project is an important part of China’s forestry carbon sink project. As the main management entity of collective [...] Read more.
The development of a forestry carbon sink project is an important way to achieve carbon neutrality and carbon reduction, and the collective forest carbon sink project is an important part of China’s forestry carbon sink project. As the main management entity of collective forests, whether farmers are willing to produce forestry carbon sinks is directly related to the implementation effect of the project. In this paper, a partial equilibrium model of farmers’ forestry production behavior was established based on production function and utility function, and the path to enhance farmers’ willingness to produce forestry carbon sink through forestry carbon sink projects was analyzed in combination with forest ecological management theory. In terms of empirical analysis, the PSM-DID econometric model was established based on the survey data of LY in Zhejiang Province, China, and the following conclusions were drawn: (1) With the receipt of revenues from forestry carbon sequestration projects and partial cost-sharing by the government, farmers’ participation in forestry carbon sink projects can save investment in forest land management. (2) The saved forestry production costs and forestry carbon sink project subsidies can make up for the loss of farmers’ timber income, so that the net income of forestry will not be significantly reduced. (3) The forestry production factors saved by farmers can be transferred to non-agricultural sectors and increase non-agricultural net income, so that the net income of rural households participating in forestry carbon sink projects will increase. The forestry carbon sink project can improve the utility level of farmers and increase the willingness of farmers to produce forestry carbon sinks by delivering income to farmers and saving forestry production factors. This study demonstrates that a well-designed forestry carbon sink compensation mechanism, combined with an optimized allocation of production factors, can effectively enhance farmers’ willingness to participate. This insight is also applicable to countries or regions that rely on small-scale forestry operations. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

3 pages, 520 KiB  
Editorial
Conservation and Management of Forest Wildlife
by Linas Balčiauskas
Forests 2025, 16(7), 1134; https://doi.org/10.3390/f16071134 - 9 Jul 2025
Abstract
As shown in M [...] Full article
(This article belongs to the Section Forest Biodiversity)
10 pages, 2168 KiB  
Article
Comprehensive Analysis of JAZ Family Genes Involved in Sex Differentiation in Areca catechu
by Jin Du, Changlei Ji, Xinyu Wen, Han Li and Fusun Yang
Forests 2025, 16(7), 1133; https://doi.org/10.3390/f16071133 - 9 Jul 2025
Abstract
Jasmonate ZIM-domain (JAZ) proteins play a pivotal role in mediating plant growth, development, and responses to both biotic and abiotic stresses. However, our knowledge about the JAZ family genes in Areca catechu remains limited. This study conducted a genome-wide screening and analysis of [...] Read more.
Jasmonate ZIM-domain (JAZ) proteins play a pivotal role in mediating plant growth, development, and responses to both biotic and abiotic stresses. However, our knowledge about the JAZ family genes in Areca catechu remains limited. This study conducted a genome-wide screening and analysis of JAZ genes in A. catechu to investigate their biochemical characteristics, gene structure features, phylogenetic relationships, and expression profiles in different organs. A total of 14 JAZ genes (AcJAZs) were detected in the A. catechu genome, all containing an N-terminal TIFY domain and a C-terminal Jas domain. Phylogenetic analysis categorized these AcJAZs into five subfamilies according to their similarities in protein sequences. Quantitative real-time reverse transcription PCR (qRT-PCR) experiments demonstrated the ample expression specificity of these AcJAZ genes across different organs and flower development stages. More importantly, most AcJAZ genes are expressed significantly higher in blooming male flowers than female flowers, suggesting that they may participate in regulating the difference between male and female flowers of A. catechu. This study elucidates the genomic features and functions of JAZ genes in A. catechu, providing new insights into the mechanisms underlying the development and differentiation of unisexual flowers in A. catechu. Full article
(This article belongs to the Special Issue Tree Breeding: Genetic Diversity, Differentiation and Conservation)
Show Figures

Figure 1

19 pages, 3478 KiB  
Article
Experimental Study on the Impact of Vapor Retarder on Moisture Content in Multi-Layer Log Walls
by Róbert Uhrín, Stanislav Jochim, Vlastimil Borůvka, Miloš Pavelek, Pavol Sedlák, Dominika Búryová and Katarína Střelcová
Forests 2025, 16(7), 1132; https://doi.org/10.3390/f16071132 - 9 Jul 2025
Abstract
The global climate crisis has shifted the building industry toward the ecological use of materials, often based on renewable sources. Properties of such materials, as well as their behavior in structures, need to be constantly verified both theoretically and experimentally. This article focuses [...] Read more.
The global climate crisis has shifted the building industry toward the ecological use of materials, often based on renewable sources. Properties of such materials, as well as their behavior in structures, need to be constantly verified both theoretically and experimentally. This article focuses on the influence of vapor retarder on the moisture content of timber log wall structures with sheep wool insulation. Moisture content was verified experimentally during the period of over 2 years with monitoring sensors and insulation samples weighing. Results show that vapor retarder has a positive and statistically significant impact on the moisture content of sheep wool insulation and log structure, depending on the season and position of insulation in the structure. The moisture content of the log structure does not exceed 16%, confirming no risk of biodegradation during the monitored period. This case study can help further the knowledge of log structure design and provide insight into the hygrothermal properties of sandwich structures. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

16 pages, 3044 KiB  
Article
Not Only Heteromorphic Leaves but Also Heteromorphic Twigs Determine the Growth Adaptation Strategy of Populus euphratica Oliv.
by Yujie Xue, Benmo Li, Shuai Shao, Hang Zhao, Shuai Nie, Zhijun Li and Jingwen Li
Forests 2025, 16(7), 1131; https://doi.org/10.3390/f16071131 - 9 Jul 2025
Abstract
The distinctive leaf and twig heteromorphism in Euphrates poplar (Populus euphratica Oliv.) reflects its adaptive strategies to cope with arid environments across ontogenetic stages. In the key distribution area of P. euphratica forests in China, we sampled P. euphratica twigs (which grow [...] Read more.
The distinctive leaf and twig heteromorphism in Euphrates poplar (Populus euphratica Oliv.) reflects its adaptive strategies to cope with arid environments across ontogenetic stages. In the key distribution area of P. euphratica forests in China, we sampled P. euphratica twigs (which grow in the current year) at different age classes (1-, 3-, 5-, 8-, and 11-year-old trees), then analyzed their morphological traits, biomass allocation, as well as allometric relationships. Results revealed significant ontogenetic shifts: seedlings prioritized vertical growth by lengthening stems (32.06 ± 10.28 cm in 1-year-olds) and increasing stem biomass allocation (0.36 ± 0.14 g), while subadult trees developed shorter stems (6.80 ± 2.42 cm in 11-year-olds) with increasesd petiole length (2.997 ± 0.63 cm) and lamina biomass (1.035 ± 0.406 g). Variance partitioning showed that 93%–99% of the trait variation originated from age and individual differences. Standardized major axis analysis demonstrated a consistent “diminishing returns” allometry in biomass allocation (lamina–stem slope = 0.737, lamina–petiole slope = 0.827), with age-modulated intercepts reflecting developmental adjustments. These patterns revealed an evolutionary trade-off strategy where subadult trees optimized photosynthetic efficiency through compact architecture and enhanced hydraulic safety, while seedlings prioritized vertical space occupation. Our findings revealed that heteromorphic twigs play a pivotal role in modular trait coordination, providing mechanistic insights into P. euphratica’s adaptation to extreme aridity throughout its lifespan. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

25 pages, 8350 KiB  
Article
High-Resolution Mapping and Impact Assessment of Forest Aboveground Carbon Stock in the Pinglu Canal Basin: A Multi-Sensor and Multi-Model Machine Learning Approach
by Weifeng Xu, Xuzhi Mai, Songwen Deng, Wenhuan Wang, Wenqian Wu, Wei Zhang and Yinghui Wang
Forests 2025, 16(7), 1130; https://doi.org/10.3390/f16071130 - 9 Jul 2025
Abstract
Accurate estimation of forest aboveground carbon stock (AGC) is critical for climate change mitigation and ecological management. This study develops a high-resolution AGC estimation workflow for the Pinglu Canal basin, integrating Sentinel-2, Sentinel-1, ALOS PALSAR, and SRTM data with field survey measurements. Feature [...] Read more.
Accurate estimation of forest aboveground carbon stock (AGC) is critical for climate change mitigation and ecological management. This study develops a high-resolution AGC estimation workflow for the Pinglu Canal basin, integrating Sentinel-2, Sentinel-1, ALOS PALSAR, and SRTM data with field survey measurements. Feature selection via Recursive Feature Elimination and modeling with a Random Forest algorithm—optimized through hyperparameter tuning—yielded high predictive accuracy under the ALL data combination (R2 = 0.818, RMSE = 11.126 tC/ha), enabling the generation of a 10 m-resolution AGC map. The total AGC in 2024 was estimated at 2.26 × 106 tC. To evaluate human-induced changes, we established a baseline scenario based on historical AGC trends (2002–2021) and climate data. Comparisons revealed that afforestation and vegetation restoration during canal construction led to higher AGC values than projected under natural conditions. This positive deviation highlights the effectiveness of targeted ecological interventions in mitigating carbon loss and promoting forest recovery. Our results demonstrate a cost-effective, scalable method for AGC mapping using freely accessible remote sensing data and machine learning. The findings also provide insights into balancing large-scale infrastructure development with ecosystem conservation. Full article
(This article belongs to the Special Issue Forest Inventory: The Monitoring of Biomass and Carbon Stocks)
Show Figures

Figure 1

19 pages, 20060 KiB  
Article
Relationship Between Urban Forest Structure and Seasonal Variation in Vegetation Cover in Jinhua City, China
by Hao Yang, Shaowei Chu, Hao Zeng and Youbing Zhao
Forests 2025, 16(7), 1129; https://doi.org/10.3390/f16071129 - 9 Jul 2025
Abstract
Urban forests play a crucial role in enhancing vegetation cover and bolstering the ecological functions of cities by expanding green space, improving ecological connectivity, and reducing landscape fragmentation. This study examines these dynamics in Jinhua City, China, utilizing Landsat 8 satellite imagery for [...] Read more.
Urban forests play a crucial role in enhancing vegetation cover and bolstering the ecological functions of cities by expanding green space, improving ecological connectivity, and reducing landscape fragmentation. This study examines these dynamics in Jinhua City, China, utilizing Landsat 8 satellite imagery for all four seasons of 2023, accessed through the Google Earth Engine (GEE) platform. Fractional vegetation cover (FVC) was calculated using the pixel binary model, followed by the classification of FVC levels. To understand the influence of landscape structure, nine representative landscape metrics were selected to construct a landscape index system. Pearson correlation analysis was employed to explore the relationships between these indices and seasonal FVC variations. Furthermore, the contribution of each index to seasonal FVC was quantified using a random forest (RF) regression model. The results indicate that (1) Jinhua exhibits the highest average FVC during the summer, reaching 0.67, while the lowest value is observed in winter, at 0.49. The proportion of areas with very high coverage peaks in summer, accounting for 50.6% of the total area; (2) all landscape metrics exhibited significant correlations with seasonal FVC. Among them, the class area (CA), percentage of landscape (PLAND), largest patch index (LPI), and patch cohesion index (COHESION) showed strong positive correlations with FVC, whereas the total edge length (TE), landscape shape index (LSI), patch density (PD), edge density (ED), and area-weighted mean shape index (AWMSI) were negatively correlated with FVC; (3) RF regression analysis revealed that CA and PLAND contributed most substantially to FVC, followed by COHESION and LPI, while PD, AWMSI, LSI, TE, and ED demonstrated relatively lower contributions. These findings provide valuable insights for optimizing urban forest landscape design and enhancing urban vegetation cover, underscoring that increasing large, interconnected forest patches represents an effective strategy for improving FVC in urban environments. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

13 pages, 2765 KiB  
Article
Improving Survey Methods for the Spotted Lanternfly (Hemiptera: Fulgoridae): Influence of Collection Device, Tree Host, and Lure on Trap Catch and Detection
by Everett G. Booth, Sarah M. Devine, Emily K. L. Franzen, Kelly M. Murman, Miriam F. Cooperband and Joseph A. Francese
Forests 2025, 16(7), 1128; https://doi.org/10.3390/f16071128 - 9 Jul 2025
Abstract
Since its introduction into the USA, the spotted lanternfly (SLF), Lycorma delicatula, (White) (Hemiptera: Fulgoridae) has spread across the landscape relatively unchecked. With a wide host range, it is considered a serious pest of native forest species, as well as agricultural crops. [...] Read more.
Since its introduction into the USA, the spotted lanternfly (SLF), Lycorma delicatula, (White) (Hemiptera: Fulgoridae) has spread across the landscape relatively unchecked. With a wide host range, it is considered a serious pest of native forest species, as well as agricultural crops. Circle traps placed on Ailanthus altissima (Miller) Swingle (Sapindales: Simaroubaceae) are passive traps collecting SLF as they walk up and down the tree trunk. These traps are successful at detecting new populations of SLF, but this can be challenging to implement at a large scale due to costs and host availability. To improve and facilitate SLF trapping practices, we investigated three key trapping components: improved collection containers, placement on alternative hosts, and lure (methyl salicylate) impact. In initial trials comparing collection jars to removable plastic bags, the adult SLF catch was four times higher using the bag design. In a multi-state survey at varying population densities, the bag traps were comparable to the jar traps but were significantly more effective than BugBarrier® tree bands, especially during the adult stage. Catch and detection in circle traps placed on alternative hosts, Acer spp. L. (Sapindales: Sapindalaceae) and Juglans nigra L. (Fagales: Juglandaceae), were comparable to those placed on the preferred host A. altissima, especially in the earlier life stages. Additionally, detection rates of methyl salicylate-baited traps on all three hosts were comparable to those on non-baited traps. These results suggest that circle traps fitted with bags provide higher trap catch and an improvement in sample quality. In addition, circle traps were equally effective when placed on maple and black walnut, while methyl salicylate lures do not enhance trap catch or detection. Full article
(This article belongs to the Special Issue Management of Forest Pests and Diseases—2nd Edition)
Show Figures

Figure 1

21 pages, 964 KiB  
Article
Innovation in Timber Processing—A Case Study on Low-Grade Resource Utilisation for High-Grade Timber Products
by Sebastian Klein, Benoit Belleville, Giorgio Marfella, Rodney Keenan and Robert L. McGavin
Forests 2025, 16(7), 1127; https://doi.org/10.3390/f16071127 - 8 Jul 2025
Viewed by 21
Abstract
Native forest timber supplies are declining, and industry needs to do more with less to meet growing demand for wood products. An Australian-based, vertically integrated timber manufacturing business is commissioning a spindleless lathe to produce engineered wood products from small logs. The literature [...] Read more.
Native forest timber supplies are declining, and industry needs to do more with less to meet growing demand for wood products. An Australian-based, vertically integrated timber manufacturing business is commissioning a spindleless lathe to produce engineered wood products from small logs. The literature on innovation in timber manufacturing was found to generally focus on technical innovation, with relatively little use of market-oriented concepts and theory. This was particularly true in the Australian context. Using a market-oriented case study approach, this research assessed innovation in the business. It aimed to inform industry-wide innovation approaches to meet market demand in the face of timber supply challenges. Interviews were conducted with key personnel at the firm. Data and outputs were produced to facilitate comparison to existing research and conceptual frameworks. The business was found to empower key staff and willingly access knowledge, information and data from outside its corporate domain. It was also found to prioritise corporate goals outside of traditional goals of profit and competitive advantage. This was shown to increase willingness to try new things at the mill and increase the chances that new approaches would succeed. Thinking outside of the corporate domain was shown to allow access to resources that the firm could not otherwise count on. It is recommended that wood processing businesses seek to emulate this element of the case study, and that academia and the broader sector examine further the potential benefits of using enterprise and market-oriented lenses to better utilise available resources and maintain progress towards corporate goals. Full article
Show Figures

Figure 1

21 pages, 3134 KiB  
Article
Allometric Growth and Carbon Sequestration of Young Kandelia obovata Plantations in a Constructed Urban Costal Wetland in Haicang Bay, Southeast China
by Jue Zheng, Lumin Sun, Lingxuan Zhong, Yizhou Yuan, Xiaoyu Wang, Yunzhen Wu, Changyi Lu, Shufang Xue and Yixuan Song
Forests 2025, 16(7), 1126; https://doi.org/10.3390/f16071126 - 8 Jul 2025
Abstract
The focus of this study was on young populations of Kandelia obovata within a constructed coastal wetland in Haicang Bay, Xiamen, Southeast China. The objective was to systematically examine their allometric growth characteristics and carbon sequestration potential over an 8-year monitoring period (2016–2024). [...] Read more.
The focus of this study was on young populations of Kandelia obovata within a constructed coastal wetland in Haicang Bay, Xiamen, Southeast China. The objective was to systematically examine their allometric growth characteristics and carbon sequestration potential over an 8-year monitoring period (2016–2024). Allometric equations were developed to estimate biomass, and the spatiotemporal variation in both plant and soil carbon stocks was estimated. There was a significant increase in total biomass per tree, from 120 ± 17 g at initial planting to 4.37 ± 0.59 kg after 8 years (p < 0.001), with aboveground biomass accounting for the largest part (72.2% ± 7.3%). The power law equation with D2H as an independent variable yielded the highest predictive accuracy for total biomass (R2 = 0.957). Vegetation carbon storage exhibited an annual growth rate of 4.2 ± 0.8 Mg C·ha−1·yr−1. In contrast, sediment carbon stocks did not show a significant increase throughout the experimental period, although long-term accumulation was observed. The restoration of mangroves in urban coastal constructed wetlands is an effective measure to sequester carbon, achieving a carbon accumulation rate of 21.8 Mg CO2eq·ha−1·yr−1. This rate surpasses that of traditional restoration methods, underscoring the pivotal role of interventions in augmenting blue carbon sinks. This study provides essential parameters for allometric modeling and carbon accounting in urban mangrove afforestation strategies, facilitating optimized restoration management and low-carbon strategies. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

16 pages, 3262 KiB  
Article
Comparison of Acoustic Tomography and Drilling Resistance for the Internal Assessment of Urban Trees in Madrid
by Miguel Esteban, Guadalupe Olvera-Licona, Gabriel Humberto Virgen-Cobos and Ignacio Bobadilla
Forests 2025, 16(7), 1125; https://doi.org/10.3390/f16071125 - 8 Jul 2025
Viewed by 42
Abstract
Acoustic tomography is a non-destructive technique used in the internal assessment of standing trees. Various researchers have focused on developing analytical tools using this technique, demonstrating that they can detect internal biodeterioration in cross-sections with good accuracy. This study evaluates the use of [...] Read more.
Acoustic tomography is a non-destructive technique used in the internal assessment of standing trees. Various researchers have focused on developing analytical tools using this technique, demonstrating that they can detect internal biodeterioration in cross-sections with good accuracy. This study evaluates the use of two ultrasonic wave devices with different frequencies (USLab and Sylvatest Duo) and a stress wave device (Microsecond Timer) to generate acoustic tomography using ImageWood VC1 software. The tests were carried out on 12 cross-sections of urban trees in the city of Madrid of the species Robinia pseudoacacia L., Platanus × hybrida Brot., Ulmus pumila L., and Populus alba L. Velocity measurements were made, forming a diffraction mesh in both standing trees and logs after cutting them down. An inspection was carried out with a perforation resistance drill (IML RESI F-400S) in the radial direction in each section, which allowed for more precise identification of defects and differentiating between holes and cracks. The various defects were determined with greater accuracy in the tomographic images taken with the higher-frequency equipment (45 kHz), and the combination of ultrasonic tomography and the use of the inspection drill can provide a more accurate representation of the defects. Full article
(This article belongs to the Special Issue Wood Properties: Measurement, Modeling, and Future Needs)
Show Figures

Figure 1

19 pages, 3907 KiB  
Article
Input–Output Analysis of Wood Industry Agglomeration and Industrial Chain Linkages in Heilongjiang Province
by Chenglin Ma, Jiajia Feng, Changjiang Liu, Mengwei Zhou, Wenchao Kang and Xueqi Meng
Forests 2025, 16(7), 1124; https://doi.org/10.3390/f16071124 - 8 Jul 2025
Viewed by 37
Abstract
In the field of the wood industry, the competitive effect caused by interregional resource differences and the linkage effect generated by industrial chain synergy profoundly affects the development direction of the industry in each province. Based on China’s input–output table from 2002 to [...] Read more.
In the field of the wood industry, the competitive effect caused by interregional resource differences and the linkage effect generated by industrial chain synergy profoundly affects the development direction of the industry in each province. Based on China’s input–output table from 2002 to 2017, this paper constructs an industrial comparative advantage measurement model using location entropy and finds that the industrial agglomeration advantage of the wood products industry in Heilongjiang Province is remarkable in the national context, and that it had already caught up with 79% of the provinces in 2017; we analyze the industrial characteristics of the wood products industry in Heilongjiang Province through the upstream and downstream degrees, the backward and forward correlation coefficients. The findings indicate that the average value of the downstream degree is 28.57% higher than the average value of the upstream degree in Heilongjiang Province, and the industry association mode has shifted from “demand-pull” to “supply-led”. Therefore, the timber industry in Heilongjiang Province has the capability to transform its resource advantage into a competitive edge across the entire industrial chain. Meanwhile, its sensitivity to economic fluctuations in various provinces is increasing significantly. However, there are still notable shortcomings: insufficient capacity to expand the terminal market and integrate the downstream segments of the industrial chain. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

20 pages, 3952 KiB  
Article
Assessing the Height Gain Trajectory of White Spruce and Hybrid Spruce Provenances in Canadian Boreal and Hemiboreal Forests
by Suborna Ahmed, Valerie LeMay, Alvin Yanchuk, Peter Marshall and Gary Bull
Forests 2025, 16(7), 1123; https://doi.org/10.3390/f16071123 - 7 Jul 2025
Viewed by 140
Abstract
We assessed the impacts of tree improvement programs on the associated gains in yield of white spruce (Picea glauca (Moench) Voss) and hybrid spruce (Picea engelmannii Parry ex Engelmann x Picea glauca (Moench) Voss) over long temporal and large spatial extents. The [...] Read more.
We assessed the impacts of tree improvement programs on the associated gains in yield of white spruce (Picea glauca (Moench) Voss) and hybrid spruce (Picea engelmannii Parry ex Engelmann x Picea glauca (Moench) Voss) over long temporal and large spatial extents. The definition of gain varied in the tree improvement programs. We assessed the definition of gain using a sensitivity analysis, altering the evaluation age with the definitions of the baseline and top performers. We used meta-data from provenance trials extracted from the literature to model the yields of provenances relative to those of standard stocks. Using a previously developed meta-model and a chosen gain definition, a meta-dataset of the gain of plantation ages was developed. Using this gain meta-dataset, a gain trajectory model was fitted for white and hybrid spruce provenances across Canadian boreal and hemiboreal forests. The planting site, mean annual daily temperature, mean annual precipitation, and number of degree days > 5 °C had large impacts on gain. This model can be used to predict gain up to harvest age at any planting site in the boreal and hemiboreal forests of Canada. Further, these gain trajectories could be averaged over a region to indicate the yield potential of tree improvement programs. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

14 pages, 3131 KiB  
Article
A Bxtlp Gene Affects the Pathogenicity of Bursaphelenchus xylophilus
by Shuisong Liu, Qunqun Guo, Ziyun Huang, Wentao Feng, Yingying Zhang, Wenying Zhao, Ronggui Li and Guicai Du
Forests 2025, 16(7), 1122; https://doi.org/10.3390/f16071122 - 7 Jul 2025
Viewed by 132
Abstract
Pine wilt disease (PWD), a destructive pine forest disease caused by pine wood nematode (PWN), Bursaphelenchus xylophilus, has led to huge economic losses and ecological environment damage. Thaumatin-like proteins (TLPs) are the products of a complex gene family involved in host defense [...] Read more.
Pine wilt disease (PWD), a destructive pine forest disease caused by pine wood nematode (PWN), Bursaphelenchus xylophilus, has led to huge economic losses and ecological environment damage. Thaumatin-like proteins (TLPs) are the products of a complex gene family involved in host defense and a wide range of developmental processes in fungi, plants, and animals. In this study, a tlp gene of B. xylophilus (Bxtlp) (GenBank: OQ863020.1) was amplified via PCR and cloned into the expression vector pET-15b to construct the recombinant vector PET-15b-Bxtlp, which was then transformed into Escherichia coli BL-21(DE3). The recombinant protein was successfully purified using Ni-NTA affinity chromatography. The effect of the Bxtlp gene on the vitality and pathogenicity of PWNs was elucidated through RNA interference (RNAi) and overexpression. Bxtlp dsRNA significantly reduced the feeding, motility, spawning, and reproduction abilities of PWN; shortened its lifespan; and increased the female–male ratio. In contrast, the recombinant BxTLP markedly enhanced the reproductive ability of PWN. In addition, Bxtlp dsRNA increased reactive oxygen species (ROS) content in nematodes, while the recombinant BxTLP was confirmed to have antioxidant capacity in vitro. Furthermore, the bioassays on Pinus thunbergii saplings demonstrated that Bxtlp could significantly influence PWN pathogenicity. Overall, we speculate that Bxtlp affects the pathogenicity of PWNs mainly via regulating ROS levels, the motility, and hatching of PWN. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

17 pages, 2473 KiB  
Article
Forests, Nature Protection, and Wild Forested Areas: Premises for Maintaining Nursery Populations and Habitats in Poland
by Damian Łowicki and Katarzyna Fagiewicz
Forests 2025, 16(7), 1121; https://doi.org/10.3390/f16071121 - 7 Jul 2025
Viewed by 149
Abstract
Habitat fragmentation is one of the most pressing issues impacting biodiversity. This concern is highlighted in various regional documents, including, i.a., the Convention on Biological Diversity and Polish Program for the Protection and Sustainable Use of Biological Diversity. Despite the critical importance of [...] Read more.
Habitat fragmentation is one of the most pressing issues impacting biodiversity. This concern is highlighted in various regional documents, including, i.a., the Convention on Biological Diversity and Polish Program for the Protection and Sustainable Use of Biological Diversity. Despite the critical importance of biodiversity, large forested areas with natural vegetation are often neither recognized nor protected. In this article, we introduce the concept of wilderness areas for forested regions in Poland, which we refer to as wild forested areas (WFAs). The designation of WFAs is based on three criteria: undisturbedness, naturalness, and size. A total of 34 WFAs have been identified in Poland, covering 0.8% of the country’s territory and accounting for 2.7% of its forest area. The findings reveal that all WFAs are located within Natura 2000 areas; however, only half are part of national parks, and just 2.5% are protected by nature reserves. The results suggest that some forest complexes in Poland possess significant potential for biodiversity protection and can serve as a foundation for establishing effective conservation measures. While this study is specific to Poland, the proposed methodology can be applied globally. Full article
(This article belongs to the Special Issue Wildlife in Forest Ecosystems: Game Damage vs. Conservation)
Show Figures

Figure 1

Previous Issue
Back to TopTop