Hybrid Al6060/TiB2/Microsilica Composites Produced by Ultrasonically Assisted Stir Casting and Radial-Shear Rolling: Microstructural Evolution and Strength–Ductility Balance
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Raw Materials
2.2. UASC/RSR Procedure
2.3. Material Characterization
3. Results and Discussion
3.1. Microstructural Observations
- (A)
- Mechanism of cast-memory erasure. During radial-shear rolling (RSR), the three-roll kinematics impose a torsion-like shear combined with compressive hydrostatic pressure, which fragments dendrites and disrupts the as-cast substructure [73]. In the hybrid composite, micron-scale TiB2 particles act as potent sites for particle-stimulated nucleation (PSN), promoting the formation of new grain orientations during deformation and recrystallization [74]. Concurrently, sub-micron microsilica particles pin migrating boundaries (Zener pinning), stabilizing the refined structure as it forms [75]. Together, these effects erase the cast memory and produce the equiaxed mosaics observed in panels (g,h).
- (B)
- Texture weakening and ductility retention. The inverse pole figure (IPF) maps show a broad spread of orientations—most pronounced in the hybrid material—which indicates weakened texture and reduced earing/planar anisotropy. This texture state favors a more uniform activation of the {111}⟨110⟩ slip systems across grains [76], supporting extended work-hardening and the preserved elongation seen in the tensile curves.
- (C)
- Defect control and toughness. SEM observations reveal a scarcity of pores and pull-outs and an absence of particle-fracture cavities, consistent with clean interfaces and minimal oxide stringers inherited from UASC processing. By delaying void nucleation and slowing void coalescence, these microstructural features enhance damage tolerance at a given strength.
3.2. Mechanical Properties
- TiB2-only composite [41]: YS ≈ 108.6 MPa, UTS ≈ 156.9 MPa, HV0.2 ≈ 76.3, εf ≈ 9% in the rolled state. The present rolled hybrid is within ~5–7 MPa of these strength levels at a much higher ductility (~22% vs. ~9%), thus shifting the strength–ductility frontier favorably.
- TiB2–MWCNT hybrid [42]: YS > 115 MPa, UTS ≈ 164 MPa, HV0.2 ≈ 82, εf ≈ 14% after RSR. Our oxide-assisted hybrid attains comparable class strength (UTS ≈ 151 MPa) while delivering ~8 percentage points higher elongation and avoiding the cost/chemistry complexities of CNT networks.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AMCs | Aluminum matrix composites |
| UASC | Ultrasonically assisted stir casting |
| RSR | Radial-shear rolling |
| SEM | Scanning electron microscopy |
| EBSD | Electron backscatter diffraction |
| XRD | X-ray diffraction |
| ASTM | American Society for Testing and Materials |
References
- Oyewo, A.T.; Oluwole, O.O.; Ajide, O.O.; Omoniyi, T.E.; Hussain, M. A summary of current advancements in hybrid composites based on aluminium matrix in aerospace applications. Hybrid Adv. 2024, 5, 100117. [Google Scholar] [CrossRef]
- Blanco, D.; Rubio, E.M.; Lorente-Pedreille, R.M.; Sáenz-Nuño, M.A. Sustainable Processes in Aluminium, Magnesium, and Titanium Alloys Applied to the Transport Sector: A Review. Metals 2022, 12, 9. [Google Scholar] [CrossRef]
- Kar, A.; Sharma, A.; Kumar, S. A Critical Review on Recent Advancements in Aluminium-Based Metal Matrix Composites. Crystals 2024, 14, 412. [Google Scholar] [CrossRef]
- Ujah, C.O.; Kallon, D.V.V. Trends in Aluminium Matrix Composite Development. Crystals 2022, 12, 1357. [Google Scholar] [CrossRef]
- Ramanathan, A.; Krishnan, P.K.; Muraliraja, R. A review on the production of metal matrix composites through stir casting–Furnace design, properties, challenges, and research opportunities. J. Manuf. Process. 2019, 42, 213–245. [Google Scholar] [CrossRef]
- Rutecka, A.; Makowska, K.; Kowalewski, Z.L. Mechanical and Microstructural Investigations of AA2124/SiC Metal Matrix Composites After Creep. Materials 2025, 18, 4495. [Google Scholar] [CrossRef]
- Zubcak, M.; Soltes, J.; Zimina, M.; Weinberger, T.; Enzinger, N. Investigation of Al-B4C Metal Matrix Composites Produced by Friction Stir Additive Processing. Metals 2021, 11, 2020. [Google Scholar] [CrossRef]
- Channar, H.R.; Ullah, B.; Naseem, M.S.; Akhter, J.; Mehmood, A.; Aamir, M. Mechanical Properties and Microstructural Investigation of AA2024-T6 Reinforced with Al2O3 and SiC Metal Matrix Composites. Eng 2024, 5, 3023–3032. [Google Scholar] [CrossRef]
- Mustafa, S.; Haider, J.; Matteis, P.; Murtaza, Q. Synthesis and Wear Behaviour Analysis of SiC- and Rice Husk Ash-Based Aluminium Metal Matrix Composites. J. Compos. Sci. 2023, 7, 394. [Google Scholar] [CrossRef]
- Ravindran, S.; Mani, N.; Balaji, S.; Abhijith, M.; Surendaran, K. Mechanical Behaviour of Aluminium Hybrid Metal Matrix Composites—A Review. Mater. Today Proc. 2019, 16, 1020–1033. [Google Scholar] [CrossRef]
- Kareem, A.; Qudeiri, J.A.; Abdudeen, A.; Ahammed, T.; Ziout, A. A Review on AA 6061 Metal Matrix Composites Produced by Stir Casting. Materials 2021, 14, 175. [Google Scholar] [CrossRef]
- Patel, S.K.; Shi, L. Recent Advances in Ceramic-Reinforced Aluminum Metal Matrix Composites: A Review. Alloys 2025, 4, 18. [Google Scholar] [CrossRef]
- Yadav, P.; Ranjan, A.; Kumar, H.; Mishra, A.; Yoon, J. A Contemporary Review of Aluminium MMC Developed through Stir-Casting Route. Materials 2021, 14, 6386. [Google Scholar] [CrossRef]
- Sharma, S.K.; Gajević, S.; Sharma, L.K.; Pradhan, R.; Sharma, Y.; Miletić, I.; Stojanović, B. Progress in Aluminum-Based Composites Prepared by Stir Casting: Mechanical and Tribological Properties for Automotive, Aerospace, and Military Applications. Lubricants 2024, 12, 421. [Google Scholar] [CrossRef]
- Monteiro, B.; Simões, S. Recent Advances in Hybrid Nanocomposites for Aerospace Applications. Metals 2024, 14, 1283. [Google Scholar] [CrossRef]
- Sarmah, P.; Gupta, K. Recent Advancements in Fabrication of Metal Matrix Composites: A Systematic Review. Materials 2024, 17, 4635. [Google Scholar] [CrossRef] [PubMed]
- Shivalingaiah, K.; Nagarajaiah, V.; Selvan, C.P.; Kariappa, S.T.; Chandrashekarappa, N.G.; Lakshmikanthan, A.; Chandrashekarappa, M.P.G.; Linul, E. Stir Casting Process Analysis and Optimization for Better Properties in Al-MWCNT-GR-Based Hybrid Composites. Metals 2022, 12, 1297. [Google Scholar] [CrossRef]
- Grilo, J.; Carneiro, V.H.; Teixeira, J.C.; Puga, H. Manufacturing Methodology on Casting-Based Aluminium Matrix Composites: Systematic Review. Metals 2021, 11, 436. [Google Scholar] [CrossRef]
- Mantha, S.R.V.; Kumar, G.B.V.; Pramod, R.; Rao, C.S.P. Investigations on Microstructure, Mechanical, and Wear Properties, with Strengthening Mechanisms of Al6061-CuO Composites. J. Manuf. Mater. Process. 2024, 8, 245. [Google Scholar] [CrossRef]
- Abishkenov, M.; Tavshanov, I.; Lutchenko, N.; Amanzholov, N.; Kalmyrzayev, D.; Ashkeyev, Z.; Nogaev, K.; Kydyrbayeva, S.; Abdirashit, A. Improving Mechanical Properties of Low-Quality Pure Aluminum by Minor Reinforcement with Fine B4C Particles and T6 Heat Treatment. Appl. Sci. 2024, 14, 10773. [Google Scholar] [CrossRef]
- Maddaiah, K.C.; Kumar, G.B.V.; Pramod, R. Studies on the Mechanical, Strengthening Mechanisms and Tribological Characteristics of AA7150-Al2O3 Nano-Metal Matrix Composites. J. Compos. Sci. 2024, 8, 97. [Google Scholar] [CrossRef]
- Bhowmik, A.; Sen, B.; Beemkumar, N.; Singh Chohan, J.; Bains, P.S.; Singh, G.; Kumar, A.V.; Santhosh, A.J. Development and wear resistivity performance of SiC and TiB2 particles reinforced novel aluminium matrix composites. Results Eng. 2024, 24, 102981. [Google Scholar] [CrossRef]
- Alfattani, R.; Yunus, M. Explorations of mechanical and corrosion resistance properties of AA6063/TiB2/Cr2O3 hybrid composites produced by stir casting. J. Sci. Adv. Mater. Devices 2024, 9, 100790. [Google Scholar] [CrossRef]
- Rane, K.; Dhokey, N. On the Formation and Distribution of In Situ Synthesized TiB2 Reinforcements in Cast Aluminium Matrix Composites. J. Compos. Sci. 2018, 2, 52. [Google Scholar] [CrossRef]
- Zhao, K.; Liu, X.; Fang, Y.; Guo, E.; Kang, H.; Hao, Z.; Li, J.; Du, G.; Liu, L.; Chen, Z.; et al. Multiscale microstructures, mechanical properties and electrical conductivity of in-situ dual-size TiB2 particles reinforced 6201 aluminum matrix composites. J. Mater. Res. Technol. 2023, 23, 5459–5473. [Google Scholar] [CrossRef]
- Farooq, S.A.; Mukhtar, S.H.; Raina, A.; Ul Haq, M.I.; Siddiqui, M.I.H.; Naveed, N.; Dobrota, D. Effect of TiB2 on the Mechanical and Tribological Properties of Marine Grade Aluminum Alloy 5052: An Experimental Investigation. J. Mater. Res. Technol. 2024, 29, 3749–3758. [Google Scholar] [CrossRef]
- Sharifov, D.; Niyazbekova, R.; Mirzo, A.; Shansharova, L.; Serekpayeva, M.; Aldabergenova, S.; Ibzhanova, A.; Machnik, R.; Bembenek, M. The Study of Composite Materials Properties Based on Polymers and Nano-Additives from Industrial Wastes from Kazakhstan. Materials 2024, 17, 2959. [Google Scholar] [CrossRef]
- Kenzhaliyev, B.; Biryukova, A.; Dzhienalyev, T.; Panichkin, A.; Imbarova, A.; Uskenbaeva, A.; Yusoff, A.H. Assessment of Microsilica as a Raw Material for Obtaining Mullite–Silica Refractories. Processes 2024, 12, 200. [Google Scholar] [CrossRef]
- Abishkenov, M.; Tavshanov, I.; Lutchenko, N.; Nogaev, K.; Kalmyrzayev, D.; Abdirashit, A.; Aikenbayeva, N. Effect of Minor Reinforcement with Ultrafine Industrial Microsilica Particles and T6 Heat Treatment on Mechanical Properties of Aluminum Matrix Composites. Appl. Sci. 2025, 15, 1329. [Google Scholar] [CrossRef]
- Kuz’min, M.P.; Larionov, L.M.; Chu, P.K.; Qasim, A.M.; Kuz’mina, M.Y.; Kondratiev, V.V.; Kuz’mina, A.S.; Ran, J.Q. New Methods of Obtaining Al–Si Alloys Using Amorphous Microsilica. Int. J. Met. 2020, 14, 207–217. [Google Scholar] [CrossRef]
- Fanani, E.W.A.; Surojo, E.; Prabowo, A.R.; Akbar, H.I. Recent Progress in Hybrid Aluminum Composite: Manufacturing and Application. Metals 2021, 11, 1919. [Google Scholar] [CrossRef]
- Ikumapayi, O.M.; Akinlabi, E.T.; Abegunde, O.O.; Ken-Ezihuo, P.; Benjamin, H.A.; Afolalu, S.A.; Akinlabi, S.A. Influence of Heat Treatment on the Corrosion Behaviour of Aluminium Silver Nano Particle/Calcium Carbonate Composite. J. Compos. Sci. 2021, 5, 280. [Google Scholar] [CrossRef]
- Bedolla-Becerril, E.; Garcia-Guerra, J.; Lopez-Morelos, V.H.; Garcia-Renteria, M.A.; Falcon-Franco, L.A.; Martinez-Landeros, V.H.; García-Villarreal, S.; Flores-Villaseñor, S.E. Tribological Behaviour of Al-2024/TiC Metal Matrix Composites. Coatings 2023, 13, 77. [Google Scholar] [CrossRef]
- Luo, Y.; Yi, J.; Chen, M.; Zhou, L.; Zhang, Z.; Huang, Z.; Sun, X.; Zhang, Y.; Wen, L.; Wu, Z. Effect of hot rolling on microstructures and mechanical properties of SiCp/A356 aluminum matrix composites. J. Mater. Res. Technol. 2024, 33, 1776–1784. [Google Scholar] [CrossRef]
- Wang, Z.J.; Zheng, Z.; Fu, M.W. Aluminum matrix composites: Structural design and microstructure evolution in the deformation process. J. Mater. Res. Technol. 2024, 30, 3724–3754. [Google Scholar] [CrossRef]
- Nogayev, K.; Kamarov, A.; Abishkenov, M.; Ashkeyev, Z.; Sembayev, N.; Kydyrbayeva, S. Finite Element-Based Multi-Objective Optimization of a New Inclined Oval Rolling Pass Geometry. Modelling 2025, 6, 110. [Google Scholar] [CrossRef]
- Abishkenov, M.; Ashkeyev, Z.; Nogaev, K.; Bestembek, Y.; Azimbayev, K.; Tavshanov, I. On the possibility of implementing a simple shear in the cross-section of metal materials during caliber rolling. Eng. Solid Mech. 2023, 11, 253–262. [Google Scholar] [CrossRef]
- Mashekov, S.; Nurtazaev, E.; Mashekova, A.; Abishkenov, M. Extruding aluminum bars on a new structure radial shear mill. Metalurgija 2021, 60, 427–430. [Google Scholar]
- Hennum, E.; Marthinsen, K.; Tundal, U.H. Effect of Microstructure on the Precipitation of β-Mg2Si during Cooling after Homogenisation of Al-Mg-Si Alloys. Metals 2024, 14, 215. [Google Scholar] [CrossRef]
- James, J.; Annamalai, A.R.; Muthuchamy, A.; Jen, C.-P. Effect of Wettability and Uniform Distribution of Reinforcement Particle on Mechanical Property (Tensile) in Aluminum Metal Matrix Composite—A Review. Nanomaterials 2021, 11, 2230. [Google Scholar] [CrossRef] [PubMed]
- Abishkenov, M.; Tavshanov, I.; Lutchenko, N.; Nogayev, K.; Ashkeyev, Z.; Kulidan, S. Microstructure and Mechanical Properties of Al6060/TiB2 Aluminum Matrix Composites Produced via Ultrasonically Assisted Stir Casting and Radial-Shear Rolling. J. Manuf. Mater. Process. 2025, 9, 309. [Google Scholar] [CrossRef]
- Abishkenov, M.; Tavshanov, I.; Lutchenko, N.; Nogayev, K.; Ashkeyev, Z.; Kulidan, S. Microstructural Evolution and Mechanical Properties of Hybrid Al6060/TiB2–MWCNT Composites Fabricated by Ultrasonically Assisted Stir Casting and Radial-Shear Rolling. Appl. Sci. 2025, 15, 10427. [Google Scholar] [CrossRef]
- ASTM E8; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2021. [CrossRef]
- ASTM E384-22; Standard Test Method for Microindentation Hardness of Materials. ASTM International: West Conshohocken, PA, USA, 2022. [CrossRef]
- Doddapaneni, S.; Kumar, S.; Sharma, S.; Shankar, G.; Shettar, M.; Kumar, N.; Aroor, G.; Ahmad, S.M. Advancements in EBSD Techniques: A Comprehensive Review on Characterization of Composites and Metals, Sample Preparation, and Operational Parameters. J. Compos. Sci. 2025, 9, 132. [Google Scholar] [CrossRef]
- Zheng, X.; Long, W.; Zhu, C.; Zhao, L.; Hu, X.; Liu, S.; Jiang, W.; Peng, Y. The Effect of Micron-Sized TiB2 Particles on the Properties of Al6061 Strengthened with 4% TiB2 Nano-TiB2. Materials 2024, 17, 182. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, C.; Xu, S.; Hu, Y.; Ji, G.; Wang, H. Microstructure and Microhardness of Ni/Al-TiB2 Composite Coatings Prepared by Cold Spraying Combined with Postannealing Treatment. Coatings 2019, 9, 565. [Google Scholar] [CrossRef]
- Wang, Z.; Ren, Z.; Li, Y.; Wang, Z.; Chen, J.; Sun, Z.; Wang, Z.; Wang, H.; Tang, H. Effect of TiC Particles on High-Temperature Properties of Al-Li Alloy and Coarsening of Al2CuLi(T1) Precipitates. Materials 2025, 18, 922. [Google Scholar] [CrossRef]
- Elkady, M.; Sörgel, T. Impact of Dry Chemical-Free Mechanical Pressing on Deagglomeration of Submicron-Sized Boron Carbide Particles. Nanomaterials 2025, 15, 611. [Google Scholar] [CrossRef]
- Karlina, A.I.; Karlina, Y.I.; Gladkikh, V.A. Analysis of Experience in the Use of Micro- and Nanoadditives from Silicon Production Waste in Concrete Technologies. Minerals 2023, 13, 1525. [Google Scholar] [CrossRef]
- Kim, J.-H.J.; You, Y.-J.; Jeong, Y.-J.; Choi, J.-H. Stable Failure-Inducing Micro-Silica Aqua Epoxy Bonding Material for Floating Concrete Module Connection. Polymers 2015, 7, 2389–2409. [Google Scholar] [CrossRef]
- Gallegos Orozco, V.; Santos Beltrán, A.; Santos Beltrán, M.; Medrano Prieto, H.; Gallegos Orozco, C.; Estrada Guel, I. Effect on Microstructure and Hardness of Reinforcement in Al–Cu with Al4C3 Nanocomposites. Metals 2021, 11, 1203. [Google Scholar] [CrossRef]
- Peng, Y.; Xie, Z.; Su, C.; Zhong, Y.; Tao, Z.; Zhuang, D.; Zeng, J.; Tang, H.; Xu, Z. Inhomogeneous Microstructure Evolution of 6061 Aluminum Alloyat High Rotating Speed Submerged Friction Stir Processing. Materials 2023, 16, 579. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Yan, H.; Wei, B.; Sun, B.; Liu, Z.; Gao, W. Effect of Zr Additions on the Microstructure and Elevated-Temperature Mechanical Properties of Al–Cu–Mg–Ag–Zn–Mn–Zr Alloys. Materials 2025, 18, 4062. [Google Scholar] [CrossRef] [PubMed]
- Koju, R.K.; Mishin, Y. The Role of Grain Boundary Diffusion in the Solute Drag Effect. Nanomaterials 2021, 11, 2348. [Google Scholar] [CrossRef]
- Malaki, M.; Xu, W.; Kasar, A.K.; Menezes, P.L.; Dieringa, H.; Varma, R.S.; Gupta, M. Advanced Metal Matrix Nanocomposites. Metals 2019, 9, 330. [Google Scholar] [CrossRef]
- Hu, Y.; Jiang, R.; Li, X.; Hu, R. Effect of Ultrasonic-Assisted Casting on the Hydrogen and Lithium Content of Al-Li Alloy. Materials 2022, 15, 1081. [Google Scholar] [CrossRef]
- El-Sayed, M.A.; Essa, K.; Hassanin, H. Influence of Bifilm Defects Generated during Mould Filling on the Tensile Properties of Al–Si–Mg Cast Alloys. Metals 2022, 12, 160. [Google Scholar] [CrossRef]
- Fracchia, E.; Gobber, F.S.; Rosso, M.; Actis Grande, M.; Bidulská, J.; Bidulský, R. Junction Characterization in a Functionally Graded Aluminum Part. Materials 2019, 12, 3475. [Google Scholar] [CrossRef]
- Lazaro-Nebreda, J.; Patel, J.B.; Lordan, E.; Zhang, Y.; Karakulak, E.; Al-Helal, K.; Scamans, G.M.; Fan, Z. Degassing of Aluminum Alloy Melts by High Shear Melt Conditioning Technology: An Overview. Metals 2022, 12, 1772. [Google Scholar] [CrossRef]
- Grilo, J.; Puga, H.; Carneiro, V.H.; Tohidi, S.D.; Barbosa, F.V.; Teixeira, J.C. Effect of Hybrid Ultrasonic and Mechanical Stirring on the Distribution of m-SiCp in A356 Alloy. Metals 2020, 10, 610. [Google Scholar] [CrossRef]
- Malaki, M.; Tehrani, A.F.; Niroumand, B.; Abdullah, A. Ultrasonically Stir Cast SiO2/A356 Metal Matrix Nanocomposites. Metals 2021, 11, 2004. [Google Scholar] [CrossRef]
- Huang, J.; Xiang, Z.; Li, M.; Li, L.; Chen, Z. Hot Deformation Behavior and Microstructural Evolution of a TiB2/Al-Zn-Mg-Cu-Zr Composite. Materials 2024, 17, 1487. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, S.; He, Y.; Peng, F.; Liu, Y. Influences of Second Phase Particle Precipitation, Coarsening, Growt.h or Dissolution on the Pinning Effects during Grain Coarsening Processes. Metals 2023, 13, 281. [Google Scholar] [CrossRef]
- Twardowska, A.; Podsiadło, M.; Sulima, I.; Bryła, K.; Hyjek, P. Microstructure and Properties of TiB2 Composites Produced by Spark Plasma Sintering with the Addition of Ti5Si3. Materials 2021, 14, 3812. [Google Scholar] [CrossRef]
- Arunachelam, N.; Maheswaran, J.; Chellapandian, M.; Murali, G.; Vatin, N.I. Development of High-Strength Geopolymer Concrete Incorporating High-Volume Copper Slag and Micro Silica. Sustainability 2022, 14, 7601. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Choi, S.-W.; Kim, Y.-C.; Kang, C.-S.; Hong, S.-K. Influence of the Precipitation of Secondary Phase on the Thermal Diffusivity Change of Al-Mg2Si Alloys. Appl. Sci. 2018, 8, 2039. [Google Scholar] [CrossRef]
- Milkereit, B.; Starink, M.J.; Rometsch, P.A.; Schick, C.; Kessler, O. Review of the Quench Sensitivity of Aluminium Alloys: Analysis of the Kinetics and Nature of Quench-Induced Precipitation. Materials 2019, 12, 4083. [Google Scholar] [CrossRef]
- Zupanič, F.; Steinacher, M.; Žist, S.; Bončina, T. Microstructure and Properties of a Novel Al-Mg-Si Alloy AA 6086. Metals 2021, 11, 368. [Google Scholar] [CrossRef]
- Ko, S.; Park, H.; Lee, Y.-H.; Shin, S.; Jo, I.; Kim, J.; Lee, S.-B.; Kim, Y.; Lee, S.-K.; Cho, S. Fabrication of TiB2–Al1050 Composites with Improved Microstructural and Mechanical Properties by a Liquid Pressing Infiltration Process. Materials 2020, 13, 1588. [Google Scholar] [CrossRef]
- Gao, Q.; Yang, B.; Gan, G.; Zhong, Y.; Sun, L.; Zhai, W.; Qiang, W.; Wang, S.; Lu, Y. Microstructure and Wear Resistance of TiB2/7075 Composites Produced via Rheocasting. Metals 2020, 10, 1068. [Google Scholar] [CrossRef]
- Pingale, A.D.; Gautam, D.; Owhal, A.; Deshwal, D.; Belgamwar, S.U.; Rao, V.K.P. Development of Non-Destructive Dynamic Characterization Technique for MMCs: Predictions of Mechanical Properties for Al@Al2O3 Composites. NDT 2023, 1, 22–34. [Google Scholar] [CrossRef]
- Gamin, Y.V.; Belov, N.A.; Akopyan, T.K.; Timofeev, V.N.; Cherkasov, S.O.; Motkov, M.M. Effect of Radial-Shear Rolling on the Structure and Hardening of an Al–8%Zn–3.3%Mg–0.8%Ca–1.1%Fe Alloy Manufactured by Electromagnetic Casting. Materials 2023, 16, 677. [Google Scholar] [CrossRef] [PubMed]
- Arbuz, A.; Panichkin, A.; Popov, F.; Kawalek, A.; Ozhmegov, K.; Lutchenko, N. Modeling the Evolution of Casting Defect Closure in Ingots through Radial Shear Rolling Processing. Metals 2024, 14, 53. [Google Scholar] [CrossRef]
- Ozhmegov, K.; Kawalek, A.; Naizabekov, A.; Panin, E.; Lutchenko, N.; Sultanbekov, S.; Magzhanov, M.; Arbuz, A. The Effect of Radial-Shear Rolling Deformation Processing on the Structure and Properties of Zr-2.5Nb Alloy. Materials 2023, 16, 3873. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, J.A.; Khelfa, T.; Duarte, G.A.; Avalos, M.; Bolmaro, R.; Cabrera, J.M. Plastic Behavior and Microstructure Heterogeneity of an AA6063-T6 Aluminum Alloy Processed by Symmetric and Asymmetric Rolling. Metals 2022, 12, 1551. [Google Scholar] [CrossRef]







| Mg | Si | Mn | Fe | Cu | Zn | Ti | Others | Al |
|---|---|---|---|---|---|---|---|---|
| 0.35–0.50 | 0.30–0.60 | ≤0.10 | 0.10–0.30 | ≤0.10 | ≤0.15 | ≤0.10 | ≤0.15 | Balance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abishkenov, M.; Tavshanov, I.; Lutchenko, N.; Nogayev, K.; Ashkeyev, Z.; Kulidan, S. Hybrid Al6060/TiB2/Microsilica Composites Produced by Ultrasonically Assisted Stir Casting and Radial-Shear Rolling: Microstructural Evolution and Strength–Ductility Balance. Eng 2025, 6, 298. https://doi.org/10.3390/eng6110298
Abishkenov M, Tavshanov I, Lutchenko N, Nogayev K, Ashkeyev Z, Kulidan S. Hybrid Al6060/TiB2/Microsilica Composites Produced by Ultrasonically Assisted Stir Casting and Radial-Shear Rolling: Microstructural Evolution and Strength–Ductility Balance. Eng. 2025; 6(11):298. https://doi.org/10.3390/eng6110298
Chicago/Turabian StyleAbishkenov, Maxat, Ilgar Tavshanov, Nikita Lutchenko, Kairosh Nogayev, Zhassulan Ashkeyev, and Siman Kulidan. 2025. "Hybrid Al6060/TiB2/Microsilica Composites Produced by Ultrasonically Assisted Stir Casting and Radial-Shear Rolling: Microstructural Evolution and Strength–Ductility Balance" Eng 6, no. 11: 298. https://doi.org/10.3390/eng6110298
APA StyleAbishkenov, M., Tavshanov, I., Lutchenko, N., Nogayev, K., Ashkeyev, Z., & Kulidan, S. (2025). Hybrid Al6060/TiB2/Microsilica Composites Produced by Ultrasonically Assisted Stir Casting and Radial-Shear Rolling: Microstructural Evolution and Strength–Ductility Balance. Eng, 6(11), 298. https://doi.org/10.3390/eng6110298

