- Review
Reviewing Critical Logistics and Transport Models in Stainless-Steel Fluid Storage Tanks
- Jude Emele,
- Ales Sliva and
- Mahalingam Nainaragaram Ramasamy
- + 3 authors
This study reviews and experimentally investigates critical logistics and transport models in stainless-steel (SS) fluid storage tanks, focusing on stainless steel grades 316 and 304L. Conceptual vessel schematics emphasize hygienic drainability, refill uniformity, and thermal control, supported by representative 316L properties for heat-transfer, stress, and fluid–structure analyses. At the logistics scale, modelling integrates component-level simulations, computational fluid dynamics (CFD), and Finite Element Method (FEM) with network-level approaches, such as Continuous Approximation, to address facility location, refilling schedules, and demand variability. Experimental characterization using EDS and XRF confirmed the expected Cr/Ni backbone and grade-consistent Mo in 316, while unexpected C, Mn, and Cu readings were attributed to instrumental limits or statistical variance. Unexpected detection of Europium in 304L highlights the need for further mechanical testing. Overall, combining simulation, logistics modelling, and compositional verification offers a coherent framework for safe, efficient, and thermally reliable stainless-steel tank design.
13 October 2025