- Article
A Large-Kernel and Scale-Aware 2D CNN with Boundary Refinement for Multimodal Ischemic Stroke Lesion Segmentation
- Omar Ibrahim Alirr
Accurate segmentation of ischemic stroke lesions from multimodal magnetic resonance imaging (MRI) is fundamental for quantitative assessment, treatment planning, and outcome prediction; yet, it remains challenging due to highly heterogeneous lesion morphology, low lesion–background contrast, and substantial variability across scanners and protocols. This work introduces Tri-UNetX-2D, a large-kernel and scale-aware 2D convolutional network with explicit boundary refinement for automated ischemic stroke lesion segmentation from DWI, ADC, and FLAIR MRI. The architecture is built on a compact U-shaped encoder–decoder backbone and integrates three key components: first, a Large-Kernel Inception (LKI) module that employs factorized depthwise separable convolutions and dilation to emulate very large receptive fields, enabling efficient long-range context modeling; second, a Scale-Aware Fusion (SAF) unit that learns adaptive weights to fuse encoder and decoder features, dynamically balancing coarse semantic context and fine structural detail; and third, a Boundary Refinement Head (BRH) that provides explicit contour supervision to sharpen lesion borders and reduce boundary error. Squeeze-and-Excitation (SE) attention is embedded within LKI and decoder stages to recalibrate channel responses and emphasize modality-relevant cues, such as DWI-dominant acute core and FLAIR-dominant subacute changes. On the ISLES 2022 multi-center benchmark, Tri-UNetX-2D improves Dice Similarity Coefficient from 0.78 to 0.86, reduces the 95th-percentile Hausdorff distance from 12.4 mm to 8.3 mm, and increases the lesion-wise F1-score from 0.71 to 0.81 compared with a plain 2D U-Net trained under identical conditions. These results demonstrate that the proposed framework achieves competitive performance with substantially lower complexity than typical 3D or ensemble-based models, highlighting its potential for scalable, clinically deployable stroke lesion segmentation.
29 January 2026







