Topic Editors

School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China
State Key Laboratory for the Coal Mine Disaster Dynamics and Controls, Chongqing University, Chongqing 400044, China
Prof. Dr. Ali Zaoui
Laboratoire de Génie Civil et géo-Environnement, University of Lille, IMT Nord Europe, JUNIA, University of Artois, ULR 4515-LGCgE, F-59000 Lille, France

Development of Underground Space for Engineering Application

Abstract submission deadline
30 April 2025
Manuscript submission deadline
30 June 2025
Viewed by
7687

Topic Information

Dear Colleagues,

The exploration and utilization of underground space offer promising solutions to various challenges faced by rapidly growing cities worldwide. From urban planning and infrastructure development to environmental sustainability and disaster resilience, underground space emerges as a versatile resource with immense potential. This Topic welcomes manuscripts that explore original theories, methods, technologies, and applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition.

This Topic invites original research papers and review articles focusing on underground space's latest developments, innovations, and applications in various contexts. Topics of interest include, but are not limited to:

  1. Urban Planning and Infrastructure: Addressing urban congestion and enhancing livability through underground transportation networks, parking facilities, and utilities.
  2. Disaster Resilience: Constructing resilient underground structures to withstand earthquakes, floods, and disasters, ensuring urban safety and continuity.
  3. Advanced Technologies: Advancing underground space development through innovative construction techniques, materials, and monitoring systems.
  4. Tunnels and Mines: Discussing the design, construction, and management of transportation tunnels and mines to improve connectivity and promote sustainable practices.
  5. Environmental Sustainability: Mitigating environmental impacts and integrating underground space with ecosystems for harmonious urban-natural coexistence.

We encourage submissions that contribute to a deeper understanding of the development and application of underground space, fostering innovation and collaboration for sustainable urban development.

Prof. Dr. Chun Zhu
Dr. Fei Wu
Prof. Dr. Ali Zaoui
Topic Editors

Keywords

  • urban planning
  • infrastructure development
  • disaster resilience
  • advanced technologies
  • environmental sustainability
  • digitization
  • intelligence

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Applied Sciences
applsci
2.5 5.3 2011 18.4 Days CHF 2400 Submit
Buildings
buildings
3.1 3.4 2011 15.3 Days CHF 2600 Submit
Eng
eng
- 2.1 2020 21.5 Days CHF 1200 Submit
Infrastructures
infrastructures
2.7 5.2 2016 17.8 Days CHF 1800 Submit
Minerals
minerals
2.2 4.1 2011 18 Days CHF 2400 Submit

Preprints.org is a multidisciplinary platform offering a preprint service designed to facilitate the early sharing of your research. It supports and empowers your research journey from the very beginning.

MDPI Topics is collaborating with Preprints.org and has established a direct connection between MDPI journals and the platform. Authors are encouraged to take advantage of this opportunity by posting their preprints at Preprints.org prior to publication:

  1. Share your research immediately: disseminate your ideas prior to publication and establish priority for your work.
  2. Safeguard your intellectual contribution: Protect your ideas with a time-stamped preprint that serves as proof of your research timeline.
  3. Boost visibility and impact: Increase the reach and influence of your research by making it accessible to a global audience.
  4. Gain early feedback: Receive valuable input and insights from peers before submitting to a journal.
  5. Ensure broad indexing: Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (9 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
17 pages, 29455 KiB  
Article
Deformation Analysis of Nuclear Power Shield Tunnel by Longitudinal Response Displacement Method Considering Fluid–Solid Coupling
by Yijiang Fan, Jie Zhao, Xiaodong Yu, Cheng Fan and Bo Qian
Buildings 2025, 15(8), 1365; https://doi.org/10.3390/buildings15081365 - 19 Apr 2025
Viewed by 198
Abstract
The joint of a shield tunnel segment is the weak part of tunnel, and the opening amount of the joint seriously affects the watertightness of the internal structure of the tunnel. In this experiment, a model was created with ANSYS, the fluid–solid coupling [...] Read more.
The joint of a shield tunnel segment is the weak part of tunnel, and the opening amount of the joint seriously affects the watertightness of the internal structure of the tunnel. In this experiment, a model was created with ANSYS, the fluid–solid coupling effect of the seawater and seabed was considered using the SuperFLUSH/2D 6.0 software, and the local site effect was considered by free-field seismic response analysis. Considering the structure and stress characteristics of the shield tunnel in conjunction with the marine area, earthquake research on shield tunnel culverts was conducted using lateral and longitudinal beam–spring models. The main focus of this article is to study the earthquake resistance of shield tunnel joints under extreme seismic excitation (SL-2) in complex marine environments. The results indicated that in the lateral analysis, under varying soil layer conditions, the diameter deformation rates for sections 1 and 2 using high-strength bolts were 1.752% and 1.334%, respectively, while the joint-opening amounts were 0.515 mm and 0.387 mm, respectively. This suggests that locations with thicker silt layers exhibit larger joint-opening amounts and are more susceptible to deformation. In the longitudinal analysis, when bolt strength varied, the maximum joint-opening ranged from 4.706 mm to 6.507 mm, and the maximum dislocation ranged from 0.625 mm to 1.326 mm. The deformation rule of the joint bolts followed the pattern that higher stiffness led to smaller deformation, whereas poorer geological conditions resulted in larger deformation. Therefore, the interface between soft and hard strata is a weak point in the longitudinal seismic resistance of the shield tunnel structure. The conclusions of this study can supplement the seismic research on shield tunnels in the marine areas of nuclear power plants. Full article
Show Figures

Figure 1

20 pages, 3398 KiB  
Article
Research on the Strength Prediction Method of Coal and Rock Mass Based on the Signal While Drilling in a Coal Mine
by Zheng Yang, Hongtao Liu and Ziwei Ding
Appl. Sci. 2025, 15(8), 4427; https://doi.org/10.3390/app15084427 - 17 Apr 2025
Viewed by 143
Abstract
To study the response relationship between drilling signal and rock mass geomechanical parameters, accurately and quickly perceive and predict the strength of coal and rock mass, guide the optimization of drilling control parameters and the design of the support scheme, and improve the [...] Read more.
To study the response relationship between drilling signal and rock mass geomechanical parameters, accurately and quickly perceive and predict the strength of coal and rock mass, guide the optimization of drilling control parameters and the design of the support scheme, and improve the efficiency of roadway excavation, the prediction of rock uniaxial compressive strength based on drilling signal was carried out. Based on the 112,206 return air chute in the Xiaobaodang No.1 Coal Mine as the engineering background, through the drilling data obtained from the roof anchor cable support, data processing, and feature selection, this paper establishes a coal and rock mass strength prediction model based on the AdaBoost integrated algorithm, optimizes the hyperparameter of the model, and analyzes and evaluates the prediction results. The results show that in the AdaBoost integration model, the R2 of SVM is the highest, 0.972, and the values of RMSE, MAE, MAPE, and other error indicators are the lowest. The prediction accuracies of the SVM model, tree model, and linear model are 98.8%, 85.4%, and 75.6%, respectively. The experimental results show that the AdaBoost integrated algorithm using a based learning machine has higher prediction accuracy. At the same time, compared with the current advanced model, it further verifies the effectiveness of the model in the coal mine. Full article
Show Figures

Figure 1

17 pages, 4387 KiB  
Article
Failure Mode- and Time-Dependent Reliability Model of Tunnel Lining Structure Under Extremely High Ground Stress
by Tao Peng, Dongxing Ren, Fanmin He, Binjia Li, Fei Wu and Shijie Xu
Infrastructures 2025, 10(3), 68; https://doi.org/10.3390/infrastructures10030068 - 20 Mar 2025
Viewed by 183
Abstract
Damage to tunnel lining significantly influences the stability of tunnels during operation, particularly under conditions of extra-high ground stress. This article investigates the stability of tunnel linings subjected to extra-high ground stress, providing an in-depth analysis of crack damage modes. A time-varying reliability [...] Read more.
Damage to tunnel lining significantly influences the stability of tunnels during operation, particularly under conditions of extra-high ground stress. This article investigates the stability of tunnel linings subjected to extra-high ground stress, providing an in-depth analysis of crack damage modes. A time-varying reliability model based on the structural performance function is proposed, which incorporates the effects of the plastic zone and the identified crack damage modes. The plastic zone and the distribution of the surrounding rock stress field throughout the excavation process were simulated, elucidating the relationship between vault displacement and stress release rate. The time-varying reliability model is employed to assess lining behavior under extremely high ground stress and to establish the patterns governing its service life. The findings of this study offer a crucial reference for further investigations into the time-varying reliability of tunnel linings in the context of extreme ground stress. Full article
Show Figures

Figure 1

22 pages, 15374 KiB  
Article
Case Study on Response Characteristic of Surroundings Induced by a Covered Semi-Top-Down Excavation with Synchronous Construction of the Superstructure and Substructure
by Liyun Li, Zixuan Li, Ling Lei, Zhuyan Li, Haonan Jiang and Yunhao Gao
Appl. Sci. 2025, 15(5), 2739; https://doi.org/10.3390/app15052739 - 4 Mar 2025
Viewed by 439
Abstract
Relying on a foundation pit project leveraging the covered semi-top-down method with synchronous construction of the superstructure and substructure in Beijing, the whole process of construction was simulated by using ABAQUS finite-element software. The impact of the whole construction on the surrounding ground, [...] Read more.
Relying on a foundation pit project leveraging the covered semi-top-down method with synchronous construction of the superstructure and substructure in Beijing, the whole process of construction was simulated by using ABAQUS finite-element software. The impact of the whole construction on the surrounding ground, the adjacent building, and the retaining structure were studied, and the influence of the existing building, the strength of diaphragm wall, and the construction process were carried out. As shown from the results, the foundation pit and the existing building are in a safe state during the whole construction process. The ground settlement shows an obvious groove shape. The deformation of the diaphragm wall has obvious spatial effects, which changes from “single peak” to “double peaks”. The maximum horizontal displacement of strata behind the diaphragm wall occurs at a depth of 22.5 m, which is 1.4–2.0 times the top horizontal displacement. The presence of existing buildings reduced the ground settlement between the buildings and the excavation surface. The construction process has little impact on the settlement of adjacent existing buildings, which can be adjusted appropriately. Full article
Show Figures

Figure 1

27 pages, 15528 KiB  
Article
An Improved NSGA-II-Based Method for Cutting Trajectory Planning of Boom-Type Roadheader
by Chao Zhang, Xuhui Zhang, Wenjuan Yang, Jicheng Wan, Guangming Zhang, Yuyang Du, Sihao Tian and Zeyao Wang
Appl. Sci. 2025, 15(4), 2126; https://doi.org/10.3390/app15042126 - 17 Feb 2025
Viewed by 434
Abstract
This paper proposes a cutting trajectory planning method for boom-type roadheaders using an improved Nondominated Sorting Genetic Algorithm II (NSGA-II) with an elitist strategy. Existing methods often overlook constraints related to cutterhead dimensions and target sections, affecting section formation quality. We develop a [...] Read more.
This paper proposes a cutting trajectory planning method for boom-type roadheaders using an improved Nondominated Sorting Genetic Algorithm II (NSGA-II) with an elitist strategy. Existing methods often overlook constraints related to cutterhead dimensions and target sections, affecting section formation quality. We develop a kinematic model for coordinate transformations and design a simplified cutterhead and constraint model to generate feasible cutting points. Bi-objective functions—minimizing cutting trajectory length and turning angle—are formulated as a bi-objective traveling salesman problem (BO-TSP) with adjacency constraints. NSGA-II is adapted with enhancements in adjacency constraint handling, population initialization, and genetic operations. Simulations and experiments demonstrate significant improvements in convergence speed and computation time. Virtual cutting experiments confirm trajectory feasibility under varying postures, achieving high formation quality. A comparison of planned and tracked trajectories shows a maximum deviation of 23.879 mm, supporting autonomous cutting control. This method advances cutting trajectory planning for roadway section formation and autonomous roadheader control. Full article
Show Figures

Figure 1

28 pages, 9760 KiB  
Article
Nonlinear Seismic Response of Tunnel Structures under Traveling Wave Excitation
by Xiaoqing Suo, Lilong Liu, Dan Qiao, Zhengsong Xiang and Yuanfu Zhou
Buildings 2024, 14(9), 2940; https://doi.org/10.3390/buildings14092940 - 17 Sep 2024
Viewed by 1094
Abstract
Tunnels traditionally regarded as resilient to seismic events have recently garnered significant attention from engineers owing to a rise in incidents of seismic damage. In this paper, the reflection characteristics of the elastic plane wave incident on the free surface are analyzed, and [...] Read more.
Tunnels traditionally regarded as resilient to seismic events have recently garnered significant attention from engineers owing to a rise in incidents of seismic damage. In this paper, the reflection characteristics of the elastic plane wave incident on the free surface are analyzed, and the matrix analysis method SWIM (Seismic Wave Input Method) for the calculation of equivalent nodal loads with artificial truncated boundary conditions for seismic wave oblique incidence is established by using coordinate transformation technology, according to the displacement velocity and stress characteristics of a plane wave. The results show that the oblique incidence method is more effective in reflecting the traveling wave effect, and the “rotational effect” induced by oblique incidence must be considered for P wave and SV wave incidence, including the associated stress and deformation. This effect exhibits markedly distinct rotational phenomenon. In particular, the P wave incidence should be focused on the vault and the inverted arch due to the expansion wave. With the increase of the oblique incidence angle, the structural stress and deformation are rotated to a certain extent, and the values are significantly increased. Simultaneously, the shear action of the SV wave may result in “ovaling” of the tunnel structure, thereby facilitating damage to the arch shoulder and the sidewall components. As the oblique incidence angle, the potentially damaging effects of the “rotational effect” to the vault and the inverted arch, but the numerical value does not change significantly. In addition, in comparison to a circular cross-section, the low-frequency amplification of seismic waves in the surrounding rock and the difference of frequency response function in different parts of the lining are more pronounced. In particular, the dominant frequency characteristics are significant at P wave incidence and the seismic wave signal attenuation tends to be obvious with increasing incidence angle. In contrast, SV waves exhibit more uniform characteristics. Full article
Show Figures

Figure 1

16 pages, 5080 KiB  
Article
Optimizing Grouting Parameters to Control Ground Deformation in the Shield Tunneling
by Mei Wang, Chenyue Zhao, Songsong Yang and Jingmin Xu
Buildings 2024, 14(9), 2799; https://doi.org/10.3390/buildings14092799 - 5 Sep 2024
Cited by 1 | Viewed by 1116
Abstract
In urban shield tunneling, reducing the disturbance of underground construction to the surrounding environment is important for both tunnel engineers and researchers. Among other factors, the quality of synchronous grouting is one of the crucial factors affecting the safe construction of shields. In [...] Read more.
In urban shield tunneling, reducing the disturbance of underground construction to the surrounding environment is important for both tunnel engineers and researchers. Among other factors, the quality of synchronous grouting is one of the crucial factors affecting the safe construction of shields. In order to determine a reasonable grouting pressure and grout amount during shield construction, the relationships among synchronous grouting pressure, grout amount and shield chamber pressure are analyzed using field monitoring data. Based on the tunnel face pressure and the ultimate yield conditions of the soil at the gap edge, a method for calculating the grouting pressure considering the overburdening load of the tunnel was proposed. Then, by linking the grout amount and the grouting pressure, an accurate calculation method for the simultaneous grout amount in shield construction was proposed. These methods were then used in the construction of the Jurong shield tunnel. The results show that the adopted grouting pressure and grout amount calculated by the proposed method, which considered the change of the overburdening load of the tunnel, can well control the ground deformation caused by the shield construction and significantly reduce the uneven settlement of the surface buildings. The proposed methods in this paper may provide a reference for other shield construction projects. Full article
Show Figures

Figure 1

19 pages, 13581 KiB  
Article
Mechanical Response Characteristics and Tangent Modulus Calculation Model of Expansive-Clay Unloading Stress Path
by Shilong Peng, Zhijun Li, Hua Cheng, Yuhao Xu, Ting Zhang and Guangyong Cao
Buildings 2024, 14(8), 2497; https://doi.org/10.3390/buildings14082497 - 13 Aug 2024
Cited by 2 | Viewed by 1024
Abstract
As a special type of clay, expansive clay is widely distributed in China. Its characteristics of swelling and softening when meeting water and shrinking and cracking when losing water bring many hidden dangers to engineering construction. Expansive clay is known as “engineering cancer”, [...] Read more.
As a special type of clay, expansive clay is widely distributed in China. Its characteristics of swelling and softening when meeting water and shrinking and cracking when losing water bring many hidden dangers to engineering construction. Expansive clay is known as “engineering cancer”, and in-depth research on the unloading mechanical response characteristics and the unloading constitutive relationships of expansive clay is a prerequisite for conducting geotechnical engineering design and safety analysis in expansive-soil areas. In order to obtain the unloading mechanical response characteristics and the expression of the unloading tangent modulus of expansive clay, typical expansive clay in the Hefei area was taken as the research object, and triaxial unloading stress path tests were conducted. The stress–strain properties, microstructures, macro failure modes, and strength indexes of the expansive clay were analyzed under unloading stress paths. Through an applicability analysis of several classical soil strength criteria, an unloading constitutive model and the unloading tangent modulus expression of the expansive clay were constructed based on the Mohr–Coulomb (hereinafter referred to as “M-C”) criterion, the Drucker–Prager (hereinafter referred to as “D-P”) criterion, and the extended Spatial Mobilized Plane (hereinafter referred to as “SMP”) criterion theoretical frameworks. The following research results were obtained: (1) The stress–strain curves of the three stress paths of the expansive clay were hyperbolic. The expansive clay showed typical strain-hardening characteristics and belonged to work-hardening soil. (2) Under the unloading stress paths, the soil particles were involved in the unloading process of stress release, and the failure samples showed obvious stretching, curling, and slipping phenomena in their soil sheet elements. (3) Under both unloading stress paths, the strength of the expansive clay was significantly weakened and reduced. Under the lateral unloading paths, the cohesive force (c) of the expansive clay was reduced by 32.7% and the internal friction angle (φ) was increased by 19% compared with those under conventional loading, while under the axial unloading path, c was reduced by 63.5% and φ was reduced by 28.7%. (4) For typical expansive clay in Hefei, the conventional triaxial compression (hereinafter referred to as “CTC”) test, the reduced triaxial compression (hereinafter referred to as “RTC”) test, and the reduced triaxial extension (hereinafter referred to as “RTE”) test stress paths were suitable for characterization and deformation prediction using the M-C strength criterion, D-P strength criterion, and extended SMP strength criterion, respectively. (5) The derived unloading constitutive model and the unified tangent modulus formula of the expansive clay could accurately predict the deformation characteristics of the unloading stress path of the expansive clay. These research results will provide an important reference for future engineering construction in expansive-clay areas. Full article
Show Figures

Figure 1

19 pages, 25280 KiB  
Article
Bearing Capacity of Precast Concrete Joint Micropile Foundations in Embedded Layers: Predictions from Dynamic and Static Load Tests according to ASTM Standards
by Abdulla Omarov, Assel Sarsembayeva, Askar Zhussupbekov, Malika Nurgozhina, Gulshat Tleulenova, Akmaral Yeleussinova and Baizak Isakulov
Infrastructures 2024, 9(7), 104; https://doi.org/10.3390/infrastructures9070104 - 1 Jul 2024
Cited by 1 | Viewed by 1903
Abstract
In this paper, joint precast piles with a cross-section of 400 × 400 mm and a pin-joined connection were considered, and their interaction with the soil of Western Kazakhstan has been analyzed. The following methods were used: assessment of the bearing capacity using [...] Read more.
In this paper, joint precast piles with a cross-section of 400 × 400 mm and a pin-joined connection were considered, and their interaction with the soil of Western Kazakhstan has been analyzed. The following methods were used: assessment of the bearing capacity using the static compression load test (SCLT by ASTM) method, interpretation of the field test data, and the dynamic loading test (DLT) method for driving precast concrete joint piles, including Pile Driving Analyzer (PDA by ASTM) and Control and Provisioning of Wireless Access Points (CAPWAP) methods. According to the results, the composite piles tested by the PDA (by ASTM) method differ by 15 percent compared to the static load method, while the difference between the dynamic DLT (by ASTM) method and the static load (by ASTM) method was only 7 percent. So, according to the results, the alternative dynamic method DLT (by ASTM) is very effective and more accurate compared to other existing methods. Full article
Show Figures

Figure 1

Back to TopTop