Characterization of Citrus Orchard Soil Improved by Green Manure Using the Discrete Element Method
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Materials
2.1.1. Soil-Green Manure Mixture
2.1.2. Establishment of Particle Models
2.2. Determination of Contact Parameters
2.2.1. Coefficient of Static Friction Between Soil and 65 Mn
2.2.2. Coefficient of Restitution and Static Friction Between Root System and Soil
Coefficient of Restitution
Coefficient of Static Friction
2.3. Plan of Simulations
2.3.1. Construction of the Contact Model
Contact Model of Soil-to-Soil
Contact Model of Green Manure Particles
2.3.2. Contact Parameter Assays
Angle of Repose Assays
Initial Slip Angle Assays
Shear Assays
2.3.3. Plans for the Determination of Significant Parameters
Plackett–Burman Tests
Box–Benhnken Design Assays
2.4. Experimental Validation of Soil–Green Manure Interactions
2.4.1. Root Pull-Out Test
2.4.2. Direct Shear Test
2.5. Statistical Analysis
3. Results
3.1. Calibration of Soil Parameters
3.1.1. Significant Factors Determine by PB Test
3.1.2. Mechanism Models for Significant Parameters of Soil
3.1.3. Optimization Parameters of Soil
3.2. Calibration of Green Manure Parameters
3.2.1. Regression Models of Green Manure Significant Factors
3.2.2. Mechanism Models for Significant Parameters of Green Manure
3.2.3. Optimization Parameters of Green Manure
3.3. Experimental Validation Results
3.3.1. Root Pullout Assay
3.3.2. Direct Shear Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DEM | Discrete element method |
| AoR | Angle of Repose, ° |
| ISA | Initial Slip Angle, ° |
| CoR | Coefficient of Restitution |
Appendix A
| № | G (MPa) | e | μ | γ | e′ | μ′ | γ′ | JKR (J·m−2) | AoR (°) | ISA (°) |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | −1 (5.9) | −1 (0.3) | −1 (0.2) | 1 (0.3) | −1 (0.2) | 1 (0.6) | 1 (0.4) | −1 (0.5) | 34.72 | 26.4 |
| 2 | −1 | −1 | −1 | −1 (0.1) | −1 | −1 (0.33) | −1 (0.15) | −1 | 20.20 | 11.7 |
| 3 | 1 (20) | 1 (0.75) | −1 | −1 | −1 | 1 | −1 | 1 (1.5) | 27.90 | 20.6 |
| 4 | 1 | 1 | −1 | 1 | 1 (0.5) | 1 | −1 | −1 | 32.52 | 21.2 |
| 5 | −1 | −1 | 1 (0.5) | −1 | 1 | 1 | −1 | 1 | 29.68 | 27.9 |
| 6 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 37.00 | 10.8 |
| 7 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | 26.94 | 28.1 |
| 8 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 31.82 | 11.4 |
| 9 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | 24.80 | 10.2 |
| 10 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | 34.25 | 10.8 |
| 11 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | 38.23 | 25.8 |
| 12 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 21.98 | 10.8 |
| Item | Parameter | Symbol | Value | Source |
|---|---|---|---|---|
| Soil | Poisson ratio | ν | 0.38 | [34] |
| Shear modulus (MPa) | G | 20 | [35,36] | |
| Density (kg·m−3) | ρ | 1.47 | Measured | |
| Soil-Soil | Coefficient of restitution | e | 0.37 | [34] |
| Coefficient of static friction | μ | 0.45 | [41] | |
| Soil-65 Mn | Coefficient of restitution | e′ | 0.3 | |
| Coefficient of rolling friction | γ′ | 0.375 | Measured |
| № | γ | JKR (J·m−2) | μ′ | AoR (°) | ISA (°) |
|---|---|---|---|---|---|
| 1 | 0 | 0 | 0 | 39.82 | 19.2 |
| 2 | −1 (0.1) | 0 (1) | −1 (0.33) | 27.32 | 9.90 |
| 3 | 0 (0.2) | 1 (1.5) | 1 (0.6) | 42.42 | 25.8 |
| 4 | 0 | 0 | 0 (0.465) | 38.75 | 18.9 |
| 5 | 1 (0.3) | −1 (0.5) | 0 | 43.78 | 18.6 |
| 6 | 0 | −1 | 1 | 39.74 | 27.0 |
| 7 | 0 | 0 | 0 | 39.29 | 18.6 |
| 8 | −1 | −1 | 0 | 30.60 | 20.4 |
| 9 | 1 | 1 | 0 | 44.80 | 18.3 |
| 10 | −1 | 1 | 0 | 31.55 | 19.2 |
| 11 | 1 | 0 | 1 | 45.15 | 25.8 |
| 12 | 0 | 1 | −1 | 36.15 | 10.2 |
| 13 | 0 | 0 | 0 | 38.63 | 19.2 |
| 14 | 0 | −1 | −1 | 36.03 | 10.8 |
| 15 | 0 | 0 | 0 | 38.51 | 19.2 |
| 16 | 1 | 0 | −1 | 39.61 | 10.8 |
| 17 | −1 | 0 | 1 | 32.80 | 27.6 |
| Fibrous | Stems | Root | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| № | kn × 1010 (N·m−3) | kt × 109 (N·m−3) | σmax × 108 (Pa) | τmax × 108 (Pa) | Fmax (N) | kn × 109 (N·m−3) | kt × 109 (N·m−3) | σmax × 108 (Pa) | τmax × 108 (Pa) | Fmax (N) |
| 1 | 0 (3.5) | −1 (2) | +1 (8.5) | 0 (6.25) | 30.5 | 0 (5.5) | −1 (2.5) | +1 (6) | 0 (4) | 32.1 |
| 2 | 0 | 0 (3.5) | 0 (6.25) | 0 | 30.2 | 0 | 0 (5) | 0 (4) | 0 | 31.5 |
| 3 | −1 (1.5) | 0 | 0 | −1 (4) | 29.7 | +1 (8) | 0 | +1 | 0 | 28.3 |
| 4 | 0 | +1 (5) | 0 | +1 (8.5) | 30.4 | 0 | +1 (7.5) | −1 (2) | 0 | 32.3 |
| 5 | 0 | 0 | −1 (4) | −1 | 30.2 | +1 | −1 | 0 | 0 | 27.5 |
| 6 | 0 | 0 | +1 | −1 | 30.7 | −1 (3) | 0 | 0 | −1 (2) | 21.2 |
| 7 | 0 | −1 | 0 | +1 | 30.5 | +1 | +1 | 0 | 0 | 28.2 |
| 8 | 0 | 0 | 0 | 0 | 30.7 | −1 | +1 | 0 | 0 | 21.4 |
| 9 | +1 (5.5) | 0 | −1 | 0 | 31.2 | −1 | −1 | 0 | 0 | 21.6 |
| 10 | 0 | −1 | 0 | −1 | 30.5 | −1 | 0 | +1 | 0 | 22.2 |
| 11 | +1 | 0 | 0 | +1 | 31.2 | +1 | 0 | 0 | −1 | 27.9 |
| 12 | 0 | +1 | −1 | 0 | 30.1 | 0 | −1 | −1 | 0 | 32.6 |
| 13 | +1 | +1 | 0 | 0 | 31 | +1 | 0 | −1 | 0 | 27.7 |
| 14 | +1 | −1 | 0 | 0 | 31.3 | 0 | 0 | 0 | 0 | 31.5 |
| 15 | 0 | −1 | −1 | 0 | 30.5 | 0 | +1 | 0 | −1 | 32.6 |
| 16 | +1 | 0 | +1 | 0 | 31.2 | −1 | 0 | 0 | +1 (6) | 23.3 |
| 17 | 0 | 0 | +1 | +1 | 30.2 | 0 | −1 | 0 | −1 | 30.9 |
| 18 | 0 | 0 | 0 | 0 | 30.8 | −1 | 0 | −1 | 0 | 22.9 |
| 19 | 0 | +1 | +1 | 0 | 30.65 | 0 | 0 | 0 | 0 | 32.8 |
| 20 | +1 | 0 | 0 | −1 | 31.2 | 0 | 0 | 0 | 0 | 31.5 |
| 21 | −1 | 0 | −1 | 0 | 29.5 | 0 | 0 | 0 | 0 | 32.9 |
| 22 | 0 | 0 | −1 | +1 | 30.75 | 0 | 0 | +1 | +1 | 32.8 |
| 23 | −1 | 0 | 0 | +1 | 29.4 | 0 | 0 | −1 | −1 | 32.7 |
| 24 | 0 | 0 | 0 | 0 | 30.6 | 0 | 0 | −1 | +1 | 32.7 |
| 25 | −1 | −1 | 0 | 0 | 29.5 | 0 | −1 | 0 | +1 | 32.5 |
| 26 | −1 | +1 | 0 | 0 | 29.9 | 0 | +1 | 0 | +1 | 32.3 |
| 27 | −1 | 0 | +1 | 0 | 29.9 | +1 | 0 | 0 | +1 | 27.9 |
| 28 | 0 | 0 | 0 | 0 | 30.9 | 0 | 0 | +1 | −1 | 32.5 |
| 29 | 0 | +1 | 0 | −1 | 31 | 0 | +1 | +1 | 0 | 32.3 |
| Taproot | Stems | Root | ||||||||
| № | kn × 1010 (N·m−3) | kt × 109 (N·m−3) | σmax × 107 (Pa) | τmax × 107 (Pa) | Fmax (N) | kn × 109 (N·m−3) | kt × 109 (N·m−3) | σmax × 108 (Pa) | τmax × 108 (Pa) | Fmax (N) |
| 1 | 0 (1.325) | +1 (5) | 0 (3.5) | −1 (2.5) | 25.7 | 0 (1.9) | 0 (1.9) | −1 (2) | −1 | 70.4 |
| 2 | −1 (0.15) | 0 (3) | −1 (2) | 0 (3.75) | 22.425 | +1 (3) | 0 | 0 (3.75) | −1 (2) | 73.5 |
| 3 | 0 | +1 | +1 (5) | 0 | 26.8 | 0 | −1 (0.8) | +1 (5.5) | 0 | 71 |
| 4 | 0 | +1 | 0 | +1 (5) | 27.8 | −1 (0.8) | 0 | 0 | −1 | 59.5 |
| 5 | 0 | −1 (1) | +1 | 0 | 23 | 0 | +1 (3) | 0 | −1 | 69.9 |
| 6 | −1 | 0 | 0 | −1 | 21.5 | −1 | +1 | 0 | 0 | 59.4 |
| 7 | 0 | +1 | −1 | 0 | 25.7 | +1 | −1 | 0 | 0 | 74.2 |
| 8 | 0 | −1 | −1 | 0 | 26.3 | −1 | 0 | −1 | 0 | 59.5 |
| 9 | −1 | −1 | 0 | 0 | 20.8 | 0 | 0 | 0 | 0 | 70.4 |
| 10 | 0 | 0 | 0 | 0 | 26.6 | 0 | 0 | 0 | 0 | 68.65 |
| 11 | −1 | +1 | 0 | 0 | 25.9 | 0 | 0 | +1 | +1 | 70.4 |
| 12 | +1 (2.5) | +1 | 0 | 0 | 24.9 | 0 | −1 | −1 | 0 | 71 |
| 13 | 0 | 0 | 0 | 0 | 26.6 | +1 | 0 | −1 | 0 | 73.5 |
| 14 | 0 | 0 | 0 | 0 | 27 | +1 | 0 | +1 | 0 | 73.5 |
| 15 | 0 | 0 | 0 | 0 | 27.8 | +1 | 0 | 0 | +1 | 73.5 |
| 16 | +1 | 0 | 0 | +1 | 26.7 | 0 | 0 | 0 | 0 | 67.9 |
| 17 | +1 | 0 | 0 | −1 | 27.7 | 0 | +1 | 0 | +1 | 69.9 |
| 18 | −1 | 0 | 0 | +1 | 24.8 | 0 | −1 | 0 | −1 | 71 |
| 19 | 0 | 0 | −1 | −1 | 26.6 | −1 | 0 | 0 | +1 | 59.5 |
| 20 | 0 | −1 | 0 | −1 | 27.3 | 0 | +1 | −1 | 0 | 69.9 |
| 21 | −1 | 0 | +1 | 0 | 21.93 | 0 | 0 | 0 | 0 | 70.4 |
| 22 | 0 | 0 | 0 | 0 | 26 | 0 | 0 | −1 | +1 | 70.4 |
| 23 | +1 | −1 | 0 | 0 | 27.6 | 0 | +1 | +1 | 0 | 69.9 |
| 24 | 0 | 0 | −1 | +1 | 24 | 0 | 0 | 0 | 0 | 70.4 |
| 25 | +1 | 0 | −1 | 0 | 26.7 | 0 | −1 | 0 | +1 | 71 |
| 26 | +1 | 0 | +1 | 0 | 27.3 | −1 | 0 | +1 | 0 | 59.5 |
| 27 | 0 | −1 | 0 | +1 | 23.4 | −1 | −1 | 0 | 0 | 62.3 |
| 28 | 0 | 0 | +1 | +1 | 27.5 | 0 | 0 | +1 | −1 | 70.4 |
| 29 | 0 | 0 | +1 | −1 | 24.6 | +1 | +1 | 0 | 0 | 73.2 |
Appendix B

References
- Zhong, G.; Nicolosi, E. Citrus Origin, Diffusion, and Economic Importance. In The Citrus Genome; Gentile, A., La Malfa, S., Deng, Z., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 5–21. ISBN 978-3-030-15308-3. [Google Scholar]
- Gentile, A.; La Malfa, S.; Deng, Z. (Eds.) The Citrus Genome; Compendium of Plant Genomes; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-10799-4. [Google Scholar]
- Mukhametzyanov, R.R.; Brusenko, S.V.; Khezhev, A.M.; Kelemetov, E.M.; Kirillova, S.S. Changing the Global Production and Trade of Citrus Fruits. In Sustainable Development of the Agrarian Economy Based on Digital Technologies and Smart Innovations; Popkova, E.G., Bogoviz, A.V., Sergi, B.S., Kaurova, O.V., Maloletko, A.N., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 19–24. ISBN 978-3-031-51272-8. [Google Scholar]
- Kumar, S.; Kumari, S.; Rana, S.S.; Rana, R.S.; Anwar, T.; Qureshi, H.; Saleh, M.A.; Alamer, K.H.; Attia, H.; Ercisli, S.; et al. Weed Management Challenges in Modern Agriculture: The Role of Environmental Factors and Fertilization Strategies. Crop Prot. 2024, 185, 106903. [Google Scholar] [CrossRef]
- Silwana, S.; Mulidzi, A.R.; Jovanovic, N. Evaluating the Effects and Benefits of Cover Crops in Citrus Orchards: A Review. S. Afr. J. Plant Soil 2023, 40, 117–126. [Google Scholar] [CrossRef]
- Dong, N.; Hu, G.; Zhang, Y.; Qi, J.; Chen, Y.; Hao, Y. Effects of Green-Manure and Tillage Management on Soil Microbial Community Composition, Nutrients and Tree Growth in a Walnut Orchard. Sci. Rep. 2021, 11, 16882. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Li, Y.; Hou, Y.; Zhao, Z.; Meng, L.; Liu, J.; Wang, J.; Xiong, B.; Wang, Z. Cover Crops Control Weed and Improve Soil Qualities in Citrus Orchard. J. Soil Sci. Plant Nutr. 2023, 23, 6827–6837. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, Y.; Wang, Z.; Zhang, X.; Xu, W.; Zhang, J.; Zhang, Y.; Hu, B.; Shi, X.; Rennenberg, H. Groundcover Improves Nutrition and Growth of Citrus Trees and Reduces Water Runoff, Soil Erosion and Nutrient Loss on Sloping Farmland. Front. Plant Sci. 2024, 15, 1489693. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Wang, X.; Ma, J.; Li, X.; Cao, J.; Zhou, J.; Wu, L.; Zhao, P.; Cao, W. Co-Incorporating Green Manure and Crop Straw Increases Crop Productivity and Improves Soil Quality with Low Greenhouse-Gas Emissions in a Crop Rotation. Crop J. 2024, 12, 1233–1241. [Google Scholar] [CrossRef]
- Wofuru-Nyenke, O.K. Mechanized Cover Crop Farming: Modern Methods, Equipment and Technologies. Circ. Agric. Syst. 2023, 3, 6. [Google Scholar] [CrossRef]
- Ma, X.; Li, F.; Chen, Y.; Chang, Y.; Lian, X.; Li, Y.; Ye, L.; Yin, T.; Lu, X. Effects of Fertilization Approaches on Plant Development and Fertilizer Use of Citrus. Plants 2022, 11, 2547. [Google Scholar] [CrossRef]
- Barbosa, L.A.P. Modelling the Aggregate Structure of a Bulk Soil to Quantify Fragmentation Properties and Energy Demand of Soil Tillage Tools in the Formation of Seedbeds. Biosyst. Eng. 2020, 197, 203–215. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, S.; Hu, X.; Zhang, L. Study on Rotary Tillage Cutting Simulations and Energy Consumption Predictions of Sandy Ground Soil in a Xinjiang Cotton Field. Comput. Electron. Agric. 2024, 217, 108646. [Google Scholar] [CrossRef]
- Coetzee, C.J. Review: Calibration of the Discrete Element Method. Powder Technol. 2017, 310, 104–142. [Google Scholar] [CrossRef]
- Horabik, J.; Molenda, M. Parameters and Contact Models for DEM Simulations of Agricultural Granular Materials: A Review. Biosyst. Eng. 2016, 147, 206–225. [Google Scholar] [CrossRef]
- Shi, Y.; Jiang, Y.; Wang, X.; Thuy, N.T.D.; Yu, H. A Mechanical Model of Single Wheat Straw with Failure Characteristics Based on Discrete Element Method. Biosyst. Eng. 2023, 230, 1–15. [Google Scholar] [CrossRef]
- Xie, D.; He, J.; Liu, T.; Liu, C.; Zhao, G.; Chen, L. Establishment and Validation the DEM-MBD Coupling Model of Flexible Straw-Shajiang Black Soil-Walking Mechanism Interactions. Comput. Electron. Agric. 2024, 224, 109203. [Google Scholar] [CrossRef]
- Dai, Q.; Zuo, Z.; Zheng, Q.; Fu, Y.; Zhang, S.; Mao, H. Optimization and Experimental Study of a Soil Loosening and Root Lifting Device for Shanghai Green (Brassica rapa Subsp. Chinensis) Harvesting Based on an EDEM-RecurDyn Simulation. Agriculture 2025, 15, 1865. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, J.; Yang, X.; Wang, L.; Su, G.; Liu, X.; Shan, C.; Rahim, O.; Yang, B.; Liao, J. Design and Testing of an Offset Straw-Returning Machine for Green Manures in Orchards. Agriculture 2024, 14, 1932. [Google Scholar] [CrossRef]
- Shen, S.; He, Y.; Tang, Z.; Dai, Y.; Wang, Y.; Ma, J. Development of an Orchard Mowing and Sweeping Device Based on an ADAMS–EDEM Simulation. Agriculture 2023, 13, 2276. [Google Scholar] [CrossRef]
- Chen, P.; Su, J.; Xu, J.; Liu, M. Design and Experiment of Hilly Orchard Vertical Spiral Ditching-fertilizing Machine. Trans. Chin. Soc. Agric. Mach. 2024, 55, 223–233, 274. [Google Scholar]
- Zhang, S.; Zhao, H.; Wang, X.; Dong, J.; Zhao, P.; Yang, F.; Chen, X.; Liu, F.; Huang, Y. Discrete Element Modeling and Shear Properties of the Maize Stubble-Soil Complex. Comput. Electron. Agric. 2023, 204, 107519. [Google Scholar] [CrossRef]
- Liang, R.; Chen, X.; Zhang, B.; Wang, X.; Kan, Z.; Meng, H. Calibration and Test of the Contact Parameters for Chopped Cotton Stems Based on Discrete Element Method. Int. J. Agric. Biol. Eng. 2022, 15, 1–8. [Google Scholar] [CrossRef]
- Ucgul, M.; Fielke, J.M.; Saunders, C. 3D DEM Tillage Simulation: Validation of a Hysteretic Spring (Plastic) Contact Model for a Sweep Tool Operating in a Cohesionless Soil. Soil Tillage Res. 2014, 144, 220–227. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, C.; Zhu, J.; Guo, F.; Tang, H.; Wang, J. Research on the Method of Establishing a Discrete Element Model of Mature Natural Bending Flexible Rice Plants Based on DEM. Powder Technol. 2025, 466, 121412. [Google Scholar] [CrossRef]
- Zhang, J.; Li, C.; Niu, Q.; Wang, P.; Wang, L.; Li, H. Characterization of Green Peppers Based on Dynamic Repose Angle. LWT 2023, 180, 114703. [Google Scholar] [CrossRef]
- Aikins, K.A.; Ucgul, M.; Barr, J.B.; Jensen, T.A.; Antille, D.L.; Desbiolles, J.M.A. Determination of Discrete Element Model Parameters for a Cohesive Soil and Validation through Narrow Point Opener Performance Analysis. Soil Tillage Res. 2021, 213, 105123. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Q.; Li, H.; He, J.; Wang, X.; Zhang, X.; He, D. Experimental Research on Vertical Straw Cleaning and Soil Tillage Device Based on Soil-Straw Composite Model. Comput. Electron. Agric. 2024, 216, 108510. [Google Scholar] [CrossRef]
- Ucgul, M.; Fielke, J.M.; Saunders, C. Three-Dimensional Discrete Element Modelling (DEM) of Tillage: Accounting for Soil Cohesion and Adhesion. Biosyst. Eng. 2015, 129, 298–306. [Google Scholar] [CrossRef]
- Fang, M.; Yu, Z.; Zhang, W.; Cao, J.; Liu, W. Friction Coefficient Calibration of Corn Stalk Particle Mixtures Using Plackett-Burman Design and Response Surface Methodology. Powder Technol. 2022, 396, 731–742. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, M.; Xie, J.; Cao, S.; Wu, A.; Wang, Z. Discrete Element Modeling and Physical Experiment Research on the Biomechanical Properties of Cotton Stalk. Comput. Electron. Agric. 2023, 204, 107502. [Google Scholar] [CrossRef]
- Yue, Y.; Xing, R.; Baikeli, Y.; Xu, H.; Ma, W.; Guo, L. Systematic Calibration and Validation of Discrete Element Model Parameters for Cotton Root Systems. Agriculture 2025, 15, 1827. [Google Scholar] [CrossRef]
- Adajar, J.B.; Alfaro, M.; Chen, Y.; Zeng, Z. Calibration of Discrete Element Parameters of Crop Residues and Their Interfaces with Soil. Comput. Electron. Agric. 2021, 188, 106349. [Google Scholar] [CrossRef]
- Tang, Z.; Gong, H.; Wu, S.; Zeng, Z.; Wang, Z.; Zhou, Y.; Fu, D.; Liu, C.; Cai, Y.; Qi, L. Modelling of Paddy Soil Using the CFD-DEM Coupling Method. Soil Tillage Res. 2023, 226, 105591. [Google Scholar] [CrossRef]
- Barr, J.; Desbiolles, J.; Ucgul, M.; Fielke, J.M. Bentleg Furrow Opener Performance Analysis Using the Discrete Element Method. Biosyst. Eng. 2020, 189, 99–115. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Y.; Wang, C.; Xiang, Y.; Tang, H. Design and Simulation of a Trenching Device for Rice Straw Burial and Trenching Based on MBD-DEM. Comput. Electron. Agric. 2023, 207, 107722. [Google Scholar] [CrossRef]
- Wang, X.; Zhong, X.; Geng, Y.; Wei, Z.; Hu, H.; Geng, D.; Zhang, X. Construction and parameter calibration of the nonlinear elastoplastic discrete element model for no-tillage soil compaction. Trans. Chin. Soc. Agric. Eng. 2021, 37, 100–107. [Google Scholar]
- Huang, Y.; Gao, P.; Zhang, Q.; Shen, H.; Zhu, R.; Shi, J. Design and Experiment of Grass—Soil Separation Device with Combination of Stubble Cutting and Grass Guiding Used for No-till Planter. Trans. Chin. Soc. Agric. Mach. 2020, 51, 67–78. [Google Scholar]
- Takabatake, K.; Mori, Y.; Khinast, J.G.; Sakai, M. Numerical Investigation of a Coarse-Grain Discrete Element Method in Solid Mixing in a Spouted Bed. Chem. Eng. J. 2018, 346, 416–426. [Google Scholar] [CrossRef]
- Bai, H.; Li, R.; Wang, W.; Xie, K.; Wang, X. Investigation on Parameter Calibration Method and Mechanical Properties of Root-Reinforced Soil by DEM. Math. Probl. Eng. 2021, 2021, 6623489. [Google Scholar] [CrossRef]
- Xiang, W.; Wu, M.; Lü, J.; Quan, W.; Ma, L.; Liu, J. Calibration of simulation physical parameters of clay loam based on soil accumulation test. Trans. Chin. Soc. Agric. Eng. 2019, 35, 116–123. [Google Scholar] [CrossRef]
- Tekeste, M.Z.; Balvanz, L.R.; Hatfield, J.L.; Ghorbani, S. Discrete Element Modeling of Cultivator Sweep-to-Soil Interaction: Worn and Hardened Edges Effects on Soil-Tool Forces and Soil Flow. J. Terramech. 2019, 82, 1–11. [Google Scholar] [CrossRef]
- Zeng, B.; Li, M.; Yao, L.; Zhao, S.; Chen, X.; Wang, Y.; Liu, F.; Xie, S. Simulation and experiment on the mechanical properties of Coptis chinensis root-soil composites based on image reconstruction. Trans. Chin. Soc. Agric. Eng. 2023, 39, 75–84. [Google Scholar]
- Kim, W.-S.; Kim, Y.-J.; Park, S.-U.; Kim, Y.-S. Influence of Soil Moisture Content on the Traction Performance of a 78-kW Agricultural Tractor during Plow Tillage. Soil Tillage Res. 2021, 207, 104851. [Google Scholar] [CrossRef]
- Cao, L.; Ma, C.; Jiao, H.; Ma, W.; Wang, L.; Li, C. Construction and Testing of an Empirical Model for Calculating the Tumbled Range of Dry Prickly Ash Particles on the Separation Belt. Comput. Electron. Agric. 2024, 218, 108711. [Google Scholar] [CrossRef]
- Vannoppen, W.; De Baets, S.; Keeble, J.; Dong, Y.; Poesen, J. How Do Root and Soil Characteristics Affect the Erosion-Reducing Potential of Plant Species? Ecol. Eng. 2017, 109, 186–195. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Y.; Sheng, D.; Zhang, S.; Gu, S.; Yan, Y.; Zhao, F.; Wang, P.; Huang, S. Optimizing Root System Architecture to Improve Root Anchorage Strength and Nitrogen Absorption Capacity under High Plant Density in Maize. Field Crops Res. 2023, 303, 109109. [Google Scholar] [CrossRef]
- China Soil Science Data Center. Available online: http://vdb3.soil.csdb.cn/extend/jsp/eng (accessed on 22 May 2024).
- Johnson, K.L.; Kendall, K.; Roberts, A. Surface Energy and the Contact of Elastic Solids. Proc. R. Soc. A Math. Phys. Sci. 1971, 324, 301–313. [Google Scholar]
- Xia, R.; Li, B.; Wang, X.; Li, T.; Yang, Z. Measurement and Calibration of the Discrete Element Parameters of Wet Bulk Coal. Measurement 2019, 142, 84–95. [Google Scholar] [CrossRef]
- Zhang, Z.; Mei, F.; Xiao, P.; Zhao, W.; Zhu, X. Discrete Element Modelling and Simulation Parameters Calibration for the Compacted Straw Cube. Biosyst. Eng. 2023, 230, 301–312. [Google Scholar] [CrossRef]
- Weerasekara, N.S.; Powell, M.S.; Cleary, P.W.; Tavares, L.M.; Evertsson, M.; Morrison, R.D.; Quist, J.; Carvalho, R.M. The Contribution of DEM to the Science of Comminution. Powder Technol. 2013, 248, 3–24. [Google Scholar] [CrossRef]
- Синеoкoв, Г.Н.; Панoв, И.М. Теoрия и Расчеты Пoчвooбрабатывающих Машин; Машинoстрoительная пресса: Moscow, Russia, 1977; ISBN 978-7-111-05481-8. [Google Scholar]
- Jia, F.; Han, Y.; Liu, Y.; Cao, Y.; Shi, Y.; Yao, L.; Wang, H. Simulation prediction method of repose angle for rice particle materials. Trans. Chin. Soc. Agric. Eng. 2014, 30, 254–260. [Google Scholar]
- Luo, S.; Yuan, Q.; Shaban, G.; Yang, L. Parameters Calibration of Vermicomposting Nursery Substrate with Discrete Element Method Based on JKR Contact Model. Trans. Chin. Soc. Agric. Mach. 2018, 49, 343–350. [Google Scholar]
- Zhao, C.; Jiang, L.; Lu, X.; Xiao, X. Analysis of Wet Soil Granular Flow down Inclined Chutes Using Discrete Element Method. Water 2019, 11, 2399. [Google Scholar] [CrossRef]
- JB/T 9014.9-1999; Continuous Handling Equipment—Loose Bulk Material—Determination of Friction Coefficient of Material Sliding on Trough. State Machinery Industry Bureau: Beijing, China, 1999.
- Wang, Y.; Zhang, Y.; Yang, Y.; Zhao, H.; Yang, C.; He, Y.; Wang, K.; Liu, D.; Xu, H. Discrete Element Modelling of Citrus Fruit Stalks and Its Verification. Biosyst. Eng. 2020, 200, 400–414. [Google Scholar] [CrossRef]
- Dung, T.V.; Ngoc, N.P.; Dang, L.V.; Hung, N.N. Impact of Cover Crop and Mulching on Soil Physical Properties and Soil Nutrients in a Citrus Orchard. PeerJ 2022, 10, e14170. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Wei, J.; Wei, J.; Chen, H.; Cui, Y. An ANSYS/LS-DYNA Simulation and Experimental Study of Circular Saw Blade Cutting System of Mulberry Cutting Machine. Comput. Electron. Agric. 2019, 157, 38–48. [Google Scholar] [CrossRef]
- Murgia, I.; Giadrossich, F.; Mao, Z.; Cohen, D.; Capra, G.F.; Schwarz, M. Modeling Shallow Landslides and Root Reinforcement: A Review. Ecol. Eng. 2022, 181, 106671. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, T.; Wei, J. Experimental Study on Shear Performance of Herb Root-Soil Complex in Purple Soil and Yellow Soil. Soil Water Conserv. China 2019, 34–37+69. [Google Scholar] [CrossRef]
- Wei, J.; Li, J.; Shi, B. Shear Strength Features of Two Typical Root-soil Composites from Soil Bunds on Purple Farmlands. J. Basic Sci. Eng. 2018, 26, 483–492. [Google Scholar] [CrossRef]
- GB/T 50123-2019; Standard for Geotechnical Testing Method. Ministry of Housing and Urban–Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2019.
- Ma, J.; Zhang, S.; She, F.; Zhao, X.; Ma, B.; Li, H.; Wang, C.; Shang, Y.; Li, Z. Influence of the Vegetation Restoration Age on the Soil Detachment of Root–Soil Composites on the Loess Plateau of China. Eur. J. Soil Sci. 2024, 75, e70011. [Google Scholar] [CrossRef]
- Zhu, J.; Leung, A.K.; Knappett, J.A.; Zhang, X.; Wang, Y. A New Root–Soil Interface Contact Model to Simulate the Overturning Behaviour of Root System Architectures. Acta Geotech. 2025, 20, 1969–1989. [Google Scholar] [CrossRef]
- Wang, C.; Liu, J.; Xing, H.; Yao, X.; Wang, L.; Niu, G. Friction Properties of Interface between Soil-Roots and Soil-Soil of Artemisia Sphaerocephala and Sabina Valgaris. In Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20 June 2010; pp. 1–5. [Google Scholar]
- Ma, S.; Yao, Y.; Bao, P.; Guo, C. Effects of Moisture Content on Strength and Compression Properties of Foundation Soils of Cultural Relics in Areas Flooded by the Yellow River. Front. Mater. 2023, 10, 1186750. [Google Scholar] [CrossRef]
- Li, Y.-H.; Lv, M.-F.; Guo, Y.-C.; Huang, M.-S. Effects of the Soil Water Content and Relative Roughness on the Shear Strength of Silt and Steel Plate Interface. Measurement 2021, 174, 109003. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, Y.; Liu, X.; Chen, Y.; Yan, Z.; Du, Y. Study on shear strength of root-soil composite of Dolichos lablab and Medicago sativa in purple soil region. Acta Pratacult. Sin. 2023, 32, 82–90. [Google Scholar]
- Wang, R.; Qin, C.; Sun, H.; Feng, Y. Effects of Root Morphologies on Shearing Characteristics of the Root-Soil Composite: An Experimental Case Study of Ficus virens in Chongqing, China. Catena 2024, 246, 108407. [Google Scholar] [CrossRef]
- Tang, H.; Chen, Y.; Liu, X.; He, B.; Li, Y.; Qiang, J.; Li, T. Study on the mechanic features of root and root-soil matrix of Dolichos lablab L. hedgerows on the slopes of the karst area. Acta Ecol. Sin. 2019, 39, 6114–6125. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, J.; Liu, S.; Zhang, L.; Li, Z.; She, F.; Ding, J.; Li, P.; Tian, C. Effects of Herbaceous Plant Roots on Tensile Strength of Root-Soil Composite in Loess Hilly Region. Catena 2025, 260, 109423. [Google Scholar] [CrossRef]
- Forster, M.; Ugarte, C.; Lamandé, M.; Faucon, M.-P. Root Traits of Crop Species Contributing to Soil Shear Strength. Geoderma 2022, 409, 115642. [Google Scholar] [CrossRef]
- Xiaohong, L. The Effects of Terrace Hedgerows Roots on the Erodibility of the Root-Soil Complex in the Purple Soil Area. Master’s Thesis, Southwest University, Chongqing, China, 2022. [Google Scholar]
- Ji, C.; Xie, W.; Yang, Q.; Qu, C.; Fan, P.; Wu, Z.; Yuan, K. Microstructural Mechanisms Influencing Soil-Interface Shear Strength: A Case Study on Loess and Concrete Plate Contact. Buildings 2025, 15, 3512. [Google Scholar] [CrossRef]
- Zeng, X.; Li, Y.; Liu, X.; Yao, J.; Lin, Z. Relationship between the Shear Strength and the Depth of Cone Penetration in Fall Cone Tests. Adv. Civ. Eng. 2020, 2020, 8850430. [Google Scholar] [CrossRef]
- Zhao, J.; Yu, J.; Sun, K.; Wang, Y.; Liang, L.; Sun, Y.; Zhou, L.; Yu, Y. A Discrete Element Method Model and Experimental Verification for Wheat Root Systems. Biosyst. Eng. 2024, 244, 146–165. [Google Scholar] [CrossRef]
- Tamás, K.; Bernon, L. Role of Particle Shape and Plant Roots in the Discrete Element Model of Soil–Sweep Interaction. Biosyst. Eng. 2021, 211, 77–96. [Google Scholar] [CrossRef]
- Liu, J.; Tang, Y.; Jiang, Y.; Luo, S.; Wu, K.; Peng, X.; Pan, Y. Experimental Study on the Effect of Root Content on the Shear Strength of Root–Soil Composite with Thick and Fine Roots of Cryptomeria japonica (Thunb. Ex L.f.) D.Don. Forests 2024, 15, 1306. [Google Scholar] [CrossRef]











| Sampling Depth (mm) | Poisson Ratio/ν | Shear Modulus (MPa)/G | Surface Energy (J·m−2)/JKR | Particle Size Distribution (%) | Firmness (MPa) | Density (g·m−3) | Moisture Content (%) | |||
|---|---|---|---|---|---|---|---|---|---|---|
| >2 mm | 1–2 mm | 0.25–1 mm | 0–0.25 mm | |||||||
| 0–100 | 0.38 [34] | 5.9–20 [35,36] | 0.5–1.5 [37] | 0.25 | 33.55 | 37.61 | 28.59 | 1.33 | 1.41 | 12.34 |
| 100–200 | 0.26 | 30.08 | 37.34 | 32.32 | 0.94 | 1.46 | 15.20 | |||
| 200–300 | 0.61 | 34.43 | 35.94 | 29.02 | 1.28 | 1.47 | 16.35 | |||
| 300–400 | 0.12 | 30.38 | 36.42 | 32.63 | 1.63 | 1.54 | 18.16 | |||
| Type | Poisson Ratio | Shear Modulus (MPa)/G | Diameter (mm) | Water Content (%) | Density (g·m−3) | |
|---|---|---|---|---|---|---|
| Stems | Fibrous | 0.35 [22] | 40 (Measured) | 1.28 | 87.47 | 0.74 |
| Taproot | 36 (Measured) | 3.59 | 93.30 | 0.90 | ||
| Root | Fibrous | 0.35 [22] | 86.2 [38] | 0.91 | 83.07 | 1.07 |
| Taproot | 11.1 [38] | 4.35 | 86.86 | 1.04 |
| Item | Parameter | Value | Source | |
|---|---|---|---|---|
| Soil-Soil | Coefficient of restitution/e | 0.3–0.75 | [34] | |
| Coefficient of static friction/μ | 0.2–0.5 | [41] | ||
| Coefficient of rolling friction/γ | 0.1–0.3 | |||
| Soil-65 Mn | Coefficient of restitution/e′ | 0.2–0.5 | [41] | |
| Coefficient of static friction/μ′ | 0.33–0.6 | Measured | ||
| Coefficient of rolling friction/γ′ | 0.1–0.4 | [42] | ||
| Fibrous root | Taproot root | |||
| Root-Soil | Coefficient of restitution | 0.1 | 0.18 | Measured |
| Coefficient of static friction | 0.52 | 0.2 | Measured | |
| Coefficient of rolling | 0.27 | 0.05 | [43] | |
| Source | AoR | ISA | ||||||
|---|---|---|---|---|---|---|---|---|
| Sum of Squares | Mean Square | F | p | Sum of Squares | Mean Square | F | p | |
| Model | 363.37 | 45.42 | 29.33 | 0.0091 * | 647.88 | 80.98 | 1704.95 | <0.0001 ** |
| G | 2.56 | 2.56 | 1.65 | 0.2890 | 20.54 | 20.54 | 432.44 | 0.0002 * |
| e | 0.1083 | 0.1083 | 0.0699 | 0.8086 | 10.27 | 10.27 | 216.16 | 0.0007 * |
| μ | 2.76 | 2.76 | 1.79 | 0.2738 | 16.10 | 16.10 | 338.96 | 0.0003 * |
| γ | 271.13 | 271.13 | 175.06 | 0.0009 * | 0.7008 | 0.7008 | 14.75 | 0.0311 * |
| e´ | 2.50 | 2.50 | 1.62 | 0.2933 | 1.02 | 1.02 | 21.49 | 0.0189 * |
| μ′ | 33.13 | 33.13 | 21.39 | 0.0190 * | 592.21 | 592.21 | 12467.53 | <0.0001 ** |
| γ′ | 4.44 | 4.44 | 2.87 | 0.1890 | 6.02 | 6.02 | 126.75 | 0.0015 * |
| JKR | 46.73 | 46.73 | 30.17 | 0.0119 * | 1.02 | 1.02 | 21.49 | 0.0189 * |
| Residual | 4.65 | 1.55 | 0.1425 | 0.0475 | ||||
| Cor Total | 368.01 | 648.02 | ||||||
| Fit statistics | R2 | 0.9874 | 0.9998 | |||||
| 0.9537 | 0.9992 | |||||||
| 0.7980 | 0.9965 | |||||||
| C.V. (%) | 4.15 | 1.21 | ||||||
| Adeq Precision | 16.7288 | 93.8652 | ||||||
| Source | AoR | ISA | ||||
|---|---|---|---|---|---|---|
| Sum of Squares | F | p | Sum of Squares | F | p | |
| Model | 405.01 | 173.29 | <0.0001 ** | 526.58 | 510.69 | <0.0001 ** |
| γ | 326.02 | 1255.42 | <0.0001 ** | 1.62 | 14.14 | 0.0071 * |
| JKR | 2.84 | 10.95 | 0.0130 * | 1.36 | 11.88 | 0.0107 * |
| μ′ | 55.13 | 212.27 | <0.0001 ** | 520.03 | 4539.04 | <0.0001 ** |
| γ × JKR | 0.0012 | 0.0047 | 0.9472 | 0.2025 | 1.77 | 0.2254 |
| γ × μ′ | 0.0009 | 0.0035 | 0.9547 | 1.8225 | 15.91 | 0.0053 * |
| JKR × μ′ | 1.64 | 6.31 | 0.0403 * | 0.0900 | 0.7856 | 0.4049 |
| γ2 | 14.27 | 54.97 | 0.0001 * | 0.0349 | 0.3043 | 0.5983 |
| JKR2 | 1.16 | 4.45 | 0.0729 | 0.0011 | 0.0094 | 0.9254 |
| μ′2 | 3.71 | 14.29 | 0.0069 * | 1.44 | 12.53 | 0.0095 * |
| Residual | 1.82 | 0.802 | ||||
| Lack of Fit | 0.6218 | 0.6932 | 0.6025 | 0.5175 | 2.43 | 0.2058 |
| Pure Error | 1.20 | 0.2845 | ||||
| Cor Total | 406.83 | 527.38 | ||||
| Fit statistics | R2 | 0.9955 | 0.9985 | |||
| 0.9898 | 0.9965 | |||||
| 0.9710 | 0.9835 | |||||
| C.V. (%) | 1.34 | 1.80 | ||||
| Adeq Precision | 46.099 | 67.7479 | ||||
| Soil Depth (mm) | γ | μ′ | JKR | AoR (°) | ISA (°) | ||||
|---|---|---|---|---|---|---|---|---|---|
| Simulative | Physical | δ (%) | Simulative | Physical | δ (%) | ||||
| 0–100 | 0.133 | 0.490 | 1.057 | 35.20 | 35.50± 1.3 | 0.85 | 20.70 | 20.92 ± 1.98° | 3.73 |
| 100–200 | 0.125 | 0.431 | 0.952 | 31.77 | 33.68 ± 1.9° | 6.01 | 16.50 | 17.74 ± 2.74° | 7.52 |
| 200–300 | 0.136 | 0.506 | 1.099 | 34.94 | 34.46 ± 1.6° | 1.41 | 21.30 | 22.38 ± 4.02° | 5.07 |
| 300–400 | 0.124 | 0.540 | 1.091 | 34.61 | 34.08 ± 1.1° | 1.53 | 24.00 | 24.96 ± 1.74° | 4.00 |
| Parameter | Fibrous | Taproot | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Stems | Root | Stems | Root | ||||||||||
| kn | ×1010 (N·m−3) | 1.5 | 3.50 | 5.5 | 0.30 | 0.55 | 0.80 | 0.15 | 1.33 | 2.5 | 1.50 | 3.50 | 5.50 |
| kt | 0.20 | 0.35 | 0.55 | 0.25 | 0.50 | 0.75 | 0.10 | 0.30 | 0.50 | 0.20 | 0.35 | 0.55 | |
| σmax | ×108 (Pa) | 4.0 | 6.25 | 8.50 | 2.00 | 4.00 | 6.00 | 0.20 | 0.350 | 0.50 | 4.00 | 6.25 | 8.5 |
| τmax | 0.25 | 0.375 | |||||||||||
| Source | Fibrous Stem | Taproot Stem | ||||
|---|---|---|---|---|---|---|
| Sum of Squares | F | p | Sum of Squares | F | p | |
| Model | 8.00 | 15.18 | <0.0001 ** | 109.09 | 14.37 | <0.0001 ** |
| kn | 7.05 | 187.30 | <0.0001 ** | 46.20 | 85.19 | <0.0001 ** |
| kt | 0.0052 | 0.1383 | 0.7155 | 5.88 | 10.84 | 0.0053 * |
| σmax | 0.0675 | 1.79 | 0.2020 | 0.0295 | 0.0544 | 0.8189 |
| τmax | 0.0602 | 1.60 | 0.2267 | 0.0533 | 0.0983 | 0.7584 |
| kn × kt | 0.1225 | 3.25 | 0.0928 | 15.21 | 28.05 | 0.0001 * |
| kn × σmax | 0.0400 | 1.06 | 0.3202 | 0.2998 | 0.5528 | 0.4695 |
| kn × τmax | 0.0225 | 0.5975 | 0.4524 | 4.62 | 8.52 | 0.0112 * |
| kt × σmax | 0.0756 | 2.01 | 0.1783 | 4.84 | 8.92 | 0.0098 * |
| kt × τmax | 0.0900 | 2.39 | 0.1444 | 9.00 | 16.60 | 0.0011 * |
| σmax × τmax | 0.2756 | 7.32 | 0.0171 * | 7.56 | 13.95 | 0.0022 |
| kn2 | 0.1525 | 4.05 | 0.0638 | 12.86 | 23.71 | 0.0002 * |
| kt2 | 0.0144 | 0.3818 | 0.5465 | 1.89 | 3.49 | 0.0830 |
| σmax2 | 0.0693 | 1.84 | 0.1965 | 4.50 | 8.30 | 0.0121 * |
| τmax2 | 0.0230 | 0.6115 | 0.4472 | 0.3730 | 0.6878 | 0.4208 |
| Residual | 0.0000 | 7.59 | ||||
| Lack of Fit | 0.5272 | 5.83 | 1.33 | 0.4224 | ||
| Pure Error | 0.2352 | 0.3222 | 0.9334 | 1.76 | ||
| Cor Total | 0.2920 | 116.68 | ||||
| Fit statistics | R2 | 0.9382 | 0.9349 | |||
| 0.8764 | 0.8699 | |||||
| 0.7877 | 0.6885 | |||||
| C.V. (%) | 0.6365 | 2.88 | ||||
| Adeq Precision | 13.7482 | 15.1936 | ||||
| Source | Fibrous Root | Taproot Root | ||||
| Sum of Squares | F | p | Sum of Squares | F | p | |
| Model | 477.93 | 140.48 | <0.0001 ** | 648.59 | 83.54 | <0.0001 ** |
| kn | 101.50 | 417.70 | <0.0001 ** | 556.24 | 1002.99 | <0.0001 ** |
| kt | 0.3008 | 1.24 | 0.2846 | 5.74 | 10.35 | 0.0062 * |
| σmax | 0.0408 | 0.1680 | 0.6881 | 0.0000 | 0.0000 | 1.0000 |
| τmax | 1.14 | 4.69 | 0.0480 * | 0.0000 | 0.0000 | 1.0000 |
| kn × kt | 0.2025 | 0.8333 | 0.3768 | 0.9025 | 1.63 | 0.2228 |
| kn × σmax | 0.4225 | 1.74 | 0.2085 | 0.0000 | 0.0000 | 1.0000 |
| kn × τmax | 1.10 | 4.54 | 0.0514 | 0.0000 | 0.0000 | 1.0000 |
| kt × σmax | 0.0625 | 0.2572 | 0.6199 | 0.0000 | 0.0000 | 1.0000 |
| kt × τmax | 0.9025 | 3.71 | 0.0745 | 0.0000 | 0.0000 | 1.0000 |
| σmax × τmax | 0.0225 | 0.0926 | 0.7654 | 0.0000 | 0.0000 | 1.0000 |
| kn2 | 335.40 | 1380.26 | <0.0001 ** | 67.81 | 122.28 | <0.0001 ** |
| kt2 | 0.1784 | 0.7341 | 0.4060 | 3.33 | 6.01 | 0.0280 * |
| σmax2 | 1.22 | 5.03 | 0.0416 * | 0.6001 | 1.08 | 0.3159 |
| τmax2 | 0.2838 | 1.17 | 0.2981 | 0.6001 | 1.08 | 0.3159 |
| Residual | 3.40 | 7.76 | ||||
| Lack of Fit | 1.21 | 0.2208 | 0.9760 | 2.06 | 0.1449 | 0.9938 |
| Pure Error | 2.19 | 5.70 | ||||
| Cor Total | 481.33 | 656.36 | ||||
| Fit statistics | R2 | 0.9929 | 0.9882 | |||
| 0.9859 | 0.9763 | |||||
| 0.9784 | 0.9683 | |||||
| C.V. (%) | 1.68 | 1.08 | ||||
| Adeq Precision | 32.9782 | 28.0067 | ||||
| Item | kn × 1010 (N·m−3) | kt × 109 (N·m−3) | σmax × 108 (Pa) | τmax × 108 (Pa) | Maximum Loading Force F (N) | |||
|---|---|---|---|---|---|---|---|---|
| Simulation | Measured | δ (%) | ||||||
| Fibrous | stems | 5.40 | 2.09 | 8.42 | 8.42 | 29.40 | 28.50 ± 2.11 | 3.12 |
| root | 0.73 | 7.00 | 5.00 | 5.00 | 33.20 | 31.30 ± 3.5 | 6.10 | |
| Taproot | stems | 2.00 | 3.58 | 0.28 | 0.35 | 27.30 | 29.83 ± 2.3 | 8.34 |
| root | 0.10 | 1.14 | 4.00 | 4.00 | 60.90 | 58.2 ± 1.02 | 4.64 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Cao, L.; Zhang, J.; Liang, G.; Li, C.; Wang, C.; Wang, L. Characterization of Citrus Orchard Soil Improved by Green Manure Using the Discrete Element Method. Agriculture 2025, 15, 2299. https://doi.org/10.3390/agriculture15212299
Ma C, Cao L, Zhang J, Liang G, Li C, Wang C, Wang L. Characterization of Citrus Orchard Soil Improved by Green Manure Using the Discrete Element Method. Agriculture. 2025; 15(21):2299. https://doi.org/10.3390/agriculture15212299
Chicago/Turabian StyleMa, Chen, Liewang Cao, Jian Zhang, Gaozhen Liang, Chengsong Li, Chunlei Wang, and Lihong Wang. 2025. "Characterization of Citrus Orchard Soil Improved by Green Manure Using the Discrete Element Method" Agriculture 15, no. 21: 2299. https://doi.org/10.3390/agriculture15212299
APA StyleMa, C., Cao, L., Zhang, J., Liang, G., Li, C., Wang, C., & Wang, L. (2025). Characterization of Citrus Orchard Soil Improved by Green Manure Using the Discrete Element Method. Agriculture, 15(21), 2299. https://doi.org/10.3390/agriculture15212299

