Antifungal Mechanisms of Plant Essential Oils: A Comprehensive Literature Review for Biofungicide Development
Abstract
1. Introduction
2. Essential Oils
3. Antifungal Properties of Plant Essential Oils Against Fungal Pathogens
4. Antifungal Mechanisms of Biofungicides Based on Essential Oils
4.1. Fungal Cell Membrane Disruption and Structural Damage
4.2. Enzymatic and Molecular Inhibition of Key Fungal Pathways
4.3. Morphological and Cytoskeletal Alterations in Fungi
4.4. Oxidative Stress and Lipid Peroxidation as Determinants of Antifungal Activity
4.5. Technological, Formulation, and Regulatory Challenges in the Development of EO-Based Biofungicides for Field Application
4.6. Technological Frontiers in EO-Based Biofungicide Development: From Extraction to Field Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| EOs | Essential Oils |
| ROS | Reactive Oxygen Species |
| IPM | Integrated Pest Management |
| TEO | Thyme Essential Oil |
| EC50 | Effective Concentration 50 (concentration at which 50% of maximal effect is observed) |
| CHI | Chitinase |
| PPO | Polyphenol Oxidase |
| POX | Guaiacol Peroxidase |
| PAL | Phenylalanine Ammonia-Lyase |
| CcO | Cytochrome c Oxidase |
| NADH | Nicotinamide Adenine Dinucleotide (reduced form) |
| CAT | Catalase |
| SOD | Superoxide Dismutase |
| QS | Quorum Sensing |
| HMGR | 3-hydroxy-3-methylglutaryl-CoA Reductase |
| HMG-CoA | 3-hydroxy-3-methylglutaryl-Coenzyme A |
| PMK | Phosphomevalonate Kinase |
| MVD | Mevalonate-5-pyrophosphate Decarboxylase |
| IPP | Isopentenyl Pyrophosphate |
| FPPS | Farnesyl Pyrophosphate Synthase |
| FPP | Farnesyl Pyrophosphate |
| LSS | Lanosterol Synthase |
| CYP51 | C-14 Sterol Demethylase (Cytochrome P450 51) |
| MIC | Minimum Inhibitory Concentration |
References
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef]
- Islam, T.; Danishuddin; Tamanna, N.T.; Matin, M.N.; Barai, H.R.; Haque, M.A. Resistance mechanisms of plant pathogenic fungi to fungicide, environmental impacts of fungicides, and sustainable solutions. Plants 2024, 13, 2737. [Google Scholar] [CrossRef]
- Mešić, A.; Jurić, M.; Donsì, F.; Maslov Bandić, L.; Jurić, S. Advancing climate resilience: Technological innovations in plant-based, alternative and sustainable food production systems. Discov. Sustain. 2024, 5, 423. [Google Scholar] [CrossRef]
- Cenobio-Galindo, A.D.J.; Hernández-Fuentes, A.D.; González-Lemus, U.; Zaldívar-Ortega, A.K.; González-Montiel, L.; Madariaga-Navarrete, A.; Hernández-Soto, I. Biofungicides Based on Plant Extracts: On the Road to Organic Farming. Int. J. Mol. Sci. 2024, 25, 6879. [Google Scholar] [CrossRef]
- Siddiqui, T.; Sharma, V.; Khan, M.U.; Gupta, K. Terpenoids in Essential Oils: Chemistry, classification, and potential impact on human health and industry. Phytomedicine Plus. 2024, 4, 100549. [Google Scholar] [CrossRef]
- Fisher, M.C.; Alastruey-Izquierdo, A.; Berman, J.; Bicanic, T.; Bignell, E.M.; Bowyer, P.; Bromley, M.; Brüggemann, R.; Garber, G.; Cornely, O.A.; et al. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Microbiol. 2022, 20, 557–571. [Google Scholar] [CrossRef] [PubMed]
- Jeger, M.; Beresford, R.; Berlin, A.; Bock, C.; Fox, A.; Gold, K.M.; Newton, A.C.; Vicent, A.; Xu, X. Impact of novel methods and research approaches in plant pathology: Are individual advances sufficient to meet the wider challenges of disease management? Plant Pathol. 2024, 73, 1629–1655. [Google Scholar] [CrossRef]
- Sakthiyavathi, S.S.K.; Malaisamy, K.; Kamalakannan, M.; Murugesan, V.; Palanisamy, S.R.; Theerthagiri, A.; Kasivelu, G. Eco-nanotechnology: Phyto essential oil-based pest control for stored products. Environ. Sci. Nano 2025, 12, 4150–4180. [Google Scholar] [CrossRef]
- Zahraoui, E.M. Essential Oils: Antifungal activity and study methods. Moroc. J. Agric. Sci. 2025, 6, 99–108. [Google Scholar] [CrossRef]
- Ismail, A.; Elshewy, E.; Ali, I.; Abd, N.; Khafagi, E. Encapsulation of Clove Oil Nanoemlusion in Chitosan-Based Nano-Composite. Phyton 2024, 93, 2787. [Google Scholar] [CrossRef]
- Fonseca-Guerra, I.R.; Posada, A.M.V.; Rozo, M.E.B.; Pineda, M.E.B. Essential oils of thyme (Thymus vulgaris) and oregano (Origanum vulgare) as an alternative for the control of pesticide-resistant Fusarium spp. in quinoa seeds. J. Sci. Food Agric. 2024, 105, 2236–2245. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Deepa, N.; Chauhan, S.; Tandon, S.; Verma, R.S.; Singh, A. Antifungal action of 1, 8 cineole, a major component of Eucalyptus globulus essential oil against Alternaria tenuissima via overproduction of reactive oxygen species and downregulation of virulence and ergosterol biosynthetic genes. Ind. Crops Prod. 2024, 214, 118580. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Sulaiman, G.M.; Al-Saffar, A.Z.; Mohsin, M.H.; Khan, R.A.; Hadi, N.A.; Ismael, S.B.; Elshibani, F.; Ismail, A.; Abomughaid, M.M. Aromatic Volatile Compounds of Essential Oils: Distribution, Chemical Perspective, Biological Activity, and Clinical Applications. Food Sci. Nutr. 2025, 13, e70825. [Google Scholar] [CrossRef]
- Ben Miri, Y. Essential Oils: Chemical Composition and Diverse Biological Activities: A Comprehensive Review. Nat. Prod. Commun. 2025, 20, 1934578X241311790. [Google Scholar] [CrossRef]
- Ni, Z.J.; Wang, X.; Shen, Y.; Thakur, K.; Han, J.; Zhang, J.G.; Hu, F.; Wei, Z.J. Recent updates on the chemistry, bioactivities, mode of action, and industrial applications of plant essential oils. Trends Food Sci. Technol. 2021, 110, 78–89. [Google Scholar] [CrossRef]
- Hegazy, M.M.; Mekky, R.H.; Ibrahim, A.E.; Abouelela, M.E.; Kedra, T.A.; Al-Harrasi, A. Essential Oils: The Science of Extraction and Its Implications for Composition and Biological Activity—A Review. Food Anal. Methods 2025, 18, 1483–1513. [Google Scholar] [CrossRef]
- Salem, M.Z.; Abo-Elgat, W.A.; Farahat, M.G.; El-Settawy, A.A.; Selim, S. The Essential Oil and Recoverable Extract from Callistemon viminalis Leaves as Wood-and Textile Biofungicides with the GC-MS and HPLC Analyses. Chem. Afr. 2025, 8, 1–13. [Google Scholar] [CrossRef]
- Dehghanpour, S.; Abdollahi, F.; Mirzaalian Dastjerdi, A.; Yavari, A. Antifungal activity of plant essential oils against gray mold (Botrytis cinerea) under In Vitro conditions. Curr. Res. Environ. Appl. Mycol. (J. Fungal Biol.) 2025, 15, 77–97. [Google Scholar] [CrossRef]
- Siddiqui, A.; Ahmad, S.; Afaq, U. Innovations in Biopesticides: The Role of Plant-Based Biopesticides in Sustainable Agriculture. J. Biopestic. 2025, 18, 18–35. [Google Scholar] [CrossRef]
- Gupta, I.; Singh, R.; Muthusamy, S.; Sharma, M.; Grewal, K.; Singh, H.P.; Batish, D.R. Plant essential oils as biopesticides: Applications, mechanisms, innovations, and constraints. Plants 2023, 12, 2916. [Google Scholar] [CrossRef]
- Assadpour, E.; Can Karaça, A.; Fasamanesh, M.; Mahdavi, S.A.; Shariat-Alavi, M.; Feng, J.; Kharazmi, M.S.; Rehman, A.; Jafari, S.M. Application of essential oils as natural biopesticides; recent advances. Crit. Rev. Food Sci. Nutr. 2024, 64, 6477–6497. [Google Scholar] [CrossRef]
- Wang, D.; Chu, F.; Wei, H.; Zhang, J.; Zhai, H. Recent Advances in the Synergistic Application of Essential Oils and Emerging Technologies for Fresh Food Preservation: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70244. [Google Scholar] [CrossRef]
- Rama, J.F.; Coelho, A.C.; Leal, F.M. Testing the potential antifungal activity of Origanum vulgare against Aspergillus fumigatus, Aspergillus niger and Talaromyces marneffei isolated from pets. Vet. Stanica 2024, 55, 559–567. [Google Scholar] [CrossRef]
- Diass, K.; Oualdi, I.; Benabbas, R.; Zaki, H.; Ouabane, M.; Hammouti, B.; Touzani, R.; Bouachrine, M. Use of Essential Oils for the Treatment of Fusarium oxysporum f. sp. Albedinis: Chemical Profile, In Vitro Antifungal Activity, and In Silico Investigation by Molecular Docking Study. Curr. Chem. Biol. 2024, 18, 193–214. [Google Scholar] [CrossRef]
- Shala, A.; Singh, S.; Hameed, S.; Khurana, S.P. Essential oils as alternative promising anti-candidal agents: Progress and prospects. Curr. Pharm. Des. 2022, 28, 58–70. [Google Scholar] [CrossRef]
- Li, K.; Guo, J.; Liang, R.; Wang, X.; Chen, Q.; Wang, J.; Ge, X.; Chen, C.; Sun, J.; Zhao, C. A Review on Antifungal Activity of Plant Essential Oils. Phytother. Res. 2025, 39, 3736–3761. [Google Scholar] [CrossRef]
- Ansari, T.; Prasanna, N.L.; Nigam, R.; Shankar, U.; Mohapatra, D.; Sahoo, L.; Prasad, S.S. A Review on the Potential of Ginger Essential Oil-based Nanotechnology for Controlling Tropical Plant Diseases. J. Adv. Biol. Biotechnol. 2025, 28, 230–248. [Google Scholar] [CrossRef]
- Bunevičius, V.; Morkeliūnė, A.; Griauzdaitė, J.; Valiuškaitė, A.; Rasiukevičiūtė, N. The Use of Clove and Rosemary Plant Extracts Against Colletotrichum acutatum and Botrytis cinerea. Agronomy 2025, 15, 1728. [Google Scholar] [CrossRef]
- Christova, P.K.; Dobreva, A.M.; Dzhurmanski, A.G.; Dincheva, I.N.; Dimkova, S.D.; Zapryanova, N.G. The impact of plant essential oils on the growth of the pathogens Botrytis cinerea, Fusarium solani, and Phytophthora pseudocryptogea. Life. 2024, 14, 817. [Google Scholar] [CrossRef] [PubMed]
- Tzortzakis, N. Origanum dictamnus essential oil in vapour or aqueous solution application for pepper fruit preservation against botrytis cinerea. Agronomy 2024, 14, 257. [Google Scholar] [CrossRef]
- Faghih-Imani, M.H.; Taheri, P.; Tarighi, S. Antifungal and virulence-modulating effects of thyme essential oil against Fusarium spp., causing wheat diseases. Appl. Microbiol. Theory Technol. 2020, 1, 1–17. [Google Scholar] [CrossRef]
- Saltos-Rezabala, L.A.; Silveira, P.R.D.; Tavares, D.G.; Moreira, S.I.; Magalhães, T.A.; Botelho, D.M.D.S.; Alves, E. Thyme essential oil reduces disease severity and induces resistance against Alternaria linariae in tomato plants. Horticulturae 2022, 8, 919. [Google Scholar] [CrossRef]
- Wu, T.L.; Zhang, B.Q.; Luo, X.F.; Li, A.P.; Zhang, S.Y.; An, J.X.; Zhang, Z.J.; Liu, Y.Q. Antifungal efficacy of sixty essential oils and mechanism of oregano essential oil against Rhizoctonia solani. Ind. Crops Prod. 2023, 191, 115975. [Google Scholar] [CrossRef]
- Hoyos, J.M.A.; Dorigan, A.F.; da Silveira, P.R.; Labory, C.R.G.; Júnior, P.M.R.; Fernandes, R.; Alves, E. Antifungal activity of essential oils in Colletotrichum lindemuthianum and alternative control of bean anthracnose. Eur. J. Plant Pathol. 2025, 172, 373–389. [Google Scholar] [CrossRef]
- Ji, Y.; Hu, W.; Guan, Y.; Saren, G. Effects of plant essential oil treatment on the growth of pathogenic fungi and the activity of defense-related enzymes of fungi-inoculated blueberry. Horticulturae 2024, 10, 318. [Google Scholar] [CrossRef]
- Yang, L.; Ma, X.; Wang, L.; Yang, G.; Zhou, L.; Zhang, Z.; Li, X. In vitro antifungal activity and mechanism of action of carvacrol against Sclerotinia sclerotiorum (Lib.) de Bary. Plant Prot. Sci. 2024, 60, 172–180. [Google Scholar] [CrossRef]
- Kiniec, A.; Spychalski, M.; Miziniak, W.; Palacz, M.; Kukawka, R. The Use of Thyme (Thymus vulgaris) Essential Oil for Controlling Cercospora Leaf Spot (Cercospora beticola) on Sugar Beets (Beta vulgaris). Agriculture 2024, 14, 2017. [Google Scholar] [CrossRef]
- Liñán-Atero, R.; Aghababaei, F.; García, S.R.; Hasiri, Z.; Ziogkas, D.; Moreno, A.; Hadidi, M. Clove essential oil: Chemical profile, biological activities, encapsulation strategies, and food applications. Antioxidants 2024, 13, 488. [Google Scholar] [CrossRef]
- Alhantoobi, W.A.; Alkatheri, A.H.; Parusheva, T.; Lai, K.S.; Thomas, W.; Lim, S.H.E. Antimicrobial Activity of Essential Oils and Their Mechanism of Action Against Bacterial and Fungal Infections. Saudi J. Biomed. Res. 2025, 10, 168–186. [Google Scholar] [CrossRef]
- Połeć, K.; Olechowska, K.; Klejdysz, A.; Dymek, M.; Rachwalik, R.; Sikora, E.; Hąc-Wydro, K. The influence of ergosterol on the action of the hop oil and its major terpenes on model fungi membranes. Towards understanding the mechanism of action of phytocompounds for food and plant protection. Chem. Phys. Lipids 2021, 238, 105092. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Mahato, D.K.; Gupta, A.; Pandhi, S.; Mishra, S.; Barua, S.; Tyagi, V.; Kumar, A.; Kumar, M.; Kamle, M. Use of essential oils and phytochemicals against the mycotoxins producing fungi for shelf-life enhancement and food preservation. Int. J. Food Sci. Technol. 2022, 57, 2171–2184. [Google Scholar] [CrossRef]
- Touati, A.; Mairi, A.; Ibrahim, N.A.; Idres, T. Essential Oils for Biofilm Control: Mechanisms, Synergies, and Translational Challenges in the Era of Antimicrobial Resistance. Antibiotics 2025, 14, 503. [Google Scholar] [CrossRef]
- Diogo Gonçalves, S.; Paiva-Cardoso, M.D.N.; Caramelo, A. Green Preservation Strategies: The Role of Essential Oils in Sustainable Food Preservatives. Sustainability 2025, 17, 7326. [Google Scholar] [CrossRef]
- Yan, J.; Wu, H.; Chen, K.; Feng, J.; Zhang, Y. Antifungal activities and mode of action of Cymbopogon citratus, Thymus vulgraris, and Origanum heracleoticum essential oil vapors against Botrytis cinerea and their potential application to control postharvest strawberry gray mold. Foods 2021, 10, 2451. [Google Scholar] [CrossRef]
- Ghuffar, S.; Irshad, G.; Naz, F.; Khan, M.A.; Ahmed, M.Z.; Gleason, M.L. Efficacy of plant essential oils against Alternaria alternata causing bunch rot of grapes in Pakistan. J. Anim. Plant Sci. 2022, 32, 150–162. [Google Scholar] [CrossRef]
- Mossa, A.T.H.; Mohafrash, S.M.; Ziedan, E.S.H.; Abdelsalam, I.S.; Sahab, A.F. Development of eco-friendly nanoemulsions of some natural oils and evaluating of its efficiency against postharvest fruit rot fungi of cucumber. Ind. Crops Prod. 2021, 159, 113049. [Google Scholar] [CrossRef]
- Danielewicz, J.; Grzanka, M.; Sobiech, Ł.; Jajor, E.; Horoszkiewicz, J.; Korbas, M.; Blecharczyk, A.; Stuper-Szablewska, K.; Matysiak, K. Impact of various essential oils on the development of pathogens of the Fusarium genus and on health and germination parameters of winter wheat and maize. Molecules 2024, 29, 2376. [Google Scholar] [CrossRef] [PubMed]
- Parikh, L.; Agindotan, B.O.; Burrows, M.E. Antifungal activity of plant-derived essential oils on pathogens of pulse crops. Plant Disease 2021, 105, 1692–1701. [Google Scholar] [CrossRef]
- Danielewicz, J.; Horoszkiewicz, J.; Jajor, E.; Korbas, M.; Zamojska, J.; Dworzańska, D.; Węgorek, P.; Grzanka, M.; Sobiech, Ł.; Idziak, R.; et al. The Use of Selected Essential Oils as an Alternative Method of Controlling Pathogenic Fungi, Weeds and Insects on Oilseed Rape (Brassica napus L.). Agriculture 2025, 15, 2214. [Google Scholar] [CrossRef]
- Prakasam, V.; Savani, A.K.; Sukesh, P. Unveiling the potential antifungal role of essential oils in the management of Rhizoctonia solani causing sheath blight of rice. Eur. J. Plant Pathol. 2025, 171, 245–256. [Google Scholar] [CrossRef]
- Soleimani, H.; Mostowfizadeh-Ghalamfarsa, R.; Ghanadian, M.; Karami, A.; Cacciola, S.O. Defense mechanisms induced by celery seed essential oil against powdery mildew incited by Podosphaera fusca in cucumber. J. Fungi 2023, 10, 17. [Google Scholar] [CrossRef]
- Ahmed, H.F.; Seleiman, M.F.; Mohamed, I.A.; Taha, R.S.; Wasonga, D.O.; Battaglia, M.L. Activity of essential oils and plant extracts as biofungicides for suppression of soil-borne fungi associated with root rot and wilt of marigold (Calendula officinalis L.). Horticulturae 2023, 9, 222. [Google Scholar] [CrossRef]
- Henri, N.G.P.; Brahima, C.A.M.A.R.A.; Alban, M.B.K.A.; Didier, K.K.; Edouard, Y.K.J.; Martial, K.K.J.F.; Franck, Z.B.; Martial, K.N.G.; Daouda, K. Evaluation of the Sensitivity of Strains of phytophthora spp Cause of Brown Rot of Cocoa (Theobroma cacao L.) against to Limocide 60 ME (An Extract of Sweet Orange Essential Oil). Biotechnol. J. Int. 2025, 29, 69–83. [Google Scholar] [CrossRef]
- Wang, L.; Jin, J.; Liu, X.; Wang, Y.; Liu, Y.; Zhao, Y.; Xing, F. Effect of cinnamaldehyde on morphological alterations of Aspergillus ochraceus and expression of key genes involved in ochratoxin A biosynthesis. Toxins 2018, 10, 340. [Google Scholar] [CrossRef] [PubMed]
- Harmouzi, A.; Chlouchi, A.; Afroukh, R.; El Hamzaoui, N.; Kamari, F.; Chrachmy, M.; Ouallal, H.; Chebaibi, M.; Mssillou, I.; El Ammari, Y. Chemical Profiling of Two Eucalyptus Essential Oils: Insecticidal and in Silico Inhibitory Activities on Acetylcholinesterase and Chitin Synthase. In Plant Pathology, Fungal Diversity, and Biotechnological Advances in Agriculture; Springer Nature: Cham, Switzerland, 2025; pp. 9–20. [Google Scholar] [CrossRef]
- Kowalczyk, A. Essential oils against Candida auris—A promising approach for antifungal activity. Antibiotics 2024, 13, 568. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, S.; Wang, Y.; Yang, Q.; Wang, B.; Zhang, Y.; Tong, Z.; Zhang, J. Antifungal mechanisms of Phoebe bournei wood essential oil against Botryosphaeria dothidea and its application in apples. Postharvest Biol. Technol. 2025, 229, 113703. [Google Scholar] [CrossRef]
- Li, J.; Guo, C.; Wen, X.; Chen, H.; Du, H.; Liu, D. Chemical composition of Artemisia argyi essential oil and its antifungal activity against dermatophytes by inhibiting oxidative phosphorylation and causing oxidative damage. J. Ethnopharmacol. 2024, 331, 118344. [Google Scholar] [CrossRef]
- Jiang, F.; Huang, X.; Chen, X.; Xian, Y. Health benefits of plant-derived essential oils in mitigating oxidative stress: A comprehensive review. Cogent Food Agric. 2025, 11, 2564258. [Google Scholar] [CrossRef]
- Raj, N.; Parveen; Khatoon, S.; Manzoor, N. Antifungal Efficacy of Terpenes and Mechanism of Action Against Human Pathogenic Fungi. In Advances in Antifungal Drug Development: Natural Products with Antifungal Potential; Springer Nature: Singapore, 2024; pp. 315–341. [Google Scholar] [CrossRef]
- Madrigal-Aguilar, D.A.; Gonzalez-Silva, A.; Rosales-Acosta, B.; Bautista-Crescencio, C.; Ortiz-Álvarez, J.; Escalante, C.H.; Sánchez-Navarrete, J.; Hernández-Rodríguez, C.; Chamorro-Cevallos, G.; Tamariz, J.; et al. Antifungal activity of fibrate-based compounds and substituted pyrroles that inhibit the enzyme 3-hydroxy-methyl-glutaryl-CoA reductase of Candida glabrata (CgHMGR), thus decreasing yeast viability and ergosterol synthesis. Microbiol. Spectr. 2022, 10, e01642-21. [Google Scholar] [CrossRef]
- Ganotra, J.; Supolia, D.; Sharma, A.; Raina, M.; Negi, N.P.; Gautam, V.; Kumar, D. Pathways of Important Metabolites and Enzymes Involved. In Metabolites of Medicinal Plants: Insightful Approaches; Bentham Science Publishers: Singapore, 2024; pp. 289–311. [Google Scholar] [CrossRef]
- Cardoza, R.E.; McCormick, S.P.; Lindo, L.; Mayo-Prieto, S.; González-Cazón, D.; Martínez-Reyes, N.; Carro-Huerga, G.; Rodríguez-González, Á.; Proctor, R.H.; Casquero, P.A.; et al. Effect of farnesol in Trichoderma physiology and in fungal–plant interaction. J. Fungi 2022, 8, 1266. [Google Scholar] [CrossRef]
- Fu, R.; Zhao, L.; Wang, J.; Chen, C.; Liu, Y.; Lu, D. Antifungal activity and inhibition of the molecular mechanism of lavender essential oil against Ustilaginoidea virens. LWT. 2024, 203, 116315. [Google Scholar] [CrossRef]
- Kumari, K.U.; Imam, M.W.; Luqman, S. Antifungal Efficacy of Plant Essential Oils Against Candida, Aspergillus and Cryptococcus Species. In Advances in Antifungal Drug Development: Natural Products with Antifungal Potential; Springer Nature: Singapore, 2024; pp. 159–191. [Google Scholar] [CrossRef]
- Kumari, D.; Kaur, H.; Palmo, T.; Nargotra, A.; Singh, K. Exploring natural product library as potential target against sterol C-24 methyltransferase protein of Leishmania donovani. Nat. Prod. Res. 2024, 381, 1–7. [Google Scholar] [CrossRef]
- Aoujil, F.; Loubna, D.R.A.; El Ghdaich, C.; Toufiq, S.; Yahyaoui, H.; Hafidi, M.; Aziz, A.Z.I.Z.; Habbadi, K. Antifungal efficacy of four plant-derived essential oils against Botrytis cinerea: Chemical profiles and biological activities. Phytopathol. Mediterr. 2025, 64, 109–127. [Google Scholar] [CrossRef]
- van Dyk, M.; Kellerman, H.; van Niekerk, J.M. The potential use of antifungal essential oil volatiles to manage citrus decay during degreening. Phytoparasitica 2025, 53, 22. [Google Scholar] [CrossRef]
- Mirmajlessi, M.; Najdabbasi, N.; Sigillo, L.; Haesaert, G. An implementation framework for evaluating the biocidal potential of essential oils in controlling Fusarium wilt in spinach: From in vitro to in planta. Front. Plant Sci. 2024, 15, 1444195. [Google Scholar] [CrossRef] [PubMed]
- Carmello, C.R.; Magri, M.M.R.; Cardoso, J.C. Cinnamon and clove aqueous extracts promote in vitro and postharvest control of Alternaria alternata in tomato fruit. Eur. J. Plant Pathol. 2025, 172, 261–274. [Google Scholar] [CrossRef]
- Jiang, H.; Qi, X.; Zhong, S.; Schwarz, P.; Chen, B.; Rao, J. Effect of treatment of Fusarium head blight infected barley grains with hop essential oil nanoemulsion on the quality and safety of malted barley. Food Chem. 2023, 421, 136172. [Google Scholar] [CrossRef]
- Yi, Y.; Liu, R.; Shang, Z.; Wang, K.; Zhang, C.; Wang, Z.; Lou, Y.; Liu, J.; Li, P. Peppermint essential oil for controlling Aspergillus flavus and analysis of its antifungal action mode. Curr. Microbiol. 2025, 82, 140. [Google Scholar] [CrossRef]
- El Khetabi, A.; Ezrari, S.; El Ghadraoui, L.; Tahiri, A.; Ait Haddou, L.; Belabess, Z.; Merah, O.; Lahlali, R. In vitro and in vivo antifungal activities of nine commercial essential oils against brown rot in apples. Horticulturae 2021, 7, 545. [Google Scholar] [CrossRef]
- Riquelme, M.; Aguirre, J.; Bartnicki-García, S.; Braus, G.H.; Feldbrügge, M.; Fleig, U.; Hansberg, W.; Herrera-Estrella, A.; Kämper, J.; Kück, U.; et al. Fungal morphogenesis, from the polarized growth of hyphae to complex reproduction and infection structures. Microbiol. Mol. Biol. Rev. 2018, 82, 10–1128. [Google Scholar] [CrossRef]
- de Sousa, D.P.; Damasceno, R.O.S.; Amorati, R.; Elshabrawy, H.A.; de Castro, R.D.; Bezerra, D.P.; Nunes, V.R.V.; Gomes, R.C.; Lima, T.C. Essential oils: Chemistry and pharmacological activities. Biomolecules 2023, 13, 1144. [Google Scholar] [CrossRef]
- Shahina, Z.; Dahms, T.E. A comparative review of eugenol and citral anticandidal mechanisms: Partners in crimes against fungi. Molecules 2024, 29, 5536. [Google Scholar] [CrossRef]
- Mani-López, E.; Cortés-Zavaleta, O.; López-Malo, A. A review of the methods used to determine the target site or the mechanism of action of essential oils and their components against fungi. SN Appl. Sci. 2021, 3, 44. [Google Scholar] [CrossRef]
- Qi, X.; Zhong, S.; Schwarz, P.; Chen, B.; Rao, J. Mechanisms of antifungal and mycotoxin inhibitory properties of Thymus vulgaris L. essential oil and their major chemical constituents in emulsion-based delivery system. Ind. Crops Prod. 2023, 197, 116575. [Google Scholar] [CrossRef]
- Schorr, R.R.; Ballesteros Garcia, M.J.; Petermann, D.; Moreira, R.R.; Sales Maia, B.H.; Marques, F.A.; May-De Mio, L.L. Eugenol, Isoeugenol, Thymol, Carvacrol, and Ester Derivatives as an Ecofriendly Option to Control Glomerella Leaf Spot and Bitter Rot on Apple. Plants 2024, 13, 3196. [Google Scholar] [CrossRef] [PubMed]
- Martins, G.A.; Bicas, J.L. Antifungal activity of essential oils of tea tree, oregano, thyme, and cinnamon, and their components. Braz. J. Food Technol. 2024, 27, e2023071. [Google Scholar] [CrossRef]
- Santiago-Santiago, M.; Sánchez-Viveros, G.; Hernández-Adame, L.; Chiquito-Contreras, C.J.; Salinas-Castro, A.; Chiquito-Contreras, R.G.; Hernández-Montiel, L.G. Essential oils and antagonistic microorganisms as eco-friendly alternatives for coffee leaf rust control. Plants 2023, 12, 3519. [Google Scholar] [CrossRef]
- Xylia, P.; Chrysargyris, A.; Ahmed, Z.F.; Tzortzakis, N. Application of rosemary and eucalyptus essential oils and their main component on the preservation of apple and pear fruits. Horticulturae 2021, 7, 479. [Google Scholar] [CrossRef]
- Kumar, P.S.; Nattudurai, G.; Islam, V.I.H.; Ignacimuthu, S. The effects of some essential oils on Alternaria alternata, a post-harvest phyto-pathogenic fungus in wheat by disrupting ergosterol biosynthesis. Phytoparasitica 2022, 50, 513–525. [Google Scholar] [CrossRef]
- Bakour, M.; Soulo, N.; Hammas, N.; Fatemi, H.E.; Aboulghazi, A.; Taroq, A.; Lyoussi, B. The antioxidant content and protective effect of argan oil and Syzygium aromaticum essential oil in hydrogen peroxide-induced biochemical and histological changes. Int. J. Mol. Sci. 2018, 19, 610. [Google Scholar] [CrossRef]
- Kaur, S.; Singh, H.P.; Batish, D.R.; Kohli, R.K. Artemisia scoparia essential oil inhibited root growth involves reactive oxygen species (ROS)-mediated disruption of oxidative metabolism: In vivo ROS detection and alterations in antioxidant enzymes. Biochem. Syst. Ecol. 2012, 44, 390–399. [Google Scholar] [CrossRef]
- Peralta-Ruiz, Y.; Molina Hernandez, J.B.; Grande-Tovar, C.D.; Serio, A.; Valbonetti, L.; Chaves-López, C. Antifungal mechanism of Ruta graveolens essential oil: A Colombian traditional alternative against anthracnose caused by Colletotrichum gloeosporioides. Molecules 2024, 29, 3516. [Google Scholar] [CrossRef]
- Shahina, Z.; Ndlovu, E.; Persaud, O.; Sultana, T.; Dahms, T.E. Candida albicans reactive oxygen species (ROS)-dependent lethality and ROS-independent hyphal and biofilm inhibition by eugenol and citral. Microbiol. Spectr. 2022, 10, e03183-22. [Google Scholar] [CrossRef]
- Jemai, N.; Ben Mahmoud, K.; Jedidi, E.; Gargouri, S.; Hachana, A.; Jemmali, A.; Boulila, A. Chemical Composition and Antifungal Activity of Essential Oils from Lavandula dentata L.; Cymbopogon citratus DC. Stapf., and Salvia officinalis L. against Rhizoctonia solani in Potato Tubers. Potato Res. 2025, 68, 3179–3196. [Google Scholar] [CrossRef]
- Yap, P.S.X.; Yusoff, K.; Lim, S.H.E.; Chong, C.M.; Lai, K.S. Membrane disruption properties of essential oils—A double-edged sword? Processes 2021, 9, 595. [Google Scholar] [CrossRef]
- Nayak, S.; Hegde, R.B.; Rao, A.S.; Poojary, R. Unlocking the potential of essential oils in aromatic plants: A guide to recovery, modern innovations, regulation and AI integration. Planta 2025, 262, 6. [Google Scholar] [CrossRef] [PubMed]
- Radice, M.; Durofil, A.; Ríos-Núñez, S.; Tardugno, R.; Manfredini, S.; Abreu Naranjo, R.; Scalvenzi, L. Unlocking the Anti-Phytopathogenic Potential of Essential Oils: A Systematic Review of Plant-Based Botrytis cinerea Management for Regenerative Viticulture and Horticultural Products. ACS Agric. Sci. Technol. 2025, 5, 930–948. [Google Scholar] [CrossRef]
- Lippi, P.; Eichmeier, A.; Puccioni, S.; Mattii, G.B.; Cataldo, E. Essential Oils Usage on Vitis vinifera L.; from the Vineyard to Post-Harvest: Advantages, Limitations, and Future Perspectives. Phyton-Int. J. Exp. Bot. 2025, 94, 1047–1072. [Google Scholar] [CrossRef]
- Semenova, N.A.; Smirnov, A.A.; Ivanitskikh, A.S.; Izmailov, A.Y.; Dorokhov, A.S.; Proshkin, Y.A.; Yanykin, D.V.; Sarimov, R.R.; Gudkov, S.V.; Chilingaryan, N.O. Impact of ultraviolet radiation on the pigment content and essential oil accumulation in sweet basil (Ocimum basilicum L.). Appl. Sci. 2022, 12, 7190. [Google Scholar] [CrossRef]
- Yammine, J.; Chihib, N.E.; Gharsallaoui, A.; Ismail, A.; Karam, L. Advances in essential oils encapsulation: Development, characterization and release mechanisms. Polym. Bull. 2024, 81, 3837–3882. [Google Scholar] [CrossRef]
- Kaspute, G.; Ivaskiene, T.; Mobasheri, A.; Viter, R.; Ramanavicius, A.; Prentice, U. Enhancing essential oils: Advanced extraction, sustainability, and nanotechnology for optimal use. Planta 2025, 262, 71. [Google Scholar] [CrossRef] [PubMed]
- Kutawa, A.B.; Ahmad, K.; Ali, A.; Hussein, M.Z.; Abdul Wahab, M.A.; Adamu, A.; Ismaila, A.A.; Gunasena, M.T.; Rahman, M.Z.; Hossain, M.I. Trends in nanotechnology and its potentialities to control plant pathogenic fungi: A review. Biology 2021, 10, 881. [Google Scholar] [CrossRef]
- Ivanova, S.; Ivanov, K.; Gvozdeva, Y.; Staynova, R.; Grekova-Kafalova, D.; Hristozova, M.; Koleva, N. Essential oils—A review of the regulatory framework in the European Union. Pharmacia 2025, 72, 1–12. [Google Scholar] [CrossRef]
- Sheikh, A.R.; Wu-Chen, R.A.; Matloob, A.; Mahmood, M.H.; Javed, M. Nanoencapsulation of volatile plant essential oils: A paradigm shift in food industry practices. Food Innov. Adv. 2024, 3, 305–319. [Google Scholar] [CrossRef]
- Vermelho, A.B.; Moreira, J.V.; Akamine, I.T.; Cardoso, V.S.; Mansoldo, F.R. Agricultural pest management: The role of microorganisms in biopesticides and soil bioremediation. Plants 2024, 13, 2762. [Google Scholar] [CrossRef]
- Shen, X.; He, L.; Cui, Y.; Lin, Z.; Jafari, S.M.; Tan, C. Co-encapsulation of bioactive compounds in liposomal delivery systems for synergistic effects. Food Biosci. 2025, 68, 106306. [Google Scholar] [CrossRef]
- Omidian, H.; Cubeddu, L.X.; Gill, E.J. Harnessing nanotechnology to enhance essential oil applications. Molecules 2025, 30, 520. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ye, Z.; Liu, Y.; Zhou, Z. Eugenol Nanoemulsion Loaded with Polymethoxyflavones Control Blue Mold in Apple and Citrus Fruits by Damaging the Cell Membrane of Penicillium Expansum. Available online: https://ssrn.com/abstract=5226717 (accessed on 28 October 2025). [CrossRef]
- Ullah, Z.; Iqbal, J.; Abbasi, B.A.; Ijaz, S.; Ahmad, S.; Khan, S.; Sampath, S.; Iqbal, R.; Murtaza, G.; Mehmood, Y.; et al. Nano-formulation for Agriculture Applicability. In Revolutionizing Agriculture: A Comprehensive Exploration of Agri-Nanotechnology; Springer Nature: Cham, Switzerland, 2024; pp. 325–367. [Google Scholar] [CrossRef]
- Herkins, M.; Zhao, L.; Zhu, H.; Jeon, H.; Castilho-Theodoro, J. Optimization and evaluation of electrostatic spraying systems and their effects on pesticide deposition and coverage inside dense canopy plants. Agronomy 2025, 15, 1401. [Google Scholar] [CrossRef]
- Dhotre, I. A comprehensive review on progression and innovations in microwave assisted extraction technology for essential oils. J. Chem. Technol. Biotechnol. 2025, 100, 894–907. [Google Scholar] [CrossRef]
- Singh, H. Bioengineering for Production of Biologically Active Compounds in Plants. In Biosynthesis of Natural Products in Plants: Bioengineering in Post-genomics Era; Springer Nature: Singapore, 2024; pp. 1–37. [Google Scholar] [CrossRef]
- Gonzaga, B.C.F.; Barrozo, M.M.; Coutinho, A.L.; Pereira e Sousa, L.J.M.; Vale, F.L.; Marreto, L.; Marchesini, P.; de Castro Rodrigues, D.; De Souza, E.D.F.; Sabatini, G.A.; et al. Essential oils and isolated compounds for tick control: Advances beyond the laboratory. Parasites Vectors. 2023, 16, 415–439. [Google Scholar] [CrossRef]
- Sultana, R.; Mohanto, S.; Bhunia, A.; Biswas, A.; Akhtar, M.S.; Mishra, V.; Faiyazuddin, M. Current progress and emerging role of essential oils in drug delivery therapeutics. Curr. Drug Deliv. 2025, 22, 332–357. [Google Scholar] [CrossRef]
- Sarmah, K.; Anbalagan, T.; Marimuthu, M.; Mariappan, P.; Angappan, S.; Vaithiyanathan, S. Innovative formulation strategies for botanical-and essential oil-based insecticides. J. Pest Sci. 2025, 98, 1–30. [Google Scholar] [CrossRef]
- Sivalingam, S.; Golla, G.; Arunachalam, L.; Singh, T.; Malaichamy, K. Encapsulation of essential oil to prepare environment friendly nanobio-fungicide against Fusarium oxysporum f. sp. lycopersici: An experimental and molecular dynamics approach. Colloids Surf. A Physicochem. Eng. Asp. 2024, 681, 132681. [Google Scholar] [CrossRef]
- Etri, K.; Pluhár, Z. Exploring chemical variability in the essential oils of the thymus genus. Plants 2024, 13, 1375. [Google Scholar] [CrossRef]
- Ghedira, W.; Souissi, M.; Boudokhane, C.; Dhaouadi, H. Eco-Friendly Extraction and Antioxidant Profiling of Rosmarinus officinalis L.: Advances in Supercritical Fluid Extraction, DFT, and ADMET Analyses. Results Eng. 2025, 28, 107422. [Google Scholar] [CrossRef]
- Eyube, M.; Ohwoevwo, A.; Okechukwu, F.; Babayanju, S.; Osadolor, E.; Boco, F.; Alimikhena, M.; Agbonghae, E. Sustainable Optimization of Extraction Techniques for Bioactive Compounds in Drug Discovery: Principles, Innovations, and Case Studies. ChemRxiv 2025. [Google Scholar] [CrossRef]
- Khalafalla, M.M. Plant cell suspension culture for plant secondary metabolite production: Current status, constraints, and future solutions. Pol. J. Environ. Stud. 2025, 10, 1–14. [Google Scholar] [CrossRef]
- Gopalakrishnan, A.V.; Singh, P.K.; Krishnan, N.; Devadasan, V.; Gopinath, S.C.; Raman, P. Characterization of phytoconstituents of vital herbal oils by GC–MS and LC–MS/MS and their bioactivities. J. Food Sci. Technol. 2024, 1–13. [Google Scholar] [CrossRef]
- Abd El-Kareem, M.S.; Rabbih, M.A.; Rashad, A.M.; EL-Hefny, M. Essential oils from fennel plants as valuable chemical products: Gas chromatography–mass spectrometry, FTIR, quantum mechanical investigation, and antifungal activity. Biomass Convers. Biorefinery 2025, 15, 9173–9191. [Google Scholar] [CrossRef]
- Abbas, A.; Lai, D.Y.; Peng, P.; She, D. Lignin-Based Functional Materials in Agricultural Application: A Review. J. Agric. Food Chem. 2025, 73, 5685–5710. [Google Scholar] [CrossRef]
- Nahas, E.O.; Furtado, G.F.; Lopes, M.S.; Silva, E.K. From Emulsions to Films: The Role of Polysaccharide Matrices in Essential Oil Retention Within Active Packaging Films. Foods 2025, 14, 1501. [Google Scholar] [CrossRef]
- Zhou, Q.; Xia, Z.; Zhang, Y.; Sun, Z.; Zeng, W.; Zhang, N.; Yuan, C.; Gong, C.; Zhou, Y.; Xue, W. Design of a delivery vehicle chitosan-based self-assembling: Controlled release, high hydrophobicity, and safe treatment of plant fungal diseases. J. Nanobiotechnol. 2024, 22, 121. [Google Scholar] [CrossRef]
- Jayaraj, G.; Balasubramaniam, M.; Raju, K. Nanoencapsulation of Agricultural Inputs. In Nanotechnology Applications in Modern Agriculture; Springer Nature: Cham, Switzerland, 2025; pp. 51–79. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; McClements, D.J.; Jin, Z.; Ji, H.; Qiu, C. Recent progress in the source, extraction, activity mechanism and encapsulation of bioactive essential oils. Crit. Rev. Food Sci. Nutr. 2024, 65, 6352–6370. [Google Scholar] [CrossRef] [PubMed]
- Jakovljević, D.; Warchoł, M.; Skrzypek, E. Rosmarinic Acid as Bioactive Compound: Molecular and Physiological Aspects of Biosynthesis with Future Perspectives. Cells. 2025, 14, 850. [Google Scholar] [CrossRef] [PubMed]
- Appah, S. Assessment of agrochemical spray droplet effect on substrates by electrostatic-conventional spraying. Agric. Sci. Technol. 2025, 17, 59–69. [Google Scholar] [CrossRef]
- Sun, H.; Liu, C.; Li, Y.; Shi, H.; Zhao, S.; Wu, M.; Hu, J. Design of a Contact-Type Electrostatic Spray Boom System Based on Rod-Plate Electrode Structure and Field Experiments on Droplet Deposition Distribution. Agronomy 2024, 14, 2715. [Google Scholar] [CrossRef]
- Ye, K.; Hu, G.; Tong, Z.; Xu, Y.; Zheng, J. Key intelligent pesticide prescription spraying technologies for the control of pests, diseases, and weeds: A review. Agriculture 2025, 15, 81. [Google Scholar] [CrossRef]
- Martini, F.; Jijakli, M.H.; Gontier, E.; Muchembled, J.; Fauconnier, M.L. Harnessing plant’s arsenal: Essential oils as promising tools for sustainable management of potato late blight disease caused by Phytophthora infestans—A comprehensive review. Molecules 2023, 28, 7302. [Google Scholar] [CrossRef]




| Essential Oil Source | Target Plant Pathogenic Fungi | Diseases | Control | Reference |
|---|---|---|---|---|
| (Origanum vulgare) | Botrytis cinerea | Pepper fruit rot | Lesion growth (cm2) reduced | [44] |
| Thyme (Thymus vulgaris) | Alternaria alternata | Softening of fruits (especially grapes and citrus) | Inhibition of growth | [45] |
| Clove (Syzygium aromaticum) | Fusarium oxysporum and Fusarium solani | Root rot disease of cucumber seedling and seed rot. | Reduced seed rot and mortality percentage of seedling cucumber | [46] |
| Eucalyptus globolus | Fusarium graminearum | Wheat Fusarium Head Blight | Decreased Fusarium Head Blight infection rate | [47] |
| Cymbopogon citratus | Colletotrichum lindemuthianum | Common bean anthracnose | Reduced anthracnose severity | [48] |
| Thyme (Thymus vulgaris) | Cercospora beticola | Cercospora Leaf Spot of Sugar Beets (Beta vulgaris) | Reduced infected Leaf Area [%] | [49] |
| Cedarwood (Cedrus atiantica) | Rhizoctonia solani | Sheath blight of rice | Per cent of yield increased | [50] |
| Celery (Apium graveolens) | Podosphaera fusca | Powdery mildew of cucumber (Cucumis sativus) | Reduced severity of powdery mildew in cucumber seedlings | [51] |
| Syzygium aromaticum | Rhizoctonia solani, Sclerotinia sclerotiorum, Fusarium oxysporum, and Fusarium solani | Root Rot and Wilt of Marigold (Calendula officinalis L.) | Reduced Damping-Off %, Root Rot % and Wilt % | [52] |
| Citrus x limon | Phytophthora spp. | Brown Rot of Cocoa | Reduced severity of symptoms of cocoa brown rot | [53] |
| Enzyme | Substrate | Active Compound | Regulatory Pathway | Fungal Cellular Effect | Mechanism of Kinetic Enzymatic |
|---|---|---|---|---|---|
| Chitin Synthase | UDP-N-acetylglucosamine | Chitin | Transcriptional regulators (chs1, chs2 in S. Pombe), Transcription factors like Rlm1 | Disruption of cell wall integrity, increased permeability, and susceptibility to stress. | Interaction with the enzyme’s active site, preventing substrate binding and enzymatic activity. |
| Lanosterol Demethylase | Lanosterol | Ergosterol (via demethylation) | Part of the ergosterol biosynthetic pathway | Accumulation of toxic sterol intermediates, impedes fungal growth. | Inhibition by compounds like thymol and carvacrol (specific kinetic mechanism not detailed). |
| Glucan Synthase | UDP-glucose | β-(1,3)-Glucans | Allosteric Activation, the binding of Rho1-GTP to Fks1 induces a conformational change that increases the enzyme’s catalytic activity (Vmax), enabling rapid glucan polymer synthesis at specific sites, most notably the growing hyphal tip. | Loss of cell wall rigidity, cellular lysis, and death due to osmotic stress. | Disruption of enzyme activity, compromising the synthesis of vital cell wall components. |
| Cytochrome c Oxidase | Cytochrome c, O2 | H2O | Final step of the mitochondrial electron transport chain. | Reduced ATP production, accumulation of ROS, oxidative stress. | Inhibition disrupts electron transfer to oxygen, reducing the proton gradient for ATP synthesis. |
| NADH Dehydrogenase | NADH, Ubiquinone | NAD+, Ubiquinol (reduced) | Initiates the mitochondrial electron transport chain | Diminished ATP production, metabolic dysregulation, increased oxidative stress. | Binding of EO components blocks substrate access and prevents electron transfer. |
| Catalase (CAT) | H2O2 | H2O, O2 | Key component of the antioxidant defense system. | Accumulation of H2O2, leading to oxidative damage and cell death | Enzyme inhibition, impairing the cell’s ability to degrade hydrogen peroxide. |
| Superoxide Dismutase (SOD) | Superoxide (O2−) | H2O2, O2 | Key component of the antioxidant defense system. | Accumulation of superoxide radicals, leading to oxidative damage and cell death. | Enzyme inhibition, impairing the cell’s ability to neutralize superoxide radicals. |
| Phospholipases | Phospholipids | Fatty acids | Involved in membrane integrity, lipid metabolism, and signaling. | Reduced virulence, inhibition of growth, compromised membrane function. | Inhibition of enzymatic activity by compounds like terpinen-4-ol and eugenol. |
| Metabolite Class | Biosynthetic Pathway | Key Metabolite | Plant Source | Proposed Antifungal Mechanism of Action |
|---|---|---|---|---|
| Phenolic Monoterpenes | MEP Pathway Cyclization/Aromatization | Timol, Carvacrol | (Origanum vulgare), Tomillo (Thymus vulgaris) | Membrane destabilization, increased permeability, ion and cell content leakage, inhibition of ergosterol biosynthesis. |
| Phenylpropanoids | Shikimate-Phenylpropanoid Pathway | Eugenol, Chavicol, Cinnamaldehyde | Clove (Syzygium aromaticum), Basil, Cinnamon (Cinnamomum zeylanicum) | Membrane depolarization, lipid peroxidation, inactivation of essential enzymes, induction of oxidative stress. |
| Oxygenated Monoterpenes | MEP Pathway Oxidation (P450) | Linalool, Citral, 1,8-Cineole (Eucalyptol), Geraniol, Menthol, Pulegone | Basil, Lemongrass, Lavender, Eucalyptus, Palmarosa, Mint | Alteration of membrane fluidity, interaction with membrane proteins, inhibition of spore germination, ion channel disruption. |
| Sesquiterpenes | MEV/MEP Pathway | Farnesol, β-Caryophyllene, Nerolidol, α-Bisabolol | Ginger, Eucalyptus, Jasmine, Cabreuva, Chamomile | Inhibition of yeast-to-hypha transition, alteration of fungal morphogenesis, synergy with other compounds, biofilm inhibition. |
| Aliphatic Aldehydes | Fatty Acid Pathway | Octanal, Decanal, Nonanal | Orange, Lemon, other Citrus peels | Membrane disruption, non-specific enzyme inhibition, induction of metabolic paralysis in fungal cells. |
| Monoterpene Hydrocarbons | MEP Pathway | (+)-Limonene, α-Pinene, γ-Terpinene, p-Cymene | Citrus peels, Pine, Turpentine, Cumin | Solubilization in membrane lipids, causing swelling and leakage; often act synergistically with oxygenated terpenes. |
| Allyl Isothiocyanates | Glucosinolate Pathway (from amino acids) | Allyl Isothiocyanate | Mustard, Horseradish, Wasabi | Powerful electrophile that reacts with thiol groups in enzymes and proteins, disrupting cellular functions. |
| Aliphatic Alcohols | Fatty Acid Pathway | 1-Octanol, Terpinen-4-ol | Citrus, Tea Tree (Melaleuca alternifolia) | Membrane disruption, inhibition of mycelial growth and spore formation, energy metabolism interference. |
| Plant Fungal Pathogen | Plant Disease | Essential Oil Used | Doses | Spore/Conidial Inhibition | References |
|---|---|---|---|---|---|
| Botrytis cinerea | Gray Mold | Origanum vulgare (Oregano) | 125 µL.L−1 | Complete inhibition | [67] |
| Penicillium digitatum | Green Mold | Cinnamon bark essential oil | 106 µL.L−1 | Complete inhibition | [68] |
| Fusarium oxysporum f. sp. lycopersici | Fusarium Wilt | Thymus vulgaris (Thyme) | 0.83 to 6.66 μL.mL−1 | Partial inhibition | [69] |
| Alternaria alternata | Black Spot | Syzygium aromaticum (Clove) | 5 g. mL−1 | Complete inhibition | [70] |
| Colletotrichum gloeosporioides | Anthracnose | Cymbopogon citratus (Lemongrass) | 0.1 g. mL−1 | 95% inhibition of conidial germination | [71] |
| Aspergillus flavus | Maize pod Rot, (Aflatoxin producer) | Mentha piperita (Peppermint) | 0.343 μL.mL−1 pepper essential oil | 65–72% | [72] |
| Monilinia laxa | Brown Rot Blossom Blight and Twig Canker | Citrus sinensis | Crude extract | Complete inhibition | [73] |
| Limitation | Consequences | Solution | Reference |
|---|---|---|---|
| Low persistence | Pathogens with rapid infection cycles can infect immediately after the EO concentration falls below the inhibitory level. | Nano/Micro-Encapsulation of EO droplets within a polymeric matrix (e.g., chitosan, alginate, lipids). | [98] |
| High volatility | Compounds like thymol and eugenol possess vapor pressures higher than conventional fungicides, driving rapid phase transition from liquid to vapor state. | Require synchronization with the plant pathogenic fungi biology. Re-engineering of delivery systems of EOs. | [99] |
| Photosensitivity | Susceptibility to solar radiation under field conditions creates a significant efficacy gap. | Use of natural radical scavengers (rosmarinic acid, tocopherols) that preferentially absorb damaging radiation. | [100] |
| Rapid degradation | Phyllosphere and soil microbiota rapidly metabolize EO components through enzymatic oxidation, reduction, and conjugation reactions. | Encapsulate the EO within a polymeric shell (chitosan or lignin-based products) | [101] |
| Low aqueous solubility | Hydrophobic EOs naturally separate from the water-based spray solutions. | Utilizing high-energy (ultrasonication, high-pressure homogenization) for producing nanoemulsion | [102] |
| Potential phytotoxicity | When dose is high, localized necrosis, generalized chlorosis, epinastic leaf deformation, and premature abscission of leaves may be observed. | Nano-formulations for targeted delivery and controlled release, coupled with the establishment of optimized application protocols based on crop-specific physiological windows and environmental conditions | [103] |
| Technique of application | Non-uniform coverage, large droplets, application in full sun, application before rain, timing in disease cycle of plant pathogenic fungi | Electrostatic sprayers or fine, ultra-low-volume (ULV) nozzles for uniform coverage, employing adjuvants to optimize droplet size and adherence, scheduling applications during early morning or late evening hours to minimize volatilization and UV degradation, leveraging disease forecasting models for precise timing relative to pathogen life cycles, and implementing water-sensitive paper for real-time monitoring of spray distribution and droplet quality | [104] |
| Cost | Low viability and limited commercial adoption for farmers due to high cost | Growing specific high-yield, fungicidal plants on farm and processing them into effective, though less refined, botanical extracts instead of pure essential oils | [105] |
| Scalability | The development of commercial biofungicide requires mass production of EOs with consistent quality standard. | An integrated platform, combining plant cell culture in advanced bioreactors with precision metabolic engineering, can industrialize the synthesis of key antifungal metabolites derived from essential oils. | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leiva-Mora, M.; Bustillos, D.; Arteaga, C.; Hidalgo, K.; Guevara-Freire, D.; López-Hernández, O.; Saa, L.R.; Padilla, P.S.; Bustillos, A. Antifungal Mechanisms of Plant Essential Oils: A Comprehensive Literature Review for Biofungicide Development. Agriculture 2025, 15, 2303. https://doi.org/10.3390/agriculture15212303
Leiva-Mora M, Bustillos D, Arteaga C, Hidalgo K, Guevara-Freire D, López-Hernández O, Saa LR, Padilla PS, Bustillos A. Antifungal Mechanisms of Plant Essential Oils: A Comprehensive Literature Review for Biofungicide Development. Agriculture. 2025; 15(21):2303. https://doi.org/10.3390/agriculture15212303
Chicago/Turabian StyleLeiva-Mora, Michel, Diana Bustillos, Cristina Arteaga, Kattyta Hidalgo, Deysi Guevara-Freire, Orestes López-Hernández, Luis Rodrigo Saa, Paola S. Padilla, and Alberto Bustillos. 2025. "Antifungal Mechanisms of Plant Essential Oils: A Comprehensive Literature Review for Biofungicide Development" Agriculture 15, no. 21: 2303. https://doi.org/10.3390/agriculture15212303
APA StyleLeiva-Mora, M., Bustillos, D., Arteaga, C., Hidalgo, K., Guevara-Freire, D., López-Hernández, O., Saa, L. R., Padilla, P. S., & Bustillos, A. (2025). Antifungal Mechanisms of Plant Essential Oils: A Comprehensive Literature Review for Biofungicide Development. Agriculture, 15(21), 2303. https://doi.org/10.3390/agriculture15212303

