Journal Description
Crops
Crops
is an international, peer-reviewed, open access journal on the science and technology of crops published bimonthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), Scopus, and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 22.1 days after submission; acceptance to publication is undertaken in 5.9 days (median values for papers published in this journal in the second half of 2024).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
- Crops is a companion journal of Agriculture and Agronomy.
Latest Articles
Effect of Phosphorus and Zinc Fertilization on Yield and Nutrient Use Efficiency of Wheat (Triticum aestivum L.) in Tigray Highlands of Northern Ethiopia
Crops 2025, 5(3), 32; https://doi.org/10.3390/crops5030032 - 20 May 2025
Abstract
►
Show Figures
Wheat is a vital staple crop addressing significant nutritional needs. However, it faces micronutrient deficiencies in Ethiopia, prompting the use of balanced nutrient fertilizers to obtain better yields, nutrient concentration, and nutritional quality. This study investigated the effect of different P and Zn
[...] Read more.
Wheat is a vital staple crop addressing significant nutritional needs. However, it faces micronutrient deficiencies in Ethiopia, prompting the use of balanced nutrient fertilizers to obtain better yields, nutrient concentration, and nutritional quality. This study investigated the effect of different P and Zn fertilizer combinations on wheat yield and nutrient use efficiency across three locations in Tigray, Ethiopia. A randomized complete block design (RCBD) was used with four P levels (0, 10, 20, and 30 kg P ha⁻1), and three Zn levels (0, 5, and 10 kg Zn ha⁻1) in three replications. A balanced application of P and Zn fertilizers significantly increased wheat grain and biomass yields, while applying higher rates of both nutrients (i.e., 30 kg P ha⁻1 and 10 kg Zn ha⁻1) reduced yields. The combined application of 20 kg P ha⁻1 and 5 kg Zn ha⁻1 achieved the best yield, which also improved Zn use efficiency. Increasing Zn application (from 5 to 10 kg Zn ha⁻1) while reducing P (from 20 to 10 kg P ha⁻1) enhanced Zn concentration in wheat grain. These findings highlight the importance of carefully managing P and Zn fertilization to optimize grain yield and Zn bioavailability, contributing to improved food security in diverse agro-climatic conditions.
Full article
Open AccessArticle
Can We Teach Machines to Select Like a Plant Breeder? A Recommender System Approach to Support Early Generation Selection Decisions Based on Breeders’ Preferences
by
Sebastian Michel, Franziska Löschenberger, Christian Ametz, Herbert Bistrich and Hermann Bürstmayr
Crops 2025, 5(3), 31; https://doi.org/10.3390/crops5030031 - 20 May 2025
Abstract
►▼
Show Figures
Plant breeding is considered to be the science and art of genetically improving plants according to human needs. Breeders in this context oftentimes face the difficult task of selecting among thousands of genotypes for dozens of traits simultaneously. Using a breeder’s selection decisions
[...] Read more.
Plant breeding is considered to be the science and art of genetically improving plants according to human needs. Breeders in this context oftentimes face the difficult task of selecting among thousands of genotypes for dozens of traits simultaneously. Using a breeder’s selection decisions from a commercial wheat breeding program as a case study, this study investigated the possibility of implementing a recommender system based on the breeder’s preferences to support early-generation selection decisions in plant breeding. The target trait was the retrospective binary classification of selected versus non-selected breeding lines during a period of five years, while the selection decisions of the breeder were predicted by various machine learning models. The explained variance of these selection decisions was of moderate magnitude ( = 0.45), and the models’ precision suggested that the breeder’s selection decisions were to some extent predictable (~20%), especially when some of the pending selection candidates were part of the training population (~30%). Training machine learning algorithms with breeders’ selection decisions can thus aid breeders in their decision-making processes, particularly when integrating human and artificial intelligence in the form a recommender system to potentially reduce a breeder’s effort and the required time to find interesting selection candidates.
Full article

Figure 1
Open AccessArticle
Apple Cultivar Responses to Fungal Diseases and Insect Pests Under Variable Orchard Conditions: A Multisite Study
by
Paula A. Morariu, Adriana F. Sestras, Andreea F. Andrecan, Orsolya Borsai, Claudiu Ioan Bunea, Mădălina Militaru, Catalina Dan and Radu E. Sestras
Crops 2025, 5(3), 30; https://doi.org/10.3390/crops5030030 - 19 May 2025
Abstract
►▼
Show Figures
Evaluating cultivar susceptibility to biotic stressors in apple orchards is essential for selecting genotypes adapted to local conditions and for designing effective plant protection strategies. This study conducted a comparative assessment of five apple cultivars (‘Florina’, ‘Jonathan’, ‘Golden Delicious’, ‘Pinova’, and ‘Idared’) in
[...] Read more.
Evaluating cultivar susceptibility to biotic stressors in apple orchards is essential for selecting genotypes adapted to local conditions and for designing effective plant protection strategies. This study conducted a comparative assessment of five apple cultivars (‘Florina’, ‘Jonathan’, ‘Golden Delicious’, ‘Pinova’, and ‘Idared’) in response to major fungal diseases (Venturia inaequalis, Podosphaera leucotricha, and Monilinia spp.) and insect pests (Eriosoma lanigerum, Quadraspidiotus perniciosus, Anthonomus pomorum, Aphis spp., and Cydia pomonella). The cultivars were monitored over a five-year period in six orchards located in Central Transylvania, Romania. Significant differences in phytosanitary behavior were recorded among cultivars and locations. ‘Florina’ consistently showed the highest tolerance to pathogens and pests across all sites and years, while ‘Jonathan’ and ‘Golden Delicious’ proved highly susceptible, particularly to apple scab, powdery mildew, aphids, and codling moth. Pest incidence was strongly influenced by temperature, while disease occurrence was more closely linked to precipitation patterns. Heritability analysis indicated that genetic factors played a substantial role in shaping cultivar responses to most biotic stressors. The integrated approach to cultivar–location–pathogen and pest interactions offers practical insights for optimizing orchard protection strategies under variable ecological conditions.
Full article

Figure 1
Open AccessReview
Role of Seaweeds for Improving Soil Fertility and Crop Development to Address Global Food Insecurity
by
Ali Rafi Yasmeen, Theivanayagam Maharajan, Ramakrishnan Rameshkumar, Subbiah Sindhamani, Balan Banumathi, Mayakrishnan Prabakaran, Sundararajan Atchaya and Periyasamy Rathinapriya
Crops 2025, 5(3), 29; https://doi.org/10.3390/crops5030029 - 12 May 2025
Abstract
►▼
Show Figures
Seaweeds and their derived products have long been valued in organic agriculture, serving roles in biofertilizers, biostimulants, and soil conditioners due to their rich content of bioactive compounds. With increasing concerns over the negative impacts of synthetic agrochemicals on food security and environmental
[...] Read more.
Seaweeds and their derived products have long been valued in organic agriculture, serving roles in biofertilizers, biostimulants, and soil conditioners due to their rich content of bioactive compounds. With increasing concerns over the negative impacts of synthetic agrochemicals on food security and environmental health, seaweeds offer a sustainable alternative for improving soil fertility and crop productivity. This review synthesizes recent findings on the use of seaweeds to enhance soil physicochemical properties, stimulate beneficial microbial activity, and improve nutrient availability. Furthermore, it highlights how seaweed applications can mitigate various abiotic stresses, such as droughts, salinity, and nutrient deficiency, by enhancing antioxidant defenses and promoting physiological and biochemical resilience in plants. Key agronomic benefits include improved seed germination, root development, photosynthesis, biomass accumulation, and yield performance. By acting as natural soil amendments, seaweeds support sustainable soil management and contribute to long-term agricultural resilience. This review emphasizes the urgent need for standardized application strategies and integrated research to unlock the full potential of seaweed-based solutions in sustainable farming systems.
Full article

Figure 1
Open AccessArticle
Fipexide Rapidly Induces Callus Formation in Medicago sativa by Regulating Small Auxin Upregulated RNA (SAUR) Family Genes
by
Wenxuan Zhao, Siyang Li, Bo Lan, Yunpeng Gai, Fang K. Du and Kangquan Yin
Crops 2025, 5(3), 28; https://doi.org/10.3390/crops5030028 - 9 May 2025
Abstract
►▼
Show Figures
The small-molecule compound fipexide (FPX) has been shown to promote callus formation in several plants, but its effects on forage crops remain unexplored, and its molecular mechanism is not yet fully understood. In this study, we evaluated FPX-induced callus formation from seeds for
[...] Read more.
The small-molecule compound fipexide (FPX) has been shown to promote callus formation in several plants, but its effects on forage crops remain unexplored, and its molecular mechanism is not yet fully understood. In this study, we evaluated FPX-induced callus formation from seeds for up to four weeks in four elite cultivars of Medicago sativa, finding it to be faster than the classical 2,4-D/6-BA treatment for the first two weeks. Notably, the cellular organization of FPX-induced calli differed from those induced by 2,4-D/6-BA by showing almost no conducting tissues. Comparative transcriptome analysis revealed dynamic gene expression changes during the early and late stages of callus induction, such as multicellular organism development and response to auxin. Interestingly, in both M. sativa and Arabidopsis, FPX regulates a group of small auxin upregulated RNA (SAUR) family genes, which are known to fine-tune growth in response to internal and external signals. This suggests a potential evolutionary conserved molecular mechanism underlying FPX-induced callus formation across plant species.
Full article

Figure 1
Open AccessArticle
Zeolite and Inorganic Nitrogen Fertilization Effects on Performance, Lint Yield, and Fiber Quality of Cotton Cultivated in the Mediterranean Region
by
Ioannis Roussis, Antonios Mavroeidis, Panteleimon Stavropoulos, Konstantinos Baginetas, Panagiotis Kanatas, Konstantinos Pantaleon, Antigolena Folina, Dimitrios Beslemes and Ioanna Kakabouki
Crops 2025, 5(3), 27; https://doi.org/10.3390/crops5030027 - 3 May 2025
Abstract
►▼
Show Figures
The continuous provision of nitrogen (N) to the crop is critical for optimal cotton production; however, the constant and excessive application of synthetic fertilizers causes adverse impacts on soil, plants, animals, and human health. The current study focused on the short-term effects (one-year
[...] Read more.
The continuous provision of nitrogen (N) to the crop is critical for optimal cotton production; however, the constant and excessive application of synthetic fertilizers causes adverse impacts on soil, plants, animals, and human health. The current study focused on the short-term effects (one-year study) of adding different rates of clinoptilolite zeolite, as part of an integrated nutrient management plan, and different rates of inorganic N fertilizer to improve soil and crop performance of cotton in three locations (ATH, MES, and KAR) in Greece. Each experiment was set up according to a split-plot design with three replications, three main plots (zeolite application at rates of 0, 5, and 7.5 t ha−1), and four sub-plots (N fertilization regimes at rates of 0, 100, 150, and 200 kg N ha−1). The results of this study indicated that increasing rates of the examined factors increased cotton yields (seed cotton yield, lint yield, and lint percentage), with the greatest lint yield recorded under the highest rates of zeolite (7.5 t ha−1: 1808, 1723, and 1847 kg ha−1 in ATH, MES, and KAR, respectively) and N fertilization (200 kg N ha−1: 1804, 1768, and 1911 kg ha−1 in ATH, MES, and KAR, respectively). From the evaluated parameters, most soil parameters (soil organic matter, soil total nitrogen, and total porosity), root and shoot development (root length density, plant height, leaf area index, and dry weight), fiber maturity traits (micronaire, maturity, fiber strength, and elongation), fiber length traits (upper half mean length, uniformity index, and short fiber index), as well as color (reflectance and spinning consistency index) and trash traits (trash area and trash grade), were positively impacted by the increasing rates of the evaluated factors. In conclusion, the results of the present research suggest that increasing zeolite and N fertilization rates to 7.5 t ha−1 and 200 kg N ha−1, respectively, improved soil properties (except mean weight diameter), stimulated crop development, and enhanced cotton and lint yield, as well as improved the fiber maturity, length, and color parameters of cotton grown in clay-loam soils in the Mediterranean region.
Full article

Figure 1
Open AccessArticle
Comparison of the Nutritional, Physicochemical, Technological–Functional, and Structural Properties and Antioxidant Compounds of Corn Kernel Flours from Native Mexican Maize Cultivated in Jalisco Highlands
by
Luis Alfonso Hernández-Villaseñor, Salvador Hernández-Estrada, Víctor Manuel Gómez-Rodríguez, Humberto Ramírez-Vega, Zuamí Villagrán, Araceli Ortega-Martínez, Efigenia Montalvo-González, José Martín Ruvalcaba-Gómez, Napoleón González-Silva and Luis Miguel Anaya-Esparza
Crops 2025, 5(3), 26; https://doi.org/10.3390/crops5030026 - 3 May 2025
Abstract
►▼
Show Figures
Maize plays a crucial role in global nutrition and food security, with Mexico making a significant contribution through its diverse native corn genotypes. However, research on flours derived from these native maize genotypes remains limited, hindering their potential applications in food manufacturing. This
[...] Read more.
Maize plays a crucial role in global nutrition and food security, with Mexico making a significant contribution through its diverse native corn genotypes. However, research on flours derived from these native maize genotypes remains limited, hindering their potential applications in food manufacturing. This study aimed to determine the nutritional, physicochemical, techno-functional, structural, and antioxidant properties of corn kernel flours from nine native Mexican maize accessions cultivated in the highlands of Jalisco. Enough cobs for each maize accession were randomly selected to yield 1000 g of corn kernels. Data analysis was conducted by analysis of variance and Kruskal–Wallis tests (α = 0.05). Moreover, Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) were performed. Native corn kernel flour (NCKF) demonstrated higher protein and fat content compared to white hybrid corn flour (WHF). While both flours showed similar pH, titratable acidity, and water activity levels, NCKF exhibited higher total soluble solids. Additionally, NCKF showed superior techno-functional properties, including water solubility, water absorption index, swelling power, emulsifying capacity, and foaming capacity, while its oil absorption index was comparable to that of WHF. Moreover, NCKF contained higher levels of bioactive compounds, such as soluble phenols, condensed tannins, flavonoids, anthocyanins, and carotenoids, along with enhanced antioxidant properties, as measured by FRAP, DPPH, and ABTS assays. FTIR analysis revealed that all NCKF samples exhibited patterns similar to those of WHF with differences in transmittance intensities. Notably, spectral differences were identified by PCA, while HCA demonstrated that corn flours exhibited similitudes and differences among them, which can be categorized into four groups based on their nutritional, physicochemical, and technological–functional properties, as well as antioxidant compound contents. Overall, the evaluated corn flours displayed nutritional, physicochemical, techno-functional, and antioxidant properties for the potential development of functional or nutraceutical food and beverage products.
Full article

Figure 1
Open AccessCommunication
The Impact of Planting Density and Intermediate Skips on Grain Sorghum Yields
by
Ifekristi Benson, Josh Lofton, Josie Rice and Brenna Cannon
Crops 2025, 5(3), 25; https://doi.org/10.3390/crops5030025 - 1 May 2025
Abstract
►▼
Show Figures
Planting density can influence the growth and potential yield of grain sorghum systems, particularly in resource-limited environments. Therefore, documenting the sorghum’s response to different planting densities is essential for understanding crop behavior in relation to optimal yields. A study was conducted in Lahoma
[...] Read more.
Planting density can influence the growth and potential yield of grain sorghum systems, particularly in resource-limited environments. Therefore, documenting the sorghum’s response to different planting densities is essential for understanding crop behavior in relation to optimal yields. A study was conducted in Lahoma and Perkins, Oklahoma, in 2019 and 2020 to assess the impact of varying planting densities and within-row planting in-row gaps. Planting density varied from 43,225 to 223,500 plants ha−1. Three additional treatments were implemented at 148,000 plants ha−1 with 0.3, 0.6, and 0.9 m gaps. An increase in plant density resulted in higher yields at Lahoma in 2019. However, at Perkins in 2019 and 2020, yields were optimized at 148,000 and 111,000 plants ha−1, respectively, and decreased as planting densities diminished. In-row gaps of 0.3 and 0.6 m did not significantly affect yields across all site-years; however, at Perkins, the 0.9 m gap significantly reduced yields compared to stands without gaps in both years. Overall, a direct relationship was observed between sorghum yields and planting density. Further evaluation of in-row gaps and how planting management should be adjusted is warranted based on the presented information.
Full article

Figure 1
Open AccessArticle
Proximate Composition and Nutritional Indices of Fenugreek Under Salinity Stress: The Role of Biocyclic Vegan and Other Organic Fertilization Systems in Forage Quality
by
Antigolena Folina, Ioanna Kakabouki, Panteleimon Stavropoulos, Antonios Mavroeidis, Eleni Tsiplakou and Dimitrios Bilalis
Crops 2025, 5(3), 24; https://doi.org/10.3390/crops5030024 - 1 May 2025
Abstract
►▼
Show Figures
Fenugreek (Trigonella foenum-graecum L.) is an emerging forage crop known for its high nutritional value and adaptability to diverse environmental conditions, making it a promising alternative in sustainable livestock feeding systems in the Mediterranean region. A field experiment was established at the
[...] Read more.
Fenugreek (Trigonella foenum-graecum L.) is an emerging forage crop known for its high nutritional value and adaptability to diverse environmental conditions, making it a promising alternative in sustainable livestock feeding systems in the Mediterranean region. A field experiment was established at the Agricultural University of Athens during the growing season 2020–2021 in a split-plot design with five fertilization treatments (Biocyclic-Vegan Humus Soil; BHS, Farmyard Manure; FMA, Organic Compost; OCP, Inorganic Fertilizer; IFZ, and No Treatment Control; CTRL, and two main salinity treatments (High Salinity Level; HSL, and Normal Salinity Level; NSL). The Forage Quality Index (FQI) was the highest under BHS at NSL (45) and lowest under CTRL at HSL (32), emphasizing the positive impact of organic fertilization. Crude ash (CA) was higher under NSL (9.7%), with OCP and IFZ performing best, while salinity reduced CA under CTRL. Crude fiber (CF) increased under salinity, particularly with OCP and IFZ, whereas BHS and FMA at NSL showed the lowest CF (15.8%), enhancing digestibility. Total fat (TF) was the highest under BHS and FMA at NSL (5.8%) and lowest under IFZ and CTRL at HSL (4.0%), underscoring the importance of balanced fertilization in maintaining fat content. These results highlight the potential of organic amendments to improve nutrient availability, digestibility, and overall feed value.
Full article

Figure 1
Open AccessArticle
Effect of Plant Biostimulants on Beetroot Seed Productivity, Germination, and Microgreen Quality
by
Nadezhda Golubkina, Vladimir Zayachkovsky, Maria Markarova, Mikhail Fedotov, Andrey Alpatov, Lyubov Skrypnik, Sergei Nadezhkin, Otilia Cristina Murariu, Alessio Vincenzo Tallarita and Gianluca Caruso
Crops 2025, 5(3), 23; https://doi.org/10.3390/crops5030023 - 29 Apr 2025
Abstract
►▼
Show Figures
Seed productivity and quality are the bases of modern agriculture. To determine the optimal conditions in terms of seed production and quality, the effect of foliar plant biostimulant treatments (at the beginning and in the middle of the peduncle formation phase and at
[...] Read more.
Seed productivity and quality are the bases of modern agriculture. To determine the optimal conditions in terms of seed production and quality, the effect of foliar plant biostimulant treatments (at the beginning and in the middle of the peduncle formation phase and at the beginning of flowering) based on amino acids (Multimolig M and Aminosil), silicon (Si) (Siliplant), selenium (nano-Se), a Rhodotorula glutinis soil yeast formulation, and a fertilizer (Wuxal Macromix), plus an untreated control (only water-sprayed plants), were assessed on Beta vulgaris seed plants grown in an open field in the Moscow region in 2022–2023. Silicon and nano-Se foliar supply led to the highest seed production and viability, as well as positively affecting the yield and quality of the microgreens produced from the latter seeds. Despite the stability of the size distribution of small- and large-sized seeds, only the application of Si increased the occurrence of the large-sized seed class by up to 53%, while R. glutinis fostered a homogenous distribution of seeds among the different diameter classes. The application of all of the biostimulants, except R. glutinis, provided a decrease in oxidative stress in the seeds (reflected in a significant reduction in proline levels), especially for the small-sized seed class, with the highest beneficial effects being caused by Aminosil and Siliplant. All of the treatments were beneficial in terms of chlorophyll and betalain pigment accumulation but did not significantly affect the microgreens’ antioxidant status. The beneficial effect of the biostimulants revealed provides the basis for beetroot seed production and quality improvements to meet the requirements of the Sustainable Development Goals of the United Nations aiming to fight hunger and improve human health and well-being.
Full article

Graphical abstract
Open AccessArticle
Wood Distillate as a Solution for Growing Crops Under Water Deficiency
by
Riccardo Fedeli, Zhanna Zhatkanbayeva and Stefano Loppi
Crops 2025, 5(2), 22; https://doi.org/10.3390/crops5020022 - 11 Apr 2025
Abstract
►▼
Show Figures
This study investigated if the foliar application of wood distillate (WD, a by-product of biomass pyrolysis, containing bioactive compounds, including organic acids and phenols) influences some key parameters (fresh weight, photosynthetic efficiency, antioxidant compounds, stress-related biochemical markers, and mineral content) of basil plants,
[...] Read more.
This study investigated if the foliar application of wood distillate (WD, a by-product of biomass pyrolysis, containing bioactive compounds, including organic acids and phenols) influences some key parameters (fresh weight, photosynthetic efficiency, antioxidant compounds, stress-related biochemical markers, and mineral content) of basil plants, used as a model crop, grown under water-limited conditions. The experimental setup included control and WD treatments (applied via foliar application at 0.2%) under three drought levels: no stress, moderate, and high stress. The results indicated that the application of WD contributed to improving the fresh weight, chlorophyll, reduced oxidative stress, and stable levels of essential nutrients across varying drought intensities. These outcomes highlight the potential of WD as an effective biostimulant for enhancing drought tolerance in basil plants under water deficiency.
Full article

Figure 1
Open AccessArticle
Grapevine Response to Pyroligneous Acid: Antifungal, Physiological, and Biochemical Impacts
by
Efoo Bawa Nutsukpo, Peter Amoako Ofori, Raphael Ofoe, Anagha Pradeep Kumar, Samuel K. Asiedu, Chijioke Emenike and Lord Abbey
Crops 2025, 5(2), 21; https://doi.org/10.3390/crops5020021 - 10 Apr 2025
Abstract
►▼
Show Figures
Botrytis cinerea is a major fungal pathogen causing significant economic losses in grapevines worldwide. To address the environmental concerns associated with overreliance on synthetic fungicides, this study investigated the antifungal efficacy of varying concentrations of pyroligneous acid (PA) (0, 2, and 4%) compared
[...] Read more.
Botrytis cinerea is a major fungal pathogen causing significant economic losses in grapevines worldwide. To address the environmental concerns associated with overreliance on synthetic fungicides, this study investigated the antifungal efficacy of varying concentrations of pyroligneous acid (PA) (0, 2, and 4%) compared to a commercial fungicide (Switch®) against B. cinerea in grapevines (Vitis vinifera ‘Himrod’), as well as its physiological and biochemical responses. Our preliminary in vitro assays using the poisoned food method showed that PA significantly (p < 0.05) inhibited B. cinerea mycelial growth by approximately 0.70-, and 1-fold, respectively, compared to the 0% PA during the three weeks of observation. The results also demonstrated that the 2% PA and 4% PA treatments, as well as the Switch® application, significantly (p < 0.05) reduced average lesion length by 0.19-, 0.52-, and 0.85-fold, respectively, compared to the untreated plants with Botrytis alone. Both the 4% PA and Switch® significantly (p < 0.05) increased the maximum quantum efficiency of photosystems II (Fv/Fm) and potential photosynthetic capacity (Fv/Fo) by approximately 0.02-fold and 0.1-fold, respectively, compared to the untreated plants with Botrytis alone. The 2 and 4% PA treatments also increased total carotenoids and flavonoids. Further molecular studies are recommended to elucidate the mechanisms underlying the observed physiological and biochemical changes.
Full article

Figure 1
Open AccessArticle
Impacts of Climate Change on Late Soybean Cultivation in Subtropical Southern Brazil
by
Tiago Bigolin and Edson Talamini
Crops 2025, 5(2), 20; https://doi.org/10.3390/crops5020020 - 8 Apr 2025
Abstract
►▼
Show Figures
Soybeans are the most widely produced oilseed and the fifth most cultivated crop in the world. However, their growth and yield are significantly influenced by weather conditions. In Southern Brazil’s subtropical climate, farmers employ a double-cropping system, planting corn from late winter to
[...] Read more.
Soybeans are the most widely produced oilseed and the fifth most cultivated crop in the world. However, their growth and yield are significantly influenced by weather conditions. In Southern Brazil’s subtropical climate, farmers employ a double-cropping system, planting corn from late winter to early summer, followed by soybeans, which are sown after the corn harvest—typically in January—and harvested in autumn. This study argues that climate change has benefited late-sown soybeans in Rio Grande do Sul and will continue improving their growing conditions. The aim is to identify climate change’s past and future impacts on late-sowing soybean crop yields in this region. We evaluated the effects of climate on soybean yields using the HadGEM2-CC model (CMIP-5) for two scenarios (RCPs 4.5 and 8.5) and for two time periods (mid-and late-century). Additionally, the CSM-CERES-Maize model within DSSAT was also used to simulate corn yields under these climatic conditions. Our climatic analysis indicates an increase in rainfall and temperature, particularly in minimum temperatures, alongside significant rises in both minimum and maximum temperature extremes, and a reduction in frost days. Furthermore, higher atmospheric CO2 levels are projected to enhance net photosynthesis, likely leading to increases in potential yield (Py) with rising CO2 concentrations. Notably, the largest increases in achievable yield (Ay) are anticipated for early sowing dates under the mid- and late-century scenarios of RCP 4.5. Past climate changes have already improved the growth and yield potential of late-sown soybeans in Southern Brazil, a trend expected to continue as climate change further optimizes temperature and rainfall conditions. In conclusion, the late growing season for soybeans is predicted to be extended.
Full article

Figure 1
Open AccessCommunication
An Update on Root Lesion Nematode Species Infecting Cereal Crops in the Southwest of Western Australia
by
Rhys G. R. Copeland, Sadia Iqbal, Tefera T. Angessa, Sarah J. Collins, Michael G. K. Jones and John Fosu-Nyarko
Crops 2025, 5(2), 19; https://doi.org/10.3390/crops5020019 - 7 Apr 2025
Abstract
►▼
Show Figures
Root-lesion nematodes (Pratylenchus spp.) reduce the yield and quality of cereal crops in Australia. Eleven of the ~90 species characterised are present in Australia, with those determined as economic pests of broadacre agriculture costing an estimated AUD 250 million annually. Two species,
[...] Read more.
Root-lesion nematodes (Pratylenchus spp.) reduce the yield and quality of cereal crops in Australia. Eleven of the ~90 species characterised are present in Australia, with those determined as economic pests of broadacre agriculture costing an estimated AUD 250 million annually. Two species, P. curvicauda and P. quasitereoides, recently re-described, were isolated from fields located in the grainbelt of Western Australia, but little is known about their distribution in the region surveyed in this study. To investigate this and possible co-infestations with other Pratylenchus spp., we surveyed seven commercial wheat, barley, and oat farms near Katanning, Cancanning, Kenmare, Duranillin, Darkan, and a barley seed-bulk nursery near Manjimup, all in the southwest grainbelt of Western Australia. Morphological and molecular characterisation of Pratylenchus spp. extracted from soil and plant roots indicated all fields surveyed were infested. Both P. quasitereoides and P. curvicauda were present as single or mixed populations with P. penetrans and/or P. neglectus, although they were not found in the same field. Analyses of the D2–D3 sequences of the identified nematodes indicated that the species found in Australia were distinct, particularly P. quasitereoides and P. curvicauda. This work suggests P. curvicauda is likely to be present more widely in the WA grainbelt. Expanding molecular diagnostic testing for Pratylenchus species in the region to account for both nematodes is urgently needed so effective management can be implemented.
Full article

Figure 1
Open AccessArticle
Genotypic Variability in Root Morphological Traits in Canola (Brassica napus L.) at the Seedling Stage
by
Yongkang Peng, Andrew Chen, Sheng Chen and Yinglong Chen
Crops 2025, 5(2), 18; https://doi.org/10.3390/crops5020018 - 6 Apr 2025
Abstract
►▼
Show Figures
Canola (Brassica napus L.) is a vital oilseed crop, but its sustainable production is increasingly challenged by climate change. Characterizing genotypic variation in root morphological traits in canola provides a basis for breeding new varieties with root traits that enhance soil nutrient
[...] Read more.
Canola (Brassica napus L.) is a vital oilseed crop, but its sustainable production is increasingly challenged by climate change. Characterizing genotypic variation in root morphological traits in canola provides a basis for breeding new varieties with root traits that enhance soil nutrient uptake, water use efficiency, and adaptation to stress. This study evaluated genotypic variation in 25 root morphological traits and 2 shoot traits across 173 canola genotypes using a semi-hydroponic phenotyping platform under controlled conditions. Large genotypic variation was observed in the majority of root traits. Nineteen traits with a coefficient of variation greater than 0.3 were selected for further analysis. Principal component analysis identified five components with eigenvalues > 1, collectively accounting for 87.9% of the total variability. Hierarchical cluster analysis classified the 173 genotypes into five distinct clusters. The broad genotypic variations in root morphological traits among genotypes offer significant potential for future research aimed at identifying molecular markers and genes associated with key morphological traits. This study provides a strong foundation for the genetic improvement of canola to enhance resource-use efficiency and tolerance to environmental stresses, such as drought and heat stress.
Full article

Figure 1
Open AccessReview
Integrating Organic Fertilizers in Coconut Farming: Best Practices and Application Techniques
by
Anjana J. Atapattu, Tharindu D. Nuwarapaksha, Shashi S. Udumann and Nuwandhya S. Dissanayaka
Crops 2025, 5(2), 17; https://doi.org/10.3390/crops5020017 - 3 Apr 2025
Abstract
►▼
Show Figures
Organic fertilizers are a revolutionary concept in coconut farming as they provide a package for sustainable coconut production. This review examines the multiple advantages of organic fertilization methods and types of organic fertilizers, which include compost, vermicompost, livestock manure, green manure, crop residues,
[...] Read more.
Organic fertilizers are a revolutionary concept in coconut farming as they provide a package for sustainable coconut production. This review examines the multiple advantages of organic fertilization methods and types of organic fertilizers, which include compost, vermicompost, livestock manure, green manure, crop residues, and biofertilizers. The review focuses on the best practices, application methods, time of application, frequency and rate of application of nutrients for coconut palm at various developmental stages. The study provides a detailed and systematic review of the environmental, economic and social impacts of organic fertilization. Benefits include enhanced soil health, biodiversity promotion, carbon sequestration, cost effectiveness, quality improvement of the yield, food security and possibilities of creating rural income. Issues including resource accessibility difficulties, nutrient deficiencies, and intensive labor requirements are explored in detail, as well as future trends that focus on advanced technologies, new research areas, and policy approaches. Thus, the study reviews organic fertilization as a coherent concept that can be applied to coconut production and other goals of environmental protection, food security, and sustainable development of agriculture.
Full article

Figure 1
Open AccessArticle
The Essential Oil Composition in Commercial Samples of Verbena officinalis L. Herb from Different Origins
by
Ain Raal, Getter Dolgošev, Tetiana Ilina, Alla Kovalyova, Martin Lepiku, Andriy Grytsyk and Oleh Koshovyi
Crops 2025, 5(2), 16; https://doi.org/10.3390/crops5020016 - 2 Apr 2025
Abstract
►▼
Show Figures
The key objective of this study was to determine the yield and chemical composition of eight commercial samples and one collected sample of common vervain (Verbena officinalis L.) herb essential oil (EO) originating from seven different countries, and subsequently, to assess its
[...] Read more.
The key objective of this study was to determine the yield and chemical composition of eight commercial samples and one collected sample of common vervain (Verbena officinalis L.) herb essential oil (EO) originating from seven different countries, and subsequently, to assess its potential for treating anxiety and depression. According to GC-MS analysis, 90 compounds were identified, 49 of which were discovered for the first time in V. officinalis EO. The plants with the highest oil content are from Greece (4.7 mL/kg) and South Carolina, USA (5.2 mL/kg). The chemical markers for the studied chemotypes of EO of V. officinalis are the terpenoids o-cymene, p-cymene, L-carvone, thymol, carvacrol, α-curcumin, hexahydrofarnesyl acetone, phytol, (E)-β-ionone, and phenylpropene anethole. The chemotype from the UK demonstrated the greatest affinity to the continuum under study; it has the highest levels of similarity—85.2% with the chemotype from Greece, 69.4% with the chemotype from the USA, 68.2% with the chemotype from Estonia (2), 58.7% with the chemotype from Germany, and 58.6% with the chemotype from Hungary. The chemotypes identified have the potential for use in the treatment of anxiety and depression.
Full article

Figure 1
Open AccessArticle
Physio-Biochemical Responses and Cadmium Partitioning Associated with Stress Tolerance in Hulless Barley Genotypes
by
Said Bouhraoua, Mohamed Ferioun, Abdelali Boussakouran, Douae Belahcen, Taoufiq Benali, Naoufal El Hachlafi, Mohamed Akhazzane, Abdelmajid Khabbach, Khalil Hammani and Said Louahlia
Crops 2025, 5(2), 15; https://doi.org/10.3390/crops5020015 - 1 Apr 2025
Cited by 1
Abstract
►▼
Show Figures
Among heavy metals, cadmium (Cd) is shown to have adverse consequences for plants. Due to its harmful nature and ability to move through the soil–plant system, it is a very worrying element for soil experts and plant physiologists. In this work, we designed
[...] Read more.
Among heavy metals, cadmium (Cd) is shown to have adverse consequences for plants. Due to its harmful nature and ability to move through the soil–plant system, it is a very worrying element for soil experts and plant physiologists. In this work, we designed a pot experiment to study the influence of three soil concentrations of cadmium (0, 15, and 30 mg/kg) to explore its physiological impacts, and its portioning in the whole plant of three hulless barley varieties. Our findings demonstrated marked Cd accumulation in roots, leaves, and stems under severe Cd stress (30 mg/kg). Cd stress was also shown to reduce photosynthetic activity, chlorophyll fluorescence (Fv/Fm), and transpiration rates (E). The application of Cd in the soil increased the activities of catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (POD) enzymes, as well as the levels of oxidative stress markers such as malondialdehyde (MDA), hydrogen peroxide (H2O2), and proline. These results reflect the negative effects of cadmium on morpho-physiological traits in barley genotypes. However, the principal component analysis indicated a significant correlation between oxidative stress indicators and enzymatic activities, along with different levels of Cd tolerance between Tombari, Assiya, and Giza 130 genotypes. When exposed to Cd, these varieties shifted a significant amount of energy from growth to produce antioxidant compounds and osmolytes. Despite this, these defenses did not effectively shield the plant from the detrimental effects of oxidative stress induced by Cd accumulation at vegetative stages. Consequently, we highly recommend testing these varieties under Cd-contaminated soil to investigate the rate of cadmium accumulation in the seeds, the harvested part used in human nutrition.
Full article

Figure 1
Open AccessArticle
The Impact of Biostimulants on the Yield and Quality Attributes of Essential Oil from Different Basil Varieties
by
Kyriakos D. Giannoulis, Dimitrios Bartzialis, Kyriaki Asimaki, Argiro-Zoi Breza, Paraskevi-Konstantina Malamou, Elias Zournatzis, Eleni Wogiatzi-Kamvoukou and Nicholaos G. Danalatos
Crops 2025, 5(2), 14; https://doi.org/10.3390/crops5020014 - 26 Mar 2025
Abstract
►▼
Show Figures
Ocimum basilicum is an herbaceous plant, rich in essential oils. This research represents a groundbreaking exploration of the cultivation of Ocimum basilicum in Greece, a Mediterranean nation. It emphasizes the impact of biostimulants on various basil varieties, assessing both quantitative aspects and qualitative features.
[...] Read more.
Ocimum basilicum is an herbaceous plant, rich in essential oils. This research represents a groundbreaking exploration of the cultivation of Ocimum basilicum in Greece, a Mediterranean nation. It emphasizes the impact of biostimulants on various basil varieties, assessing both quantitative aspects and qualitative features. This study was conducted through a field trial at the University of Thessaly’s experimental farm located in the Velestino region. This study examined different testing varieties (V1: Lemon, V2: Siam Queen, V3: Salat, V4: Bascuro, and V5: Genovese), under different biostimulant applications (B1: control, B2: seaweed extracts, amino acids, vitamins, trace elements, polyphenols, antioxidants and mannitol; B3: plant amino acids, glutamic and aspartic acid, vitamins and other nutrients, B4: B1 and B2 combination in a 1:1 ratio). The findings highlight the significant differences in both fresh and dry yields across various basil cultivars, with Lemon basil demonstrating the most substantial yields. Specifically, the Lemon variety attained the highest dry yield, surpassing the lowest-performing cultivar by more than two times. Additionally, this research evaluated the production of essential oil per hectare, emphasizing the relationship between essential oil content and the crop’s dry yield. The results revealed considerable variability among the examined varieties, with the Lemon variety yielding nearly 65 kg ha−1, the highest among them. Biostimulant treatments (B2) led to the greatest total yields of essential oils, while the control treatments yielded the least. The chemical composition of essential oils derived from O. basilicum shows significant variability, often associated with the plants’ nutritional conditions. The application of biostimulants has led to considerable alterations in the volatile profile of sweet basil, supporting this study’s conclusions.
Full article

Figure 1
Open AccessArticle
Effects of Biochar on Growth, Response to Water Stress, and Post-Stress Recovery in Underutilized Vegetable Hibiscus sabdariffa from Malawi
by
Dickson Mgangathweni Mazibuko, Sarvesh Maskey, Kiseki Kurashina, Hiromu Okazawa, Hiroyuki Oshima, Taku Kato and Hidehiko Kikuno
Crops 2025, 5(2), 13; https://doi.org/10.3390/crops5020013 - 21 Mar 2025
Abstract
►▼
Show Figures
Globally, Hibiscus sabdariffa L. (Malvaceae), commonly known as roselle or hibiscus, is a multipurpose vegetable crop. In Malawi, where it is referred to as ‘Chidede’ (Chichewa), it is recognized as an underutilized traditional plant with significant potential. Traditional vegetable production in Malawi is
[...] Read more.
Globally, Hibiscus sabdariffa L. (Malvaceae), commonly known as roselle or hibiscus, is a multipurpose vegetable crop. In Malawi, where it is referred to as ‘Chidede’ (Chichewa), it is recognized as an underutilized traditional plant with significant potential. Traditional vegetable production in Malawi is being promoted to enhance nutritional food security and climate change mitigation. Recently, biochar has become increasingly used to improve agricultural productivity through climate-smart technologies. To date, the influence of rice husk biochar (RHB) on H. sabdariffa remains underexplored. This study aims to evaluate the effects of RHB on the vegetative growth, response to water stress, and post-stress recovery of H. sabdariffa using a greenhouse pot experiment. Our findings indicate that biochar-amended soil enhanced plant height, stem thickness, and total leaf area by 16.5%, 12.0%, and 12.9%, respectively. Water stress significantly reduced all assessed growth parameters (p < 0.05) except total leaf area and average leaf area per plant. Under water stress conditions, biochar-treated plants were significantly taller (p < 0.05) and had a higher specific leaf area (p < 0.05), demonstrating a positive effect. A post-stress recovery analysis revealed that H. sabdariffa fully recovered in height and biomass, while partial recovery was observed for root collar diameter and compensatory recovery for total leaf area and average leaf area. Biochar-treated plants exhibited superior post-stress recovery compared to those grown in unamended soil. Overall, plants grown with biochar were taller and had a larger root collar diameter, higher stem and leaf fresh biomass, and greater total leaf area. These findings underscore biochar’s potential as a sustainable soil amendment for enhancing growth and resilience in underutilized crops. Further studies should explore field experiments to access environmental heterogeneity and examine the diverse factors influencing biochar efficiency.
Full article

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Agronomy, Agriculture, Crops, Seeds
Advances in Industrial Crops Physioecology and Sustainable Cultivation
Topic Editors: Wei Hu, Zhiguo Zhou, Wenqing ZhaoDeadline: 30 June 2025
Topic in
Agriculture, Agronomy, Crops, Horticulturae, Plants
Sustainable Crop Production from Problematic Soils to Ensure Food Security
Topic Editors: Zhongbing Chen, Safdar Bashir, Saqib BashirDeadline: 12 July 2025
Topic in
Agriculture, Agronomy, Crops, Land, Plants, Sustainability
Irrigation and Fertilization Management for Sustainable Agricultural Production
Topic Editors: Shihong Yang, Zewei Jiang, Ivan Francisco Garcia TejeroDeadline: 15 October 2025
Topic in
Agriculture, Agronomy, Crops, Microorganisms, Plants, IJPB, Soil Systems
Microbe-Induced Abiotic Stress Alleviation in Plants
Topic Editors: Ying Ma, Christopher RensingDeadline: 31 October 2025

Conferences
Special Issues
Special Issue in
Crops
Molecular Mechanisms and Integrated Control of Pathogen Crops
Guest Editors: Violetta Katarzyna Macioszek, Andrzej K. KononowiczDeadline: 21 June 2025