Journal Description
Crops
Crops
is an international, peer-reviewed, open access journal on the science and technology of crops published bimonthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), Scopus, and other databases.
- Journal Rank: JCR - Q2 (Agronomy) / CiteScore - Q2 (Agronomy and Crop Science)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 23.5 days after submission; acceptance to publication is undertaken in 6.8 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
- Crops is a companion journal of Agriculture and Agronomy.
Impact Factor:
1.9 (2024);
5-Year Impact Factor:
1.9 (2024)
Latest Articles
Biotechnological Improvement of Nutri-Cereal Finger Millet: Current Status and Future Prospects
Crops 2025, 5(6), 87; https://doi.org/10.3390/crops5060087 - 25 Nov 2025
Abstract
Climate change and widespread micronutrient deficiencies threaten food security in the semi-arid tropics. Finger millet (Eleusine coracana (L.) Gaertn.) is a climate-resilient “nutri-cereal” rich in calcium, zinc, iron and dietary fiber. Finger millet is a promising crop for addressing climate stress and
[...] Read more.
Climate change and widespread micronutrient deficiencies threaten food security in the semi-arid tropics. Finger millet (Eleusine coracana (L.) Gaertn.) is a climate-resilient “nutri-cereal” rich in calcium, zinc, iron and dietary fiber. Finger millet is a promising crop for addressing climate stress and nutrient deficiencies. However, it remains under-explored and relatively neglected in breeding and genetic improvement programs compared to major cereals. This review synthesizes recent biotechnological advances and outlines future directions for finger millet improvement. Foundational resources now include a chromosome-scale reference genome, expanding transcriptome, diverse global germplasm panels, and growing reports of genome-wide association studies (GWAS) and quantitative trait loci (QTL) for key traits including yield, stress tolerance, blast resistance, and mineral contents. Tissue culture studies reported both somatic embryogenesis and direct regeneration. Stable genetic transformation has been achieved in finger millet via Agrobacterium-mediated methods, particularly using shoot apical meristem (SAM) and by biolistics (gene gun) methods. Genome editing has not yet been reported, but we propose a practical roadmap leveraging reported tissue culture genetic transformation protocols for applying the CRISPR/Cas system for trait improvements. Using new biotechnological methods, along with pangenome, speed breeding, and helpful microbiomes, will make finger millet a strong and reliable food source for the future.
Full article
(This article belongs to the Topic Applications of Biotechnology in Food and Agriculture)
►
Show Figures
Open AccessArticle
Effects of Row Spacing and Tropical Grass Intercropping on Biomass Sorghum Yield and Silage Quality
by
Giuliano Reis Pereira Muglia, Marco Antonio Previdelli Orrico Junior, Isabele Paola de Oliveira Amaral, Marciana Retore, Gessí Ceccon, Ana Carolina Amorim Orrico, Pedro Henrique Felipe da Silva and Yara América da Silva
Crops 2025, 5(6), 86; https://doi.org/10.3390/crops5060086 - 25 Nov 2025
Abstract
►▼
Show Figures
This study aimed to determine the optimal combination of forage grass and row spacing to maximize the balance between sorghum silage yield and quality in a simultaneous sowing system for integrated crop-livestock production. The experiment evaluated three cropping systems: biomass sorghum (Sorghum
[...] Read more.
This study aimed to determine the optimal combination of forage grass and row spacing to maximize the balance between sorghum silage yield and quality in a simultaneous sowing system for integrated crop-livestock production. The experiment evaluated three cropping systems: biomass sorghum (Sorghum bicolor (L.) Moench) in monoculture, and intercropped with Urochloa brizantha cv. Marandu and Megathyrsus maximus cv. BRS Zuri. These systems were tested under two row spacings: 45 cm and 90 cm. The field trial was conducted in Vicentina, Mato Grosso do Sul State, Brazil, using a randomized complete block design in a 3 × 2 factorial arrangement with four replications. Dry matter production, fermentative parameters, and chemical composition were measured. The 45 cm spacing provided higher productivity (23.1 t/ha of TDMY), while the intercropping with Zuri grass showed lower levels of NDF (73.46%) and ADF (49.61%), indicating better nutritional quality. The silages exhibited ideal pH (4.0–4.1) and low levels of butyric acid (<0.33%), with higher total digestible nutrients (TDN) (54.33%) at the 90 cm spacing. The Sorghum + Zuri (ZS) intercropping at the narrower spacing (45 cm) is viable for quality silage production, showing a better balance between overall chemical quality and biomass production.
Full article

Figure 1
Open AccessArticle
RGB-Derived Indices Accurately Detect Genotypic and Agronomic Differences in Canopy Variation in Durum Wheat
by
Fabio Fania, Ivano Pecorella, Elio Romano, Patrizio Spadanuda, Nicola Pecchioni, Salvatore Esposito and Pasquale De Vita
Crops 2025, 5(6), 85; https://doi.org/10.3390/crops5060085 - 19 Nov 2025
Abstract
►▼
Show Figures
Durum wheat (Triticum turgidum ssp. durum) represents a strategic crop for the Mediterranean basin and global semiarid regions, being the raw material for pasta and a key component of sustainable cereal production. Improving early vigor and canopy development is essential to enhance
[...] Read more.
Durum wheat (Triticum turgidum ssp. durum) represents a strategic crop for the Mediterranean basin and global semiarid regions, being the raw material for pasta and a key component of sustainable cereal production. Improving early vigor and canopy development is essential to enhance resource-use efficiency and yield stability under variable agronomic conditions. For these reasons, we report the application of a series of RGB-derived vegetation indices (VIs) from Unmanned Aerial Vehicle (UAVs) to evaluate their effectiveness in capturing canopy variation in the early growth stages in a large collection of durum wheat varieties and on their validation under different agronomic managements. Digital RGB images from seedling emergence to grain filling were taken in two field experiments, and RGB-based indices were calculated over four consecutive growing seasons. In the first experiment, 521 durum wheat varieties were evaluated, showing highly significant genotypic differences for all VIs (p < 0.001) and explaining up to 72% of the phenotypic variance at the end of tillering. In addition, TGI explained more variation than CSI when recorded at the end of the tillering stage. In the second experiment, two contrasting genotypes managed under two sowing rates and six nitrogen (N) treatments displayed a strong discriminating capacity of NGRDI and TGI for genotype and sowing density (η2 = 0.50). These results highlight the potential use of RGB-derived VIs for high-throughput phenotypic selection of soil coverage ability in durum wheat, even under different agronomic conditions.
Full article

Figure 1
Open AccessReview
Peach Postharvest Fungal Diseases: Sustainable Management and an Integrative Review of Emerging Strategies
by
Sahar El Maazouzi, Adil Asfers, Antonio Cano, Josefa Hernández-Ruiz, Ahlem Hamdache, Abdelhadi Ait Houssa, Mohammed Ezziyyani and Marino B. Arnao
Crops 2025, 5(6), 84; https://doi.org/10.3390/crops5060084 - 17 Nov 2025
Abstract
Postharvest fungal diseases represent a major constraint to the storage, transport, and marketability of peach (Prunus persica) fruits. Pathogens such as Monilinia spp. (Brown rot), Penicillium expansum (Blue rot), Rhizopus stolonifera (Soft rot), Botrytis cinerea (Gray rot), and Geotrichum candidum (Acid
[...] Read more.
Postharvest fungal diseases represent a major constraint to the storage, transport, and marketability of peach (Prunus persica) fruits. Pathogens such as Monilinia spp. (Brown rot), Penicillium expansum (Blue rot), Rhizopus stolonifera (Soft rot), Botrytis cinerea (Gray rot), and Geotrichum candidum (Acid rot) cause significant economic losses globally. Traditional control methods primarily rely on chemical fungicides, which are increasingly challenged by issues of resistance development, consumer health concerns, and regulatory restrictions. This review critically synthesizes the biology, infection mechanisms, and optimal environmental conditions of key fungal pathogens affecting postharvest peaches. It further evaluates the current landscape of chemical, physical, and biological control methods, emphasizing novel approaches including essential oils, microbial antagonists, induced resistance, and eco-friendly sanitizers. Comparative efficacy, sustainability, and practical implementation of these strategies are discussed. Integrated management approaches that combine multiple interventions under low-residue or residue-free systems are highlighted as the most promising direction. This review concludes that the future of peach postharvest protection lies in tailor-made, multi-faceted integrated programs that are both effective and environmentally sound.
Full article
(This article belongs to the Special Issue Molecular Mechanisms and Integrated Control of Pathogen Crops)
►▼
Show Figures

Figure 1
Open AccessArticle
Insecticidal and Insectistatic Activity Assessment of Lantana camara (L.) (Verbenaceae) Essential Oil and endo-Borneol Against Tenebrio molitor (L.) (Coleoptera: Tenebrionidae)
by
Vanessa Fernanda Pérez-Castro, Amanda Kim Rico-Chávez, Marco Martín González-Chávez, Juan Campos-Guillén, Carlos Eduardo Zavala-Gómez, Sergio de Jesús Romero-Gómez, Aldo Amaro-Reyes, Rodolfo Figueroa-Brito, Karla Elizabeth Mariscal-Ureta, Armando Valdez-Ramírez, Antonio Flores-Macías, Manolo Rodríguez-Cervantes and Miguel Angel Ramos-López
Crops 2025, 5(6), 83; https://doi.org/10.3390/crops5060083 - 13 Nov 2025
Abstract
►▼
Show Figures
Tenebrio molitor is a common stored grains pest. The conventional way for its management involves the use of synthetic fumigants. Despite their effectiveness, these can cause environmental damage. The use of essential oils has emerged as an alternative for its management. Therefore, the
[...] Read more.
Tenebrio molitor is a common stored grains pest. The conventional way for its management involves the use of synthetic fumigants. Despite their effectiveness, these can cause environmental damage. The use of essential oils has emerged as an alternative for its management. Therefore, the aim of this study was to assess Lantana camara essential oil (EO) and endo-borneol biological activities against T. molitor. Insecticidal activity and weight gain were evaluated through the impregnated paper method against larvae and adults, while repellency was conducted with a Y-tube olfactometer; L. camara EO showed higher mortality for T. molitor adults (LC50 = 7.2 μL EO L−1 air) than for larvae (LC50 = 13.7 μL EO L−1 air) after 30 d. Furthermore, L. camara EO was found to be repellent for T. molitor adults (RC50 = 0.08 μL EO cm−2). Regarding the EO composition, endo-borneol was identified by GC-MS as a major compound with 14.24% abundance. Larvae exhibited higher susceptibility (LC50 = 7.8 μL L−1 air) to endo-borneol than adults (LC50 = 46 μL L−1 air) after 72 h. Notably, endo-borneol demonstrated significantly higher repellent activity (RC50 = 0.03 μL cm−2) than L. camara EO (RC50 = 0.08 μL EO cm−2). These findings suggest that endo-borneol has potential as a natural source alternative for T. molitor management.
Full article

Figure 1
Open AccessArticle
Optimization of Yield and Fiber Yield of Cotton Cultivars Under Water Regimes in the Tropical Dry Season
by
Alisson Silva Costa Custódio, Tonny José Araújo Da Silva, Sérgio Plens Andrade, Edna Maria Bonfim-Silva, Patrícia Ferreira Da Silva, Ivis Andrei Campos e Silva, Luana Aparecida Menegaz Meneghetti, Niclene Ponce Rodrigues De Oliveira, Thiago Franco Duarte, Alessana Franciele Schlichting, Salomão Lima Guimarães, Rosana Andreia Da Silva Rocha and Jholian Maicon Ribeiro Santos
Crops 2025, 5(6), 82; https://doi.org/10.3390/crops5060082 - 10 Nov 2025
Abstract
►▼
Show Figures
This study pioneers the integration of the water sensitivity coefficient (Ky) with cotton yield performance under varying water regimes in the Brazilian Cerrado. The objective was to evaluate the productive performance and fiber yield of cotton cultivars under different water regimes during the
[...] Read more.
This study pioneers the integration of the water sensitivity coefficient (Ky) with cotton yield performance under varying water regimes in the Brazilian Cerrado. The objective was to evaluate the productive performance and fiber yield of cotton cultivars under different water regimes during the tropical dry season. The experiment followed a randomized block design in a 5 × 4 factorial scheme with four replications, totaling 80 plots. Treatments consisted of five irrigation levels based on crop evapotranspiration (25%, 50%, 75%, 100% and 125% of ETc) and four cultivars (TMG44B2RF, FM944GL, IMA5801B2RF and IMA709B2RF). Increasing water supply enhanced cotton lint yield, reaching 3209.4 kg ha−1 at the highest regime. Water regimes between 25 and 125% of the ETc significantly improved yield components, leading to an increase of up to 221% in lint yield. Fiber quality remained stable across irrigation levels and was mainly genotype-dependent. Among the cultivars, FM944GL showed high productivity and fiber yield, while IMA5801B2RF demonstrated greater water resilience (Ky = 0.73), making it suitable for water-limited environments. The findings reflect the specific conditions of the evaluated growing season. Thus, long-term studies under diverse environmental conditions are recommended to confirm these trends and enhance understanding of cotton responses to water regimes in the Cerrado.
Full article

Graphical abstract
Open AccessArticle
Transcriptional Regulation of Salt Stress Tolerance in Triticum aestivum (Wheat): NAC Transcription Factors and Their Target Genes
by
Xin Liu, Selvakumar Sukumaran, Tanvir Abedin, Md. Abu Sayed, Sameer Hassan and Henrik Aronsson
Crops 2025, 5(6), 81; https://doi.org/10.3390/crops5060081 - 6 Nov 2025
Abstract
►▼
Show Figures
Salinity is one of the key threats to food security and sustainability. To make saline soils productive again, we need to develop salt-tolerant crop varieties. Developing salt-tolerant wheat requires a detailed understanding of the molecular mechanisms underlying salt stress responses. In this study,
[...] Read more.
Salinity is one of the key threats to food security and sustainability. To make saline soils productive again, we need to develop salt-tolerant crop varieties. Developing salt-tolerant wheat requires a detailed understanding of the molecular mechanisms underlying salt stress responses. In this study, we analyzed the Chinese Spring genome and identified 559 putative NAC transcription factors (TFs), which are recognized as key regulators of both abiotic and biotic stress. Protein family analysis revealed four distinct domain architectures, with more than 95% of the proteins containing a single NAC domain, consistent with their conserved regulatory role. Through in silico analyses, four salt stress-responsive TFs, NAC_1D, NAC_2D, NAC_4A, and NAC_5A, were highlighted, sharing nine of 13 DNA-binding residues. Promoter analysis of their putative target genes identified seven candidates, which, together with the NAC TFs, were subjected to RT-qPCR expression analysis in BARI Gom-25 plants exposed to 100 mM NaCl. The expression data revealed contrasting regulatory patterns between NAC TFs and their target genes. For example, Hsp70 was strongly upregulated in both shoots and roots, despite opposite patterns of NAC_1D expression between tissues. Similarly, bZIP expression mirrored the downregulation of NAC_2D, whereas HKT8 expression remained stable under salt stress. NAC_4A showed a root-specific pattern suggestive of positive regulation of a Non-specific serine/threonine protein kinase, while NAC_5A upregulation corresponded with downregulation of Plant cadmium resistance 2. Collectively, these results provide functional insights into four NAC TFs and identify potential molecular targets for improving wheat salt tolerance. By targeting key tolerance genes at the DNA level offers greater precision and can significantly reduce breeding time.
Full article

Figure 1
Open AccessArticle
The Sprayed Application of Recombinantly Expressed CpRap2.4A Confers Protective Activity Against Heat Stress in Nicotiana tabacum
by
Diobel González-Stewart, Francisco Guillén-Chable, Miguel Ángel Herrera-Alamillo, Roberth Armando Us Santamaría, José Luis Andrade, Anne C. Gschaedler Mathis, Enrique Castaño, Luis Joel Figueroa-Yáñez and Luis Carlos Rodríguez-Zapata
Crops 2025, 5(6), 80; https://doi.org/10.3390/crops5060080 - 6 Nov 2025
Abstract
Drastic changes in temperature, salinity of soils and drought are some of the most studied abiotic stressors in important crops. Plants have developed various biochemical mechanisms to counteract these conditions. Transcription factors play a significant role in regulating stress responses. Previously, in our
[...] Read more.
Drastic changes in temperature, salinity of soils and drought are some of the most studied abiotic stressors in important crops. Plants have developed various biochemical mechanisms to counteract these conditions. Transcription factors play a significant role in regulating stress responses. Previously, in our lab, it was identified that the CpRap2.4a protein, which belongs to the AP2/ERF superfamily, is related to the response to abiotic stress from extreme temperature, and confers thermal tolerance to Carica papaya CV. This study presents a randomized experimental strategy for the analysis of the physiological and biochemical responses of Nicotiana tabacum plants subjected to heat stress, and how the foliar application of the recombinantly expressed CpRap2.4a can modulate beneficial responses. Plants subjected to heat stress present a healthier physiology, as clearly shown by biochemical parameters. Moreover, physiological parameters also suggest an improvement of heat tolerance compared with the control group. Scanning electron microscopy suggests that stomatal aperture and conductance are the key mechanisms for how recombinantly expressed CpRap2.4a can act as a regulatory player to heat stress.
Full article
(This article belongs to the Topic Applications of Biotechnology in Food and Agriculture)
►▼
Show Figures

Figure 1
Open AccessArticle
Balancing Feed Demand and Energy Supply: Technical Potential of Permanent Grassland Biomass in Poland
by
Magdalena Borzęcka
Crops 2025, 5(6), 79; https://doi.org/10.3390/crops5060079 - 5 Nov 2025
Abstract
►▼
Show Figures
This study presents a comprehensive methodology for assessing the technical potential of hay biomass from permanent grasslands (TUZ) in Poland, aimed at evaluating its energy use possibilities. This research was based on detailed data from the Agency for Restructuring and Modernization of Agriculture
[...] Read more.
This study presents a comprehensive methodology for assessing the technical potential of hay biomass from permanent grasslands (TUZ) in Poland, aimed at evaluating its energy use possibilities. This research was based on detailed data from the Agency for Restructuring and Modernization of Agriculture (ARiMR) and included both environmentally subsidized and non-subsidized parcels. Using statistical hay yield values adjusted for drought impacts through the Climatic Water Balance (KBW), a realistic estimation of technical hay potential was obtained. Results show a total theoretical hay potential of 15 million tonnes in 2024. The results indicate that the total theoretical hay potential in the country in 2024 amounted to 15 million tons, but its technical potential is reduced to almost zero. The methane productivity of this biomass could generate 3.5 Mt CH4 (at STP) if most of it could not be used for animal feeding purposes. The findings highlight the underutilized energetic potential of grasslands and the critical role of land use policy in unlocking sustainable bioenergy resources. Research into the potential of biomass is important in view of supporting energy independence, sustainable use of agricultural resources and agroecological synergy by combining production, energy and environmental objectives. It should be remembered that biomass potential studies are subject to limitations resulting from the uncertainty of statistical data, variability of climatic and soil conditions and model assumptions, which may affect the accuracy and comparability of the obtained results.
Full article

Graphical abstract
Open AccessArticle
Rethinking Variable Rate Seeding: Why Can Increasing Soybean Population Decrease Yield in Nutrient-Limited Soils?
by
Fábio Henrique Rojo Baio, Job Teixeira de Oliveira, Fernando França da Cunha, Paulo Eduardo Teodoro, Larissa Pereira Ribeiro Teodoro, Cid Naudi Silva Campos, Ricardo Gava, José Carlos Nogueira Alves Junior, Marcos Eduardo Miranda Alves and Fernanda Ganassim
Crops 2025, 5(6), 78; https://doi.org/10.3390/crops5060078 - 4 Nov 2025
Abstract
►▼
Show Figures
Variable Rate Seeding (VRS) in soybean (Glycine max [L.] Merr.) cultivation is a critical strategy for managing soil spatial variability, which often constrains yield. However, conventional practices that increase plant density in low-yield zones to compensate for poor fertility may unintentionally intensify
[...] Read more.
Variable Rate Seeding (VRS) in soybean (Glycine max [L.] Merr.) cultivation is a critical strategy for managing soil spatial variability, which often constrains yield. However, conventional practices that increase plant density in low-yield zones to compensate for poor fertility may unintentionally intensify intraspecific competition for already limited resources. This study addresses the need for a mechanistically sound basis for VRS prescriptions that moves beyond this counterproductive assumption. Field experiments were conducted in the Cerrado region of Brazil to evaluate different soybean population densities within management zones (MZs) delineated according to Liebig’s Law of the Minimum. This approach identified soil potassium (K) as the most growth-limiting nutrient and was used to define MZs representing distinct yield potentials. Three seeding densities were tested, Low (200,000 seeds ha−1), Medium (240,000 seeds ha−1), and High (280,000 seeds ha−1), with particular emphasis on comparing the medium and high populations in potassium-limited zones. Results revealed that, contrary to the conventional strategy, increasing the soybean population from medium to high in low-fertility (low-K) MZs significantly decreased grain yield. This yield reduction was attributed to intensified intraspecific competition, which promoted excessive vegetative growth (increased plant height) at the expense of root development and photosynthetic efficiency. Notably, maintaining a moderate population (240,000 seeds ha−1) in these low-fertility zones produced yields statistically equivalent to those in higher-fertility areas. These findings demonstrate that applying Liebig’s Law of the Minimum to identify the most limiting factor provides a robust, mechanistically sound foundation for developing VRS prescriptions. For nutrient-limited zones, the optimal and most resilient strategy is not to increase sowing density but to maintain a moderate population that balances yield potential with resource availability. Future research should investigate the phenotypic plasticity of different cultivars under this VRS strategy and assess its economic viability at a commercial scale.
Full article

Figure 1
Open AccessArticle
Differential Photosynthetic Response of Tomato Plants—Ailsa Craig and Carotenoid Mutant tangerine—To Low Light Intensity and Low Temperature Treatment
by
Antoaneta V. Popova, Martin Stefanov, Tsonko Tsonev, Violeta Velikova and Maya Velitchkova
Crops 2025, 5(6), 77; https://doi.org/10.3390/crops5060077 - 31 Oct 2025
Abstract
The response of tomato plants, Ailsa Craig and the carotenoid mutant tangerine, to five days of treatment by low light intensity at normal and low temperature with respect to the photosynthetic performance as well as their capacity to recover after three days
[...] Read more.
The response of tomato plants, Ailsa Craig and the carotenoid mutant tangerine, to five days of treatment by low light intensity at normal and low temperature with respect to the photosynthetic performance as well as their capacity to recover after three days under normal conditions was evaluated. Tangerine plants are characterized by defective prolycopene isomerase (CRTISO) and accumulate tetra-cis lycopene instead of all-trans lycopene. The gas exchange parameters were evaluated on intact plants and the pigment content in leaves was estimated. The photosynthetic competence of photosystem II (PSII) and photosystem I (PSI) and the effectiveness of the energy dissipation were assessed by pulse-amplitude-modulated (PAM) fluorometry. The abundance of reaction center proteins of PSII and PSI was estimated by immunoblotting. The application of low light alone or low light and low temperature reduced the chlorophyll content in both types of plants, which was more strongly expressed in Ailsa Craig. The net photosynthetic rate and photochemical activities of PSII and PSI were negatively affected by low light and much more strongly decreased when low light was applied at low temperature. The low-light-induced increase in excitation pressure on PSII and the effectiveness of non-photochemical quenching were not temperature-dependent. The negative effect of the combined treatment in tangerine was more strongly expressed in comparison with Ailsa Craig with respect to the abundance of reaction center proteins of both photosystems. Most probably, the differential photosynthetic response of the carotenoid mutant tangerine and Ailsa Craig to the combined treatment by low light and low temperature is related to the accumulation of tetra-cis-lycopene instead of all-trans-lycopene.
Full article
(This article belongs to the Topic Plant Physiological and Ecological Responses to Environmental Stress)
►▼
Show Figures

Figure 1
Open AccessArticle
Screening of Winter Wheat Accessions from International Variety Trials for Drought Resistance in Southeastern Kazakhstan
by
Karlyga Jiyenbayeva, Minura Yessimbekova, Sholpan Bastaubayeva, Alexey Morgounov and Kadyrzhan Mukin
Crops 2025, 5(6), 76; https://doi.org/10.3390/crops5060076 - 24 Oct 2025
Abstract
►▼
Show Figures
Wheat production, globally and in Kazakhstan, is significantly limited by heat stress and drought. The evaluation of agronomic traits related to yield under stress conditions is crucial for identifying yield-limiting factors and selecting drought-tolerant germplasm. The aim of this study was to evaluate
[...] Read more.
Wheat production, globally and in Kazakhstan, is significantly limited by heat stress and drought. The evaluation of agronomic traits related to yield under stress conditions is crucial for identifying yield-limiting factors and selecting drought-tolerant germplasm. The aim of this study was to evaluate the variability of the main agronomic and physiological characteristics of 45 winter wheat collection accessions obtained during CIMMYT international variety trials (23IWWYT-IRR and 22IWWYT-SA) in the arid conditions of Southeastern Kazakhstan (foothills of the Zailiyskiy Alatau, 48° N, 77° E, 740 m above sea level) and to identify drought-resistant germplasm. As a result of three years of research (2019–2022) under drought conditions during the 2020–2021 growing season with a high negative environment index (Ij = −3.07), three adapted genotypes were identified: BONITO-37/MV10-2000, LYMARIVNA, and OK12D22004-016. They had yields of 5.3, 5.6, and 5.2 t/ha, respectively, significantly exceeding the yield of the local commercial variety STEKLOVIDNAYA 24 by 15.4–22.8%. The correlation coefficient between productivity variables was significant and varied from 0.55 ** to 0.82 ***. The percentage decrease in yield under drought conditions was 72.3%, while the drought resistance index was 0.27.
Full article

Figure 1
Open AccessReview
AI and Robotics in Agriculture: A Systematic and Quantitative Review of Research Trends (2015–2025)
by
Abderrachid Hamrani, Amin Allouhi, Fatma Zohra Bouarab and Krish Jayachandran
Crops 2025, 5(5), 75; https://doi.org/10.3390/crops5050075 - 21 Oct 2025
Abstract
►▼
Show Figures
The swift integration of AI, robotics, and advanced sensing technologies has revolutionized agriculture into a data-centric, autonomous, and sustainable sector. This systematic study examines the interplay between artificial intelligence and agricultural robotics in intelligent farming systems. Artificial intelligence, machine learning, computer vision, swarm
[...] Read more.
The swift integration of AI, robotics, and advanced sensing technologies has revolutionized agriculture into a data-centric, autonomous, and sustainable sector. This systematic study examines the interplay between artificial intelligence and agricultural robotics in intelligent farming systems. Artificial intelligence, machine learning, computer vision, swarm robotics, and generative AI are analyzed for crop monitoring, precision irrigation, autonomous harvesting, and post-harvest processing. Employing PRISMA to categorize more than 10,000 high-impact publications from Scopus, WoS, and IEEE. Drones and vision-based models predominate the industry, while IoT integration, digital twins, and generative AI are on the rise. Insufficient field validation rates, inadequate crop and regional representation, and the implementation of explainable AI continue to pose significant challenges. Inadequate model generalization, energy limitations, and infrastructural restrictions impede scalability. We identify solutions in federated learning, swarm robotics, and climate-smart agricultural artificial intelligence. This paper presents a framework for inclusive, resilient, and feasible AI-robotic agricultural systems.
Full article

Figure 1
Open AccessArticle
Western Corn Rootworm (Diabrotica virgifera virgifera LeConte) and Southern Corn Rootworm (Diabrotica undecimpunctata howardi Barber) Identified as Vectors of Late-Season Decline Disease-Causing Pantoea ananatis
by
Ken Obasa and José Santiago-González
Crops 2025, 5(5), 74; https://doi.org/10.3390/crops5050074 - 19 Oct 2025
Abstract
Pantoea ananatis was recently described as the causative agent of late-season decline, a new bacterial disease first observed affecting field corn plants, in the Texas Panhandle. The rapid spread of the disease throughout the region and the patchy distribution of symptomatic plants in
[...] Read more.
Pantoea ananatis was recently described as the causative agent of late-season decline, a new bacterial disease first observed affecting field corn plants, in the Texas Panhandle. The rapid spread of the disease throughout the region and the patchy distribution of symptomatic plants in affected fields, as well as routine observations of edge effects, in which plants with severe symptoms are observed on the edges of affected fields, led us to hypothesize that vectors might be involved in the dissemination of the disease pathogen. In this study, we investigated the western corn rootworm (Diabrotica virgifera virgifera LeConte) and southern corn rootworm (Diabrotica undecimpunctata howardi Barber) for any naturally occurring association with P. ananatis and potential to acquire and transmit the bacterial pathogen. Additionally, we investigated the transgenic corn encoding insecticidal Bacillus thuringiensis proteins (Bt) pyramided with RNAi interference anti-rootworm technology for its potential to protect against any larval role in the transmission of the pathogen through their feeding activities on corn roots. We successfully recovered naturally occurring P. ananatis from samples of both rootworm species collected from corn plants in the field. Following acquisition assays, the acquired pathogen was successfully recovered from previously P. ananatis-free adult rootworms, their eggs, as well as first-instar larvae, suggesting an affinity of the bacteria to establish an endosymbiotic and transovarial association with both rootworm species. Additionally, the transgenic Bt corn with RNAi anti-rootworm technology was ineffective in preventing the transmission of the pathogen by the infected larvae. Findings from this study confirm a vector role in the transmission of the disease pathogen.
Full article
(This article belongs to the Topic Advances in Integrated Pest Management: New Tools and Tactics for Pest Control)
►▼
Show Figures

Figure 1
Open AccessArticle
Occurrence and Abundance of Hemiptera Auchenorrhyncha Associated with Traditional and Super-High-Density Olive Groves in Tuscany (Central Italy), with a Particular Focus on Xylella fastidiosa Vectors
by
Gargani Elisabetta, Francardi Valeria, Cutino Ilaria, Simoni Sauro, Nencioni Anita, Bigiotti Gaia and Landi Silvia
Crops 2025, 5(5), 73; https://doi.org/10.3390/crops5050073 - 18 Oct 2025
Abstract
►▼
Show Figures
In recent years, the spread of the phytopathogenic bacterium Xylella fastidiosa Wells et al., 1987 (Bacteria: Proteobacteria, Gammaproteobacteria) has posed a significant threat to olive cultivation in Italy, particularly in regions of high economic and agronomic value such as Apulia (Southern Italy). In
[...] Read more.
In recent years, the spread of the phytopathogenic bacterium Xylella fastidiosa Wells et al., 1987 (Bacteria: Proteobacteria, Gammaproteobacteria) has posed a significant threat to olive cultivation in Italy, particularly in regions of high economic and agronomic value such as Apulia (Southern Italy). In this two-year study (2019–2020), we investigated the Auchenorrhyncha community in three representative olive farms in Tuscany (Central Italy), another region with highly valuable olive-growing, comparing traditional (400 trees/ha) and super-high-density (1500 trees/ha) management systems. Adult insects were collected monthly from May to November using sweep net sampling on both olive tree canopies and herbaceous ground cover. In total, 1844 individuals belonging to 25 genera and five families were identified. Philaenus spumarius L. and Neophilaenus campestris (Fallén) (Cercopoidea: Aphrophoridae) were confirmed as the most prevalent X. fastidiosa vectors in each site. However, data analysis revealed that Auchenorrhyncha community composition was significantly influenced by site and vegetation stratum, but not by olive grove management systems. These findings contribute to a deeper understanding of the composition of Auchenorrhyncha communities associated with olive groves, highlighting that new super-high-density management does not influence the presence and abundance of X. fastidiosa vectors.
Full article

Figure 1
Open AccessReview
Molecular Mechanisms Underlying Floral Development Mediated by Blue Light and Other Integrated Signals: Research Findings and Perspectives
by
Yun Kong and Youbin Zheng
Crops 2025, 5(5), 72; https://doi.org/10.3390/crops5050072 - 15 Oct 2025
Abstract
►▼
Show Figures
Blue light (BL) is a key environmental signal influencing plant flowering, yet its role in floral development beyond the transition phase remains underexplored. This review provides a comprehensive synthesis of current research on BL-mediated floral development, with a particular emphasis on horticultural crops
[...] Read more.
Blue light (BL) is a key environmental signal influencing plant flowering, yet its role in floral development beyond the transition phase remains underexplored. This review provides a comprehensive synthesis of current research on BL-mediated floral development, with a particular emphasis on horticultural crops grown in a controlled environment. Unlike prior reviews that focus primarily on floral induction, this article systematically examines BL’s effects on later stages of flowering, including floral organ morphogenesis, sex expression, bud abortion, flower opening, scent emission, coloration, pollination, and senescence. Drawing on evidence from both model plants (e.g., Arabidopsis thaliana) and crop species, this review identifies key photoreceptors, hormonal regulators, and signaling components involved in BL responses. It also highlights species-specific and context-dependent outcomes of BL manipulation, proposes mechanistic hypotheses to explain conflicting findings, and outlines critical knowledge gaps. By integrating molecular, physiological, and environmental perspectives, this review offers a framework for optimizing BL applications to improve flowering traits and postharvest quality in horticultural production systems.
Full article

Figure 1
Open AccessArticle
Exploring Genetic Variability, Heritability, and Interrelationship in Phenotypic Traits of Recombinant Inbred Lines in Durum Wheat (Triticum turgidum L. ssp. Durum, Desf.)
by
Hanan Shiferaw, Faris Hailu, Behailu Mulugeta and Matteo Dell’Acqua
Crops 2025, 5(5), 71; https://doi.org/10.3390/crops5050071 - 15 Oct 2025
Abstract
►▼
Show Figures
Durum wheat is a vital wheat species cultivated worldwide for human consumption, ranking second to bread wheat. The Ethiopian durum wheat allele pool shows wide gene diversity; however, limited improvement work has been done to exploit this diversity. Thus, this study aimed to
[...] Read more.
Durum wheat is a vital wheat species cultivated worldwide for human consumption, ranking second to bread wheat. The Ethiopian durum wheat allele pool shows wide gene diversity; however, limited improvement work has been done to exploit this diversity. Thus, this study aimed to assess the genetic variability, heritability, and interrelationship among different phenotypic traits in 210 recombinant inbred lines (RILs) using an alpha lattice design with two replications. The analysis of variance revealed a significant difference for all the measured traits. The phenotypic coefficient of variation (PCV) was greater than the genotypic coefficient of variation (GCV) for all the characters, which reflects that the existing range of variability within the genotypes was not only due to the varying influence of genotype but also the environment. A correlation analysis disclosed that grain yield was positively related to the traits of plant height and 1000-kernel weight, suggesting that selecting these traits could enhance yield. Path analysis revealed that days to booting, maturity, and 1000-kernel weight directly affect grain yield. Among the measured traits, early developmental traits revealed higher broad-sense heritability. The findings of this study highlight high genetic diversity among Ethiopian durum wheat genotypes, opening up opportunities to integrate these materials into future wheat-breeding programs through introgression with other germplasm sources in Ethiopia and beyond.
Full article

Figure 1
Open AccessArticle
Agronomic and Utilization Potential of Three Elephant Grass Cultivars for Energy, Forage, and Soil Improvement in Vietnam
by
Lovisa Panduleni Johannes, Tran Thi Ngoc Minh, Nguyen Van Son, Do Thanh Tung, Tran Duc Viet and Tran Dang Xuan
Crops 2025, 5(5), 70; https://doi.org/10.3390/crops5050070 - 14 Oct 2025
Abstract
►▼
Show Figures
Elephant grass (Pennisetum purpureum Schumach, EG) is a promising biomass energy crop due to its high productivity and adaptability to harsh environments. In the transition to renewable energy, varietal evaluation is essential to identify cultivars that maximize biomass and energy yield. This
[...] Read more.
Elephant grass (Pennisetum purpureum Schumach, EG) is a promising biomass energy crop due to its high productivity and adaptability to harsh environments. In the transition to renewable energy, varietal evaluation is essential to identify cultivars that maximize biomass and energy yield. This study assessed three varieties (VS-19, VA-06, and VDP as control) across three harvest cycles (new planting, first regrowth, and second regrowth) between 2022 and 2024 at the Cotton and Agricultural Development Research Institute, Ninh Thuan Province, Vietnam. The site was characterized by mean temperatures of 25–36 °C, relative humidity of 65–82%, and average precipitation of 75.7 mm per month. Agronomic traits, energy potential (heating oil equivalent per hectare, HOE/ha), forage quality, and soil amendment value of the EG were examined to address the research question whether EG can be integrated into a three-cycle utilization model (energy, forage, soil amendment) to support a circular bioeconomy in Vietnam. All cultivars showed good growth, strong drought tolerance, and resistance to pests and diseases. VS-19 showed superior tillering, strong lodging resistance, and the highest biomass yield (63.8 t/ha) with an energy output of 32,636 HOE/ha, while VA-06 (56.1 t/ha; 28,699 HOE/ha) and VDP (54.7 t/ha; 27,952 HOE/ha) produced slightly lower but comparable outputs. Forage evaluation indicated moderate nutritional quality, while residues from the third cycle showed favorable carbon and nutrients content, making EG suitable as a soil amendment. EG thus demonstrates high biomass and energy yields, forage potential, and soil improvement capacity, reinforcing its role in integrated bioenergy and agricultural systems.
Full article

Figure 1
Open AccessArticle
Predicting Plant Breeder Decisions Across Multiple Selection Stages in a Wheat Breeding Program
by
Sebastian Michel, Franziska Löschenberger, Christian Ametz, Herbert Bistrich and Hermann Bürstmayr
Crops 2025, 5(5), 69; https://doi.org/10.3390/crops5050069 - 2 Oct 2025
Abstract
►▼
Show Figures
Selection decisions in plant breeding programs are complex, and breeders aim to integrate phenotypic impressions, genotypic data, and agronomic performance across multiple selection stages to develop successful varieties. This study investigates whether such decisions can be predicted in a commercial winter wheat (
[...] Read more.
Selection decisions in plant breeding programs are complex, and breeders aim to integrate phenotypic impressions, genotypic data, and agronomic performance across multiple selection stages to develop successful varieties. This study investigates whether such decisions can be predicted in a commercial winter wheat (Triticum aestivum L.) breeding program using elastic net models trained on genome-wide distributed markers and genomic estimated breeding values. For this purpose, a dataset of several thousand lines tested between 2015 and 2019 in preliminary, advanced, and elite multi-environment yield trials was analyzed across three decision-making scenarios. The predictive models achieved a higher precision than random selection in all scenarios, with an increased performance when genomic estimated breeding values were included as predictors. Comparisons of breeder selections and model recommendations in terms of selection differentials for key agronomic traits showed a substantial overlap in breeding objectives, while both the breeder’s decisions and the model’s suggestions maintained similar levels of genetic diversity. Although the precision of the elastic net model was of moderate magnitude, divergent model recommendations often identified promising alternative lines, highlighting the potential of artificial intelligence to support decision-making in plant breeding.
Full article

Figure 1
Open AccessArticle
Impact of Coated Phosphorus Fertilizers and Application Methods on Soil Fertility, Yield, and Ionic Regulation of Common Beans (Phaseolus vulgaris L.) Grown in Saline Soil
by
Sara A. El-Shabasy, Tamer H. Khalifa, Tarek M. El-Zehery and Alaa El-Dein Omara
Crops 2025, 5(5), 68; https://doi.org/10.3390/crops5050068 - 29 Sep 2025
Abstract
Salinity is a major limitation on common bean productivity, while phosphorus in many soils is often immobilized, limiting its availability to plants. This study investigated the effects of coated and uncoated superphosphate fertilizers, applied at different rates and using distinct methods, on soil
[...] Read more.
Salinity is a major limitation on common bean productivity, while phosphorus in many soils is often immobilized, limiting its availability to plants. This study investigated the effects of coated and uncoated superphosphate fertilizers, applied at different rates and using distinct methods, on soil properties, plant growth, and ion regulation in common beans grown in saline soil over two seasons (2023–2024). Treatments combined two fertilizer types (coated with potassium sulfate and uncoated), two P rates (360 and 480 kg/ha), and two application methods: (1) conventional application, broadcasting followed by plowing to 30 cm depth during soil preparation; (2) surface application, broadcasting without incorporation. Six treatments were applied: T1: 360 kg/ha of uncoated superphosphate (conventional method); T2: 480 kg/ha of uncoated superphosphate (conventional method); T3: 360 kg/ha of coated superphosphate (conventional method); T4: 480 kg/ha of coated superphosphate (conventional method); T5: 360 kg/ha of coated superphosphate (surface method); and T6: 480 kg/ha of coated superphosphate (surface method). The results demonstrated that soil pH was unaffected across treatments. However, T4 and T6 significantly improved nutrient availability (N, P, and K), biomass, grain yield, and seed nutritional quality (protein, P, K, and Ca). Despite increased soil EC, these treatments enhanced ionic balance (higher K/Na and Ca/Na ratios) indicating improved stress tolerance. Importantly, T3 (360 kg/ha coated) performed comparably to T2 (480 kg/ha uncoated), suggesting that coated superphosphate at lower rates can reduce input costs without compromising yield. These results demonstrate the agronomic and environmental benefits of coated superphosphate, particularly under saline conditions, through enhanced nutrient use efficiency and improved crop performance.
Full article
(This article belongs to the Topic Soil Fertility and Plant Nutrition for Sustainable Agriculture—2nd Edition)
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Agriculture, Agronomy, Crops, IJPB, Plants
Crop Ecophysiology: From Lab to Field, 2nd Volume
Topic Editors: Hua Bai, Dimitra A. Loka, Wei HuDeadline: 31 December 2025
Topic in
Agriculture, Agronomy, Crops, Plants, IJMS, IJPB
Plant Responses and Tolerance to Salinity Stress, 2nd Edition
Topic Editors: Ricardo Aroca, Pablo CornejoDeadline: 15 January 2026
Topic in
Agronomy, Crops, Forests, Horticulturae, Plants
Plants Nutrients, 2nd Volume
Topic Editors: Georgia Ntatsi, Maurizio BadianiDeadline: 31 January 2026
Topic in
Agriculture, Agronomy, Crops, Horticulturae, Microorganisms, Plants, Agrochemicals
Applications of Biotechnology in Food and Agriculture
Topic Editors: Edgar Omar Rueda-Puente, Bernardo Murillo-AmadorDeadline: 1 February 2026
Special Issues
Special Issue in
Crops
Molecular Mechanisms and Integrated Control of Pathogen Crops
Guest Editors: Violetta Katarzyna Macioszek, Andrzej K. KononowiczDeadline: 10 December 2025
Special Issue in
Crops
Soil Fertility Management in Crop Production
Guest Editors: Rafael Felippe Ratke, Juliano Magalhães Barbosa, Leandro Pereira Pacheco, Laércio Santos SilvaDeadline: 10 February 2026
Special Issue in
Crops
Preharvest and Postharvest Biology and Preservation Technologies for Horticultural Produce
Guest Editors: Claudio Cannata, Carlo NicolettoDeadline: 10 March 2026
Special Issue in
Crops
Molecular Marker Technology for Crop Breeding Improvement
Guest Editors: Ioana Virginia Berindean, Katalin SzaboDeadline: 30 March 2026


