Different Responses to Salinity of Pythium spp. Causing Root Rot on Atriplex hortensis var. rubra Grown in Hydroponics
Abstract
1. Introduction
2. Materials and Methods
2.1. Pythium spp. Isolates: Origin and Culture Conditions
2.2. Species Identification
2.2.1. Morphological Observations
2.2.2. DNA Extraction and Molecular Analysis
2.2.3. Phylogenetic Analysis
2.3. Pathogenicity Assay
2.4. In Vitro Growth of Pythium spp. at Different Temperatures and Salt Concentrations
2.5. Statistical Analysis
3. Results
3.1. Species Identification: Morphological Observations
3.1.1. Pythium sp. Isolate 8MC
3.1.2. Pythium sp. Isolate 1BMR
3.2. Species Identification: DNA Barcoding and Phylogenetic Analysis
3.3. Pathogenicity Assay
3.4. In Vitro Growth of Pythium spp. at Different Temperatures and Salt Concentrations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Groveza, N.H. Karyological study of genus Atriplex L. in Bulgaria. Bulg. J. Agric. Sci. 2018, 24, 52–58. [Google Scholar]
- Puccinelli, M.; Mei, M.; Pezzarossa, B.; Rosellini, I.; Malorgio, F.; Pardossi, A. Exploiting the potential of red orache (Atriplex hortensis var. rubra L.) for the production of microgreens biofortified with selenium or zinc in comparison with Swiss chard (Beta vulgaris ssp. vulgaris var. cicla). Sci. Hortic. 2024, 338, 113668. [Google Scholar] [CrossRef]
- Kumorkiewicz-Jamro, A.; Górska, R.; Krok-Borkowicz, M.; Reczyńska-Kolman, K.; Mielczarek, P.; Popenda, Ł.; Spórna-Kucab, A.; Tekieli, A.; Pamuła, E.; Wybraniec, S. Betalains isolated from underexploited wild plant Atriplex hortensis var. rubra L. exert antioxidant and cardioprotective activity against H9c2 cells. Food Chem. 2023, 414, 135641. [Google Scholar] [CrossRef]
- Kumorkiewicz-Jamro, A.; Pachulicz, R.J.; Fitter, S.; Górska, R.; Duggan, J.; Vandyke, K.; Pukala, T.L.; Wybraniec, S.; Zannettino, A.C.W. Atriplex hortensis var. “rubra” extracts and purified amaranthin-type pigments reduce oxidative stress and inflammatory response in LPS-stimulated RAW264.7 cells. Food Chem. 2025, 462, 140920. [Google Scholar] [CrossRef]
- Glenn, E.P.; Nelson, S.G.; Ambrose, B.; Martinez, R.; Soliz, D.; Pabendinskas, V.; Hultine, K. Comparison of salinity tolerance of three Atriplex spp. in well-watered and drying soils. Environ. Exp. Bot. 2012, 83, 62–72. [Google Scholar] [CrossRef]
- Fitzner, M.; Schreiner, M.; Baldermann, S. The interaction of salinity and light regime modulates photosynthetic pigment content in edible halophytes in greenhouse and indoor farming. Front. Plant Sci. 2023, 14, 1105162. [Google Scholar] [CrossRef]
- Suaire, R.; Durickovic, I.; Framont-Terrasse, L.; Leblain, J.Y.; De Rouck, A.C.; Simonnot, M.O. Phytoextraction of Na+ and Cl− by Atriplex halimus L. and Atriplex hortensis L.: A promising solution for remediation of road runoff contaminated with deicing salts. Ecol. Eng. 2016, 94, 182–189. [Google Scholar] [CrossRef]
- Karakas, S.; Dikilitas, M.; Tıpırdamaz, R. Phytoremediation of salt-affected soils using halophytes. In Handbook of Halophytes: From Molecules to Ecosystems Towards Biosaline Agriculture; Grigore, M.N., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–18. [Google Scholar] [CrossRef]
- Arbour, A.J.; Chu, Y.-T.; Brown, P.B.; Huang, J.-Y. Life cycle assessment on marine aquaponic production of shrimp, red orache, minutina and okahajiki. J. Environ. Manag. 2024, 353, 120208. [Google Scholar] [CrossRef]
- Delli Compagni, E.; Pardossi, A.; Pecchia, S. Fungal and fungal-like diseases of halophytes in the Mediterranean basin: A state-of-the-art review. Horticulturae 2024, 10, 313. [Google Scholar] [CrossRef]
- van der Plaats-Niterink, A.J. Monograph of the genus Pythium. Stud. Mycol. 1981, 21, 1–242. [Google Scholar]
- Lévesque, C.; de Cock, A.W.A.M. Molecular phylogeny and taxonomy of the genus Pythium. Mycol. Res. 2004, 108, 1363–1383. [Google Scholar] [CrossRef]
- Villa, N.O.; Kageyama, K.; Asano, T.; Suga, H. Phylogenetic relationships of Pythium and Phytophthora species based on ITS rDNA, cytochrome oxidase II and beta-tubulin gene sequences. Mycologia 2006, 98, 410–422. [Google Scholar] [CrossRef]
- Hulvey, J.; Telle, S.; Nigrelli, L.; Lamour, K.; Thines, M. Salisapiliaceae—A new family of oomycetes from marsh grass litter of southeastern North America. Persoonia 2010, 25, 109–116. [Google Scholar] [CrossRef]
- Robideau, G.P.; de Cock, A.W.A.M.; Coffey, M.D.; Voglmayr, H.; Brouwer, H.; Bala, K.; Chitty, D.W.; Désaulniers, N.; Eggertson, Q.A.; Gachon, C.M.M.; et al. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol. Ecol. Resour. 2011, 11, 1002–1011. [Google Scholar] [CrossRef]
- Schroeder, K.L.; Martin, F.N.; de Cock, A.W.A.M.; Lévesque, C.A.; Spies, C.F.J.; Okubara, P.A.; Paulitz, T.C. Molecular detection and quantification of Pythium species: Evolving taxonomy, new tools, and challenges. Plant Dis. 2013, 97, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Hyde, K.D.; Nilsson, R.H.; Alias, S.A.; Ariyawansa, H.A.; Blair, J.E.; Cai, L.; de Cock, A.W.A.M.; Dissanayake, A.J.; Glockling, S.L.; Goonasekara, I.D.; et al. One stop shop: Backbones trees for important phytopathogenic genera: I. Fungal Divers. 2014, 67, 21–125. [Google Scholar] [CrossRef]
- Rai, M.; Abd-Elsalam, K.A.; Ingle, A.P.; Paralikar, P.; Ingle, P. The genus Pythium: An overview. In Pythium: Diagnosis, Diseases and Management; Rai, M., Abd-Elsalam, K.A., Inge, P.B., Eds.; CRC Press: New York, NY, USA, 2020; pp. 3–14. [Google Scholar] [CrossRef]
- Uzuhashi, S.; Tojo, M.; Kakishima, M. Phylogeny of the genus Pythium and description of new genera. Mycoscience 2010, 51, 337–365. [Google Scholar] [CrossRef]
- Sutton, J.C.; Sopher, C.R.; Owen-Going, T.N.; Liu, W.; Grodzinski, B.; Hall, J.C.; Benchimol, R.L. Etiology and epidemiology of Pythium root rot in hydroponic crops: Current knowledge and perspectives. Summa Phytopathol. 2006, 32, 307–321. [Google Scholar] [CrossRef]
- Rey, P.; Déniel, F.; Vasseur, V.; Benhamou, N.; Tirilly, Y. Evolution of Pythium spp. populations in soilless cultures and their control by active disinfecting methods. Acta Hortic. 2000, 554, 341–348. [Google Scholar] [CrossRef]
- Koohakan, P.; Ikeda, H.; Jeanaksorn, T.; Tojo, M.; Kusakari, S.-I.; Okada, K.; Sato, S. Evaluation of the indigenous microorganisms in soilless culture: Occurrence and quantitative characteristics in the different growing systems. Sci. Hortic. 2004, 101, 179–188. [Google Scholar] [CrossRef]
- Vallance, J.; Déniel, F.; Le Floch, G.; Guérin-Dubrana, L.; Blancard, D.; Rey, P. Pathogenic and beneficial microorganisms in soilless cultures. Agron. Sustain. Dev. 2011, 31, 191–203. [Google Scholar] [CrossRef]
- Stouvenakers, G.; Dapprich, P.; Massart, S.; Jijakli, M.H. Plant pathogens and control strategies in aquaponics. In Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 353–378. [Google Scholar] [CrossRef]
- Punja, Z.K.; Rodriguez, G. Fusarium and Pythium species infecting roots of hydroponically grown marijuana (Cannabis sativa L.) plants. Can. J. Plant Pathol. 2018, 40, 498–513. [Google Scholar] [CrossRef]
- Mufunda, F.; Muzhinji, N.; Sigobodhla, T.; Marunda, M.; Chinheya, C.C.; Dimbi, S. Characterization of Pythium spp. associated with root rot of tobacco seedlings produced using the float tray system in Zimbabwe. J. Phytopathol. 2017, 165, 737–745. [Google Scholar] [CrossRef]
- Zhang, X.; Johnson, C.; Reed, D. Diversity of Pythium species recovered from float-bed tobacco transplant production greenhouses. Plant Dis. 2023, 107, 1892–1901. [Google Scholar] [CrossRef]
- Lombardi, T.; Bertacchi, A.; Pistelli, L.; Pardossi, A.; Pecchia, S.; Toffanin, A.; Sanmartin, C. Biological and agronomic traits of the main halophytes widespread in the Mediterranean region as potential new vegetable crops. Horticulturae 2022, 8, 195. [Google Scholar] [CrossRef]
- Battellino, M. Studi Sulla Coltura Idroponica e Acquaponica di Alcune Specie di Piante Alofite. Master’s Thesis, University of Pisa, Pisa, Italy, 2022. Available online: https://etd.adm.unipi.it/t/etd-05202022-184336/ (accessed on 16 February 2024).
- Riddell, R.W. Permanent stained mycological preparations obtained by slide culture. Mycologia 1950, 42, 265–270. [Google Scholar] [CrossRef]
- Maneval, W.E. Lacto-phenol preparations. Stain Technol. 1936, 11, 9–11. [Google Scholar] [CrossRef]
- Stanghellini, M.E.; Hancock, J.G. Sporangium of Pythium ultimum as survival structure in soil. Phytopathology 1971, 61, 157–164. [Google Scholar] [CrossRef]
- Vierheilig, H.; Schweiger, P.; Brundrett, M. An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiol. Plant. 2005, 125, 393–404. [Google Scholar] [CrossRef]
- Spada, M.; Pugliesi, C.; Fambrini, M.; Palpacelli, D.; Pecchia, S. Knockdown of Bmp1 and Pls1 virulence genes by exogenous application of RNAi-inducing dsRNA in Botrytis cinerea. Int. J. Mol. Sci. 2023, 24, 4869. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Tailor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols. A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press, Inc.: New York, NY, USA, 1990; pp. 315–322. [Google Scholar] [CrossRef]
- Hudspeth, D.S.S.; Nadler, S.A.; Hudspeth, M.E.S. A COX2 molecular phylogeny of the Peronosporomycetes. Mycologia 2000, 92, 674–684. [Google Scholar] [CrossRef]
- Choi, Y.J.; Beakes, G.; Glockling, S.; Kruse, J.; Nam, B.; Nigrelli, L.; Ploch, S.; Shin, H.D.; Shivas, R.G.; Telle, S.; et al. Towards a universal barcode of oomycetes--a comparison of the cox1 and cox2 loci. Mol. Ecol. Resour. 2015, 15, 1275–1288. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis for Windows 95/98/NT. Nucl. Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Nei, M.; Kumar, S. Molecular Evolution and Phylogenetics; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Jack, A.L.H.; Nelson, E.B. A seed-recruited microbiome protects developing seedlings from disease by altering homing responses of Pythium aphanidermatum zoospores. Plant Soil 2018, 422, 209–222. [Google Scholar] [CrossRef]
- McKinney, H.H. Influence of soil temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. J. Agric. Res. 1923, 26, 195–218. [Google Scholar]
- Al-Sadi, A.M.; Al-Masoudi, R.S.; Al-Habsi, N.; Al-Said, F.A.; Al-Rawahy, S.A.; Ahmed, M.; Deadman, M.L. Effect of salinity on pythium damping-off of cucumber and on the tolerance of Pythium aphanidermatum. Plant Pathol. 2010, 59, 112–120. [Google Scholar] [CrossRef]
- Posit team. RStudio: Integrated Development Environment for R. Posit Software; PBC: Boston, MA, USA, 2024; Available online: https://posit.co/ (accessed on 12 November 2024).
- Meurs, A. Parasitic stemburn of Deli tobacco. Phytopath. Z. 1934, 7, 169–185. [Google Scholar]
- Paul, B.; Bazireau, D.; Gambade, G. Pythium deliense causing severe damping-off of cucumber seedlings and its biological control by a soil bacteria. Microbiol. Res. 1996, 151, 309–312. [Google Scholar] [CrossRef]
- Saelee, R.; Busarakam, K.; Koohakan, P. Morphological and phylogenetic diversity of Pythium and related genera (Pythiaceae, Pythiales) from some areas in eastern Thailand. Agr. Nat. Resour. 2022, 56, 945–956. [Google Scholar] [CrossRef]
- Bhuiyan, M.Z.R.; Lakhsman, D.K.; del Rio Mendoza, L.E.; Ismaiel, A.; Khan, M.F.R. Identification and characterization of Pythium deliense causing sugar beet (Beta vulgaris) root rot in Grand Forks, North Dakota. Plant Health Prog. 2024, 25, 169–178. [Google Scholar] [CrossRef]
- Garibaldi, A.; Gilardi, G.; Matic, S.; Gullino, M.L. First report of stem rot caused by a Pythium cluster B2a species on lettuce in Italy. Plant Dis. 2017, 101, 1681. [Google Scholar] [CrossRef]
- Moein, S.; Mazzola, M.; Ntushelo, N.S.; McLeod, A. Apple nursery trees and irrigation water as potential external inoculum sources of apple replant disease in South Africa. Eur. J. Plant Pathol. 2019, 153, 1131–1147. [Google Scholar] [CrossRef]
- Pantelides, I.S.; Tsolakidou, M.-D.; Chrysargyris, A.; Tzortzakis, N. First report of root rot of hydroponically grown lettuce (Lactuca sativa) caused by a Pythium species from the cluster B2a species complex in Cyprus. Plant Dis. 2017, 101, 636. [Google Scholar] [CrossRef]
- Reeves, E.R.; Kerns, J.P.; Cowger, C.; Shew, B.B. Pythium spp. associated with root rot and stunting of winter wheat in North Carolina. Plant Dis. 2021, 105, 986–996. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, S.; Tojo, M. First report of Pythium cluster B2a species causing root rot in welsh onion in Japan. Plant Dis. 2022, 106, 336. [Google Scholar] [CrossRef]
- Tsoukas, C.; Venieraki, A.; Savvas, D.; Paplomatas, E. First report of Pythium root rot of hydroponic lettuce (Lactuca sativa) in Greece, caused by Pythium cluster B2a sp. Phytopathol. Mediterr. 2023, 62, 355–359. [Google Scholar] [CrossRef]
- Yun, S.C. Control of soybean sprout rot caused by Pythium deliense in recirculated production system. Plant Pathol. J. 2003, 19, 280–283. [Google Scholar] [CrossRef]
- Talubnak, C.; Schoonbeek, H.; Parinthawong, N.; Jaenaksorn, T. Morphological and molecular identification of Pythium spp. from hydroponically-grown lettuce. Sci. Technol. Asia 2022, 27, 143–154. [Google Scholar]
- Subila, K.P.; Suseela Bhai, R. Influence of soil moisture and temperature on the survival of Pythium deliense causing yellowing of black pepper. J. Plant Pathol. 2022, 104, 1355–1359. [Google Scholar] [CrossRef]
- Botha, W.J.; Coetzer, R.L.J. Species of Pythium associated with root-rot of vegetables in South Africa. S. Afr. J. Bot. 1996, 62, 196–203. [Google Scholar] [CrossRef][Green Version]
- Bates, M.L.; Stanghellini, M.E. Root rot of hydroponically grown spinach caused by Pythium aphanidermatum and Pythium dissotocum. Plant Dis. 1984, 68, 989–991. [Google Scholar] [CrossRef]
- Abdelzaher, H.M.A.; Kageyama, K. Diversity of aquatic Pythium and Phytopythium spp. from rivers and a pond of Gifu city, Japan. Nov. Res. Microbiol. J. 2020, 4, 1029–1044. [Google Scholar] [CrossRef]
- Stanghellini, M.E.; Kronland, W.C. Yield loss in hydroponically grown lettuce attributed to subclinical infection of feeder rootlets by Pythium dissotocum. Plant Dis. 1986, 70, 1053–1056. [Google Scholar] [CrossRef]
- Stanghellini, M.E.; Rasmussen, S.L. Hydroponics: A solution for zoosporic pathogens. Plant Dis. 1994, 78, 1129–1138. [Google Scholar] [CrossRef]
- Cacciola, S.O.; Gullino, M.L. Emerging and re-emerging fungus and oomycete soil-borne plant diseases in Italy. Phytopathol. Mediterr. 2019, 58, 451–472. [Google Scholar] [CrossRef]
- Rasmussen, S.; Stanghellini, M.E. Effect of salinity stress on development of Pythium blight in Agrostis palustris. Phytopathol. 1988, 78, 1495–1497. [Google Scholar] [CrossRef]
- Stetina, T.J. The Effects of Salinity on Pythium Disease of Rice and Soybean. Master’s Thesis, University of Arkansas, Fayetteville, AR, USA, 2013. Available online: http://scholarworks.uark.edu/etd/988 (accessed on 18 January 2025).
- Gladstone, L.A.; Moorman, G.W. Pythium root rot of seedling geraniums associated with various concentrations of nitrogen, phosphorus and sodium chloride. Plant Dis. 1989, 73, 733–736. [Google Scholar] [CrossRef]
- Bai, Y.; Kissoudis, C.; Yan, Z.; Visser, R.G.F.; van der Linden, G. Plant behaviour under combined stress: Tomato responses to combined salinity and pathogen stress. Plant J. 2018, 93, 781–793. [Google Scholar] [CrossRef]
- Qi, J.; Wang, J.; Gong, Z.; Zhou, J.-M. Apoplastic ROS signaling in plant immunity. Curr. Opin. Plant Biol. 2017, 38, 92–100. [Google Scholar] [CrossRef]
- Asselbergh, B.; Curvers, K.; França, S.C.; Audenaert, K.; Vuylsteke, M.; Van Breusegem, F.; Höfte, M. Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol. 2007, 144, 1863–1877. [Google Scholar] [CrossRef]
- Daudi, A.; Cheng, Z.; O’Brien, J.A.; Mammarella, N.; Khan, S.; Ausubel, F.M.; Bolwell, G.P. The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell 2012, 24, 275–287. [Google Scholar] [CrossRef]
- Ellinger, D.; Naumann, M.; Falter, C.; Zwikowics, C.; Jamrow, T.; Manisseri, C.; Somerville, S.C.; Voigt, C.A. Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis. Plant Physiol. 2013, 161, 1433–1444. [Google Scholar] [CrossRef]
- Bose, J.; Rodrigo-Moreno, A.; Shabala, S. ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot. 2014, 65, 241–1257. [Google Scholar] [CrossRef]
- Gaffney, T.; Friedrich, L.; Vernooij, B.; Negrotto, D.; Nye, G.; Uknes, S.; Ward, E.; Kessmann, H.; Ryals, J. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 1993, 261, 754–756. [Google Scholar] [CrossRef] [PubMed]
- Jayakannan, M.; Bose, J.; Babourina, O.; Rengel, Z.; Shabala, S. Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul. 2015, 76, 25–40. [Google Scholar] [CrossRef]
- Klessig, D.F.; Choi, H.W.; Dempsey, D.A. Systemic acquired resistance and salicylic acid: Past, present, and future. Mol. Plant-Microbe Interact. 2018, 31, 871–888. [Google Scholar] [CrossRef]
- Singh, P.K.; Gautam, S. Role of salicylic acid on physiological and biochemical mechanism of salinity stress tolerance in plants. Acta Physiol. Plant. 2013, 35, 2345–2353. [Google Scholar] [CrossRef]
- Gharbi, E.; Martínez, J.P.; Benahmed, H.; Dailly, H.; Quinet, M.; Lutts, S. The salicylic acid analog 2,6-dichloroisonicotinic acid has specific impact on the response of the halophyte plant species Solanum chilense to salinity. Plant Growth Regul. 2017, 82, 517–525. [Google Scholar] [CrossRef]
- Baran, B.; Ölmez, F.; Çapa, B.; Dikilitas, M. Defense pathways of wheat plants inoculated with Zymoseptoria tritici under NaCl stress conditions: An overview. Life 2024, 14, 648. [Google Scholar] [CrossRef]
- Blaker, N.; MacDonald, J. Effect of soil salinity on the formation of sporangia and zoospores by three isolates of Phytophthora. Phytopathology 1985, 75, 270–274. [Google Scholar] [CrossRef]
- Blaker, N.; MacDonald, J. The role of salinity in the development of Phytophthora root rot of citrus. Phytopathology 1986, 76, 970–975. [Google Scholar] [CrossRef]
- Sánchez-Montesinos, B.; Diánez, F.; Moreno-Gavira, A.; Gea, F.J.; Santos, M. Plant growth promotion and biocontrol of Pythium ultimum by saline tolerant Trichoderma isolates under salinity stress. Int. J. Environ. Res. Public Health 2019, 16, 2053. [Google Scholar] [CrossRef]
- Chalbi, A.; Sghaier-Hammami, B.; Baazaoui, N.; Hammami, S.B.M.; Ben-Jouira, H.; García-Caparrós, P.; Djébali, N.; Regaya, I.; Debez, A.; Jorrín-Novo, J.V.; et al. Comparative study of the effect of salt stress, Alternaria alternata attack or combined stress on the Cakile maritima growth and physiological performance. Not. Bot. Horti. Agrobo. 2021, 49, 12446. [Google Scholar] [CrossRef]
- Zinnen, T.M. Assessment of plant diseases in hydroponic culture. Plant Dis. 1988, 72, 96–99. [Google Scholar] [CrossRef]
- Alhussaen, K. Pythium and Phytophthora Associated with Root Disease of Hydroponic Lettuce. Ph.D. Thesis, University of Technology Sydney, Sydney, Australia, 2006. Available online: https://opus.lib.uts.edu.au/handle/10453/36864 (accessed on 2 February 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delli Compagni, E.; Bighignoli, B.; Quattrocelli, P.; Nicolini, I.; Battellino, M.; Pardossi, A.; Pecchia, S. Different Responses to Salinity of Pythium spp. Causing Root Rot on Atriplex hortensis var. rubra Grown in Hydroponics. Agriculture 2025, 15, 1701. https://doi.org/10.3390/agriculture15151701
Delli Compagni E, Bighignoli B, Quattrocelli P, Nicolini I, Battellino M, Pardossi A, Pecchia S. Different Responses to Salinity of Pythium spp. Causing Root Rot on Atriplex hortensis var. rubra Grown in Hydroponics. Agriculture. 2025; 15(15):1701. https://doi.org/10.3390/agriculture15151701
Chicago/Turabian StyleDelli Compagni, Emiliano, Bruno Bighignoli, Piera Quattrocelli, Irene Nicolini, Marco Battellino, Alberto Pardossi, and Susanna Pecchia. 2025. "Different Responses to Salinity of Pythium spp. Causing Root Rot on Atriplex hortensis var. rubra Grown in Hydroponics" Agriculture 15, no. 15: 1701. https://doi.org/10.3390/agriculture15151701
APA StyleDelli Compagni, E., Bighignoli, B., Quattrocelli, P., Nicolini, I., Battellino, M., Pardossi, A., & Pecchia, S. (2025). Different Responses to Salinity of Pythium spp. Causing Root Rot on Atriplex hortensis var. rubra Grown in Hydroponics. Agriculture, 15(15), 1701. https://doi.org/10.3390/agriculture15151701