Native Grass Enhances Bird, Dragonfly, Butterfly and Plant Biodiversity Relative to Conventional Crops in Midwest, USA
Abstract
1. Introduction
2. Methods
2.1. Study Field Selection and Agricultural Matrix Assessment
2.2. Sampling Design
2.3. Bird, Dragonfly, Butterfly Survey Protocols
2.4. Vegetation Sampling Protocols
2.5. Statistical Analyses
3. Results and Discussion
3.1. Vegetation
3.2. Faunal Communities
3.3. Overall Faunal Comparison
4. Crop Management Affects Vegetative Structure and Ecological Integrity
Faunal-Crop Relationships
5. Summary
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walter, H. Vegetation of the Earth and Ecological Systems of the Geo-Biosphere, 3rd ed.; Springer: New York, NY, USA, 1983; 318p. [Google Scholar]
- Daily, G.C. (Ed.) Introduction: What are ecosystem services? In Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997; pp. 1–10. [Google Scholar]
- Kimble, J.M.; Rice, C.W.; Reed, D.; Mooney, S.; Follett, R.F.; Lal, R. (Eds.) Soil Carbon Management: Economic, Environmental and Societal Benefits; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Savory, A.; Butterfield, J. Holistic Management, Third Edition: A Commonsense Revolution to Restore Our Environment; Island Press: New York, NY, USA, 2016; 552p. [Google Scholar]
- Teague, W.R.; Apfelbaum, S.; Lal, R.; Kreuter, U.P.; Rowntree, J.; Davies, C.A.; Conser, R.; Rasmussen, M.; Hatfield, J.; Wang, T.; et al. The role of ruminants in reducing agriculture’s carbon footprint in North America. J. Soil Water Conserv. 2016, 71, 156–164. [Google Scholar] [CrossRef]
- Teague, W.R.; Dowhower, S.L.; Baker, S.A.; Haile, N.; DeLaune, P.B.; Conover, D.M. Grazing management impacts on vegetation, soil biota and soil chemical, physical and hydrological properties in tall grass prairie. Agric. Ecosyst. Environ. 2011, 141, 310–322. [Google Scholar] [CrossRef]
- Ahlering, M.; Carlson, D.; Vacek, S.; Jacobi, S.; Hunt, V.; Stanton, J.C.; Knutson, M.G.; Lonsdorf, E. Cooperatively improving tallgrass prairie with adaptive management. Ecosphere 2020, 11, e03095. [Google Scholar] [CrossRef]
- Russell, J.R.; Bisinger, J.J. Forages and Pastures Symposium: Improving soil health and productivity on grasslands using managed grazing of livestock. J. Anim. Sci. 2015, 93, 2626–2640. [Google Scholar] [CrossRef]
- White, L.J.; Yeater, K.M.; Lehman, R.M. Soil microorganisms respond distinctively to adaptive multi-paddock and conventional grazing in the southeastern United States. Soil Sci. Soc. Am. J. 2023, 87, 1096–1108. [Google Scholar] [CrossRef]
- Wei, W.; Zhen, Q.; Deng, J.; Yue, H.; Qin, M.; Oosthuizen, M.K. Grazing during the grassland greenup period promotes plant species richness in alpine grassland in winter pastures. Front. Plant Sci. 2022, 13, 973662. [Google Scholar] [CrossRef]
- Apfelbaum, S.I.; Elstrott, J. Protecting and valuing wild native plant species genetics during domestication. J. Food Nutr. Sci. 2022, 2, 13. [Google Scholar] [CrossRef]
- Shadow, R.A.; Jensen, N.K. Plant Guide for Virginia Wild Rye (Elymus virginianus L.). 2020. Available online: http://plant-materials.nrcs.usda.gov (accessed on 30 July 2025).
- Moerman, D.E. Native American Ethnobotany; Timber Press: Portland, OR, USA, 1998; 927p. [Google Scholar]
- Brennan, L.A.; Kuvlesky, W.P. North American grassland birds: An unfolding conservation crisis? J. Wildl. Manag. 2005, 69, 1–13. [Google Scholar] [CrossRef]
- Chesser, R.T.; Burns, K.J.; Cicero, C.; Dunn, J.L.; Kratter, A.W.; Lovette, I.J.; Rasmussen, P.C.; Remsen, J.V.; Stotz, D.F., Jr.; Winker, K. Checklist of North American Birds (Online). American Ornithological Society. 2019. Available online: http://checklist.aou.org/taxa (accessed on 30 July 2025).
- Hoekstra, J.M.; Boucher, T.M.; Ricketts, T.H.; Roberts, C. Confronting a biome crisis: Global disparities of habitat loss and protection. Ecol. Lett. 2004, 8, 23–29. [Google Scholar] [CrossRef]
- Rosenberg, K.V.; Dokter, A.M.; Blancher, P.J.; Sauer, J.R.; Smith, A.C.; Smith, P.A.; Stanton, J.C.; Panjabi, A.; Helft, L.; Parr, M.; et al. Decline of the North American avifauna. Science 2019, 366, 120–124. [Google Scholar] [CrossRef]
- Wilsey, C.B.; Grand, J.; Wu, J.; Michel, N.; Grogan-Brown, J.; Trusty, B. North American Grasslands and Birds Report, North American Grasslands; National Audubon Society: New York, NY, USA, 2019; 57p. [Google Scholar]
- Ahlering, M.A.; Merkord, C.L. Cattle grazing and grassland birds in the northern tallgrass prairie. J. Wildl. Manag. 2016, 80, 643–654. [Google Scholar] [CrossRef]
- Hillenbrand, M.; Thompson, R.; Wang, F.; Apfelbaum, S.; Teague, R. Impacts of holistic planned grazing with bison compared to continuous grazing with cattle in South Dakota shortgrass prairie. Agric. Ecosyst. Environ. 2019, 279, 156–168. [Google Scholar] [CrossRef]
- Golding, J.D.; Dreitz, V.J. Songbird response to rest-rotation and season-long cattle grazing in a grassland sagebrush ecosystem. J. Environ. Manag. 2017, 204, 605–612. [Google Scholar] [CrossRef]
- Kempema, S.L.; Schacht, W.H.; Powell, L.A. The Influence of Grazing Systems on Bird Species Richness and Density in the Nebraska Sandhills. Diversity 2023, 15, 1160. [Google Scholar] [CrossRef]
- Ranellucci, C.; Koper, N.; Henderson, D.C. Twice-over rotational grazing and its impacts on grassland songbird abundance and habitat structure. Rangel. Ecol. Manag. 2012, 65, 109–118. [Google Scholar] [CrossRef]
- Clausnitzer, V.; Kalkman, V.J.; Ram, M.; Collen, B.; Baillie, J.E.; Bedjanič, M.; Darwall, W.R.; Dijkstra, K.D.B.; Dow, R.; Hawking, J.; et al. Odonata enter the biodiversity crisis debate: The first global assessment of an insect group. Biol. Conserv. 2009, 142, 1864–1869. [Google Scholar] [CrossRef]
- EEA. The European Grassland Butterfly Indicator: 1990–2011; European Environment Agency (EEA): Luxemburg, 2013. [Google Scholar]
- Merckx, T.; Feber, R.E.; Dulieu, R.L.; Townsend, M.C.; Parsons, M.S.; Bourn, N.A.D.; Riordan, P.; Macdonald, D.W. Effect of field margins on moths depends on species mobility: Field-based evidence for landscape-scale conservation. Agric. Ecosyst. Environ. 2009, 129, 302–309. [Google Scholar] [CrossRef]
- Weibull, A.-C.; Bengtsson, J.; Nohlgren, E. Diversity of butterflies in the agricultural landscape: The role of farming system and landscape heterogeneity. Ecography 2000, 23, 743–750. [Google Scholar] [CrossRef]
- Woodcock, B.A.; Potts, S.G.; Pilgrim, E.S.; Ramsay, A.J.; Tscheulin, T.; Parkinson, A.; Smith, R.E.N.; Gundrey, A.L.; Brown, V.K.; Tallowin, J.R. The potential of grass field margin management for enhancing beetle diversity in intensive livestock farms. J. Appl. Ecol. 2007, 44, 60–69. [Google Scholar] [CrossRef]
- Kuchler, A.W. Potential Natural vegetation. In U.S. Department of Interior Geological Survey, the National Atlas of the United States of America; U.S. Government Printing Office: Washington, DC, USA, 1970; pp. 89–92. [Google Scholar]
- Lark, T.; Spawn, S.; Bougie, M.; Gibbs, H. Cropland expansion in the United States produces marginal yields with disproportionate costs to wildlife. Nat. Comm. 2020, 11, 4295. [Google Scholar] [CrossRef]
- Apfelbaum, S.; Haney, A. Restoring Ecological Health to Your Land; Island Press: Washington, DC, USA, 2010; 240p. [Google Scholar]
- Saab, V.A.; Bock, C.E.; Rich, T.D.; Dobkin, D.S. Livestock grazing effects in western North America. In Ecology and Management of Neotropical Migratory Birds; Martin, T.E., Finch, D.M., Eds.; Oxford University Press: New York, NY, USA, 1995; pp. 311–353. [Google Scholar]
- Samson, F.B.; Knopf, F.L.; Ostlie, W.R. Great Plains ecosystems: Past, present, and future. Wildl. Soc. Bull. 2004, 32, 6–15. [Google Scholar] [CrossRef]
- Recher, H.F. Specialist or generalist: Avian response to spatial and temporal changes in resources. In Avian Foraging: Theory, Methodology, and Applications; Morrison, M.L., Ralph, C.J., Verner, J., Jehl, J.R., Jr., Eds.; Studies in Avian Biology—Number 13; Cooper Ornithological Society, 2004; pp. 333–336. Available online: https://sora.unm.edu/sites/default/files/journals/sab/sab_013.pdf (accessed on 30 July 2025).
- Giese, J.C.; Moore, L.S.; Klaver, R.W. Bird community response to field-level integration of prairie strips. Agric. Ecosyst. Environ. 2024, 374, 109075. [Google Scholar] [CrossRef]
- Southeast Grassland Initiative. 2019. Available online: https://www.segrasslands.org (accessed on 30 July 2025).
- Apfelbaum, S.; Haney, A. The Restoring Ecological Health to Your Land Workbook; Island Press: Washington, DC, USA, 2012; 138p. [Google Scholar]
- StratifyX™; Software APP: Boulder, CO, USA, 2024.
- Reynolds, R.T.; Scott, J.M.; Nussbaum, R.A. A variable circular-plot method for estimating bird numbers. Condor 1980, 82, 309–313. [Google Scholar] [CrossRef]
- Rosche, L.; Semroc, J.; Gilbert, L. Dragonflies and Damselflies of Northeast Ohio, 2nd ed.; Cleveland Museum of Natural History: Cleveland, OH, USA, 2008; 300p. [Google Scholar]
- Pyle, R.M. Field Guide to Butterflies. In National Audubon Society; Alfred Knopf, Inc.: New York, NY, USA, 1995; 924p. [Google Scholar]
- Breeding Bird Atlas Explorer (Online Resource). U.S. Geological Survey Patuxent Wildlife Research Center. Data extracted from: Palmer-Ball, Brainard, L., Jr. The Kentucky Breeding Bird Atlas Patuxent Wildlife Research Center. The University Press of Kentucky: Lexington, KY, USA. 2023; 372p. Available online: http://www.pwrc.usgs.gov/bba (accessed on 30 July 2025).
- Buckland, S.T.; Anderson, D.R.; Burnham, K.P.; Laake, J.L. Distance Sampling: Estimation of Biological Populations Chapman and Hall; Chapman and Hall: New York, NY, USA, 1993; 446p. [Google Scholar]
- Gleason, H.A.; Cronquist, A. Manual of Vascular Plants of Northeastern United States and Adjacent Canada, 2nd ed.; The New York Botanical Garden: Bronx, NY, USA, 1991. [Google Scholar] [CrossRef]
- McDonald, T.; Carlisle, J.; McDonald, A. Rdistance: Analyses for Density and Abundance Estimation. R Package Version 3.0.0. 2023. Available online: https://CRAN.R-project.org/package=Rdistance (accessed on 30 July 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 30 July 2025).
- Farnsworth, G.L.; Nichols, J.D.; Sauer, J.R.; Fancy, S.G.; Polack, K.H.; Shriner, S.A.; Simon, T.R. Statistical Approaches to the Analysis of Point Count Data: A Little Extra Information Goes a Long Way; U.S. Dept. of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2005; PSW-GTR-191, pp. 736–743.
- McCune, B.; Mefford, M.J. PC-ORD Multivariate Analysis of Ecological Data, Version 4; MJM Software Design: Gleneden Beach, OR, USA, 1999. [Google Scholar]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communications; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Newton, I. The recent declines of farmland bird populations in Britain: An appraisal of causal factors and conservation actions. Ibis 2004, 146, 579–600. [Google Scholar] [CrossRef]
- Zellweger-Fischer, J.; Hoffmann, J.; Korner-Nievergelt, P.; Pfiffner, L.; Stoeckli, S.; Birrer, S. Identifying factors that influence bird richness and abundance on farms. Bird Study 2018, 65, 161–173. [Google Scholar] [CrossRef]
- Apfelbaum, S.; Thompson, R.; Wang, F.; Mosier, S.; Teague, R.; Byck, P. Vegetation, water infiltration and soil carbon response to multipaddock and conventional grazed southern Wisconsin USA ranches. J. Environ. Manag. 2022, 308, 114576. [Google Scholar] [CrossRef] [PubMed]
- Karr, J.R.; Roth, R.R. Vegetation Structure and Avian Diversity in Several New World Areas. Am. Nat. 1971, 105, 423–435. [Google Scholar] [CrossRef]
- Terborgh, J. Bird Species Diversity on an Andean Elevational Gradient. Ecology 1977, 58, 1007–1019. [Google Scholar] [CrossRef]
- Johnson, M.D. Measuring Habitat Quality: A Review. Condor 2007, 109, 489–504. [Google Scholar] [CrossRef]
- Fisher, R.J.; Davis, S.K. From Wiens to Robel: A review of grassland-bird habitat selection. J. Wildl. Manag. 2010, 74, 265–273. [Google Scholar] [CrossRef]
- Willson, M.F. Avian community organization and habitat structure. Ecology 1974, 55, 1017–1029. [Google Scholar] [CrossRef]
- Batáry, P.; Báldi, A.; Kleijn, D.; Tscharntke, T. Landscape-moderated biodiversity effects of agri-environmental management: A meta-analysis. Proc. R. Soc. B Biol. Sci. 2010, 278, 1894–1902. [Google Scholar] [CrossRef] [PubMed]
- Batáry, P.; Matthiesen, T.; Tscharntke, T. Landscape-moderated importance of hedges in conserving farmland bird diversity of organic vs. conventional croplands and grasslands. Biol. Conserv. 2010, 143, 2020–2027. [Google Scholar] [CrossRef]
- Humbert, J.-Y.; Ghazoul, J.; Richner, N.; Walter, T. Uncut grass refuges mitigate the impact of mechanical meadow harvesting on orthopterans. Biol. Conserv. 2012, 152, 96–101. [Google Scholar] [CrossRef]
- Stoeckli, S.; Birrer, S.; Zellweger-Fischer, J.; Balmer, O.; Jenny, M.; Pfiffner, L. Quantifying the extent to which farmers can influence biodiversity on their farms. Agric. Ecosyst. Environ. 2017, 237, 224–233. [Google Scholar] [CrossRef]
- Atkinson, P.W.; Fuller, R.J.; Vickery, J.A.; Conway, G.J.; Tallowin, J.R.; Smith, R.E.N.; Haysom, K.; Ings, T.C.; Asteraki, E.J.; Brown, V.K. Influence of agricultural management, sward structure and food resources on grassland field use by birds in lowland England. J. Appl. Ecol. 2005, 42, 932–942. [Google Scholar] [CrossRef]
- Benton, T.G.; Bryant, D.M.; Cole, L.; Crick, H.Q.P. Linking agricultural practice to insect and bird populations: A historical study over three decades. J. Appl. Ecol. 2002, 39, 673–687. [Google Scholar] [CrossRef]
- Benton, T.G.; Vickery, J.A.; Wilson, J.D. Farmland biodiversity: Is habitat heterogeneity the key? Trends Ecol. Evol. 2003, 18, 182–188. [Google Scholar] [CrossRef]
- Ekroos, J.; Heliölä, J.; Kuussaari, M. Homogenization of lepidopteran communities in intensively cultivated agricultural landscapes. J. Appl. Ecol. 2010, 47, 459–467. [Google Scholar] [CrossRef]
- Thogmartin, W.E.; Wiederholt, R.; Oberhauser, K.; Drum, R.G.; Diffendorfer, J.E.; Altizer, S.; Taylor, O.R.; Pleasants, J.; Semmens, D.; Semmens, B.; et al. Monarch butterfly population decline in North America: Identifying the threatening processes. R. Soc. Open Sci. 2017, 4, 170760. [Google Scholar] [CrossRef]
- Hole, D.G.; Perkins, A.J.; Wilson, J.D.; Alexander, I.H.; Grice, P.V.; Evans, A.D. Does organic farming benefit biodiversity? Biol. Conserv. 2005, 122, 113–130. [Google Scholar] [CrossRef]
- Bengtsson, J.; Ahnström, J.; Weibull, A.C. The effects of organic agriculture on biodiversity and abundance: A meta-analysis. J. Appl. Ecol. 2005, 42, 261–269. [Google Scholar] [CrossRef]
- Kleijn, D.; Rundlöf, M.; Scheper, J.; Smith, H.G.; Tscharntke, T. Does conservation on farmland contribute to halting the biodiversity decline? Trends Ecol. Evol. 2011, 26, 474–481. [Google Scholar] [CrossRef]
- Tuck, S.L.; Winqvist, C.; Mota, F.; Ahnström, J.; Turnbull, L.A.; Bengtsson, J. Land-use intensity and the effects of organic farming on biodiversity: A hierarchical meta- analysis. J. Appl. Ecol. 2014, 51, 746–755. [Google Scholar] [CrossRef]
- Hassall, C.; Thompson, D.J. The effects of environmental warming on Odonata: A review. Int. J. Odonatol. 2008, 11, 131–153. [Google Scholar] [CrossRef]
- Kadoya, T.; Suda, S.I.; Washitani, I. Dragonfly crisis in Japan: A likely consequence of recent agricultural habitat degradation. Biol. Conserv. 2009, 142, 1899–1905. [Google Scholar] [CrossRef]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Losey, J.E.; Vaughan, M. The economic value of ecological services provided by insects. Bioscience 2006, 56, 311–323. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F.; Wyckhuys, K.A. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 2019, 232, 8–27. [Google Scholar] [CrossRef]
- Wagner, D.L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 2020, 65, 457–480. [Google Scholar] [CrossRef] [PubMed]
- Wagner, D.L.; Grames, E.M.; Forister, M.L.; Berenbaum, M.R.; Stopak, D. Insect decline in the Anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. USA 2021, 118, e2023989118. [Google Scholar] [CrossRef] [PubMed]
- Hallmann, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Müller, A.; Sumser, H.; Hörren, T.; et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2017, 12, e0185809. [Google Scholar] [CrossRef]
- Swengel, S.R. Management responses of three species of declining sparrows in tallgrass prairie. Bird Conserv. Int. 1996, 6, 241–253. [Google Scholar] [CrossRef]
- Kruess, A.; Tscharntke, T. Grazing intensity and the diversity of grasshoppers, butterflies, and trap-nesting bees and wasps. Conserv. Biol. 2002, 16, 1570–1580. [Google Scholar] [CrossRef]
- Swengel, A.B. A literature review of insect responses to fire, compared to other conservation managements of open habitat. Biodivers. Conserv. 2001, 10, 1141–1169. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Soil organic matter stratification ratio as an indicator of soil quality. Soil Tillage Res. 2002, 66, 95–106. [Google Scholar] [CrossRef]
- Conant, R.T.; Cerri, C.E.; Osborne, B.B.; Paustian, K. Grassland management impacts on soil carbon stocks: A new synthesis. Ecol. Appl. 2017, 27, 662–668. [Google Scholar] [CrossRef]
- Liebig, M.A.; Gross, J.R.; Kronberg, S.L.; Phillips, R.L. Grazing management contributions to net global warming potential: A long-term evaluation in the Northern Great Plains. J. Environ. Qual. 2010, 39, 799–809. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Stuedemann, J.A. Soil-profile organic carbon and total nitrogen during 12 years of pasture management in the Southern Piedmont USA. Agric. Ecosyst. Environ. 2009, 129, 28–36. [Google Scholar] [CrossRef]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Glob. Change Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Post, W.M.; Kwon, K.C. Soil carbon sequestration and land-use change: Processes and potential. Glob. Change Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Smith, P. Do grasslands act as a perpetual sink for carbon? Glob. Change Biol. 2014, 20, 2708–2711. [Google Scholar] [CrossRef] [PubMed]
- Teague, R. Forages pastures symposium: Cover crops in livestock production: Whole-system approach: Managing grazing to restore soil health farm livelihoods. J. Anim. Sci. 2018, 96, 1519–1530. [Google Scholar] [CrossRef]
- Norton, L.; Johnson, P.; Joys, A.; Stuart, R.; Chamberlain, D.; Feber, R.; Firbank, L.; Manley, W.; Wolfe, M.; Hart, B.; et al. Consequences of organic and non-organic farming practices for field, farm and landscape complexity. Agric. Ecosyst. Environ. 2009, 129, 221–227. [Google Scholar] [CrossRef]
- Stanley, D.A.; Garratt, M.P.; Wickens, J.B.; Wickens, V.J.; Potts, S.G.; Raine, N.E. Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature 2015, 528, 548–550. [Google Scholar] [CrossRef]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity—Ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Fahrig, L.; Baudry, J.; Brotons, L.; Burel, F.G.; Crist, T.O.; Fuller, R.J.; Sirami, C.; Siriwardena, G.M.; Martin, J.L. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 2011, 14, 101–112. [Google Scholar] [CrossRef]
- Tscharntke, T.; Tylianakis, J.M.; Rand, T.A.; Didham, R.K.; Fahrig, L.; Batáry, P.; Bengtsson, J.; Clough, Y.; Crist, T.O.; Dormann, C.F.; et al. Landscape moderation of biodiversity patterns and processes-eight hypotheses. Biol. Rev. 2012, 87, 661–685. [Google Scholar] [CrossRef]
- Whittaker, R.H. Evolution and measurement of species diversity. Taxon 1972, 21, 213–251. [Google Scholar] [CrossRef]
- Crist, T.O.; Veech, J.A.; Gering, J.C.; Summerville, K.S. Partitioning species diversity across landscapes and regions: A hierarchical analysis of α, β, and γ diversity. Am. Nat. 2003, 162, 734–743. [Google Scholar] [CrossRef] [PubMed]
Activity | Crop | ||
---|---|---|---|
VWR | Corn | Alfalfa | |
Planting | May 2023 | Annually | April 2021 |
Fertilizer Use | Through 2022 crop year | Through 2024 crop year | Through 2021 crop year |
Biocide Use | Only herbicide for site preparation prior to planting VWR | Annually for decades for weed control Fungicide applied annually | Annually for decades during the corn rotation period. None applied since 2021 conversion to alfalfa |
Harvest | Seed. Fall 2024 | Entire plant annually for corn seed crop and stover | Three times annually |
Prior Year’s Crop | Corn | Corn/soybeans | Corn |
Field Type | Mean | Stand. Dev. | S | E | H’ | D |
---|---|---|---|---|---|---|
Corn | 4.365 | 13.239 | 7 | 0.543 | 1.057 | 0.5740 |
Alfalfa | 4.352 | 15.440 | 4 | 0.531 | 0.737 | 0.4331 |
VWR | 4.361 | 8.439 | 16 | 0.708 1.963 0.8008 |
Variable | # of Surveys | Birds | Butterflies | Dragonflies | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Field Type: | Corn | Alfalfa | VWR | Corn | Alfalfa | VWR | Corn | Alfalfa | VWR | |
Total Individuals | 20 | 57 | 145 | 608 | 2 | 30 | 10 | 1 | 3 | 106 |
Mean observations (s.d.) | 20 | 1.78 (1.64) | 1.99 (2.26) | 2.84 (3.42) | 1 | 2.73 (1.62) | 1.67 (0.82) | 1 | 1 | 3.93 (5.11) |
Species Richness | 20 | 12 | 11 | 37 | 2 | 2 | 6 | 1 | 1 | 4 |
Birds: N = 38 Species | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Number | Name | Mean | Stand. Dev | Sum | Minimum | Maximum | S | E | H’ | D |
1 | Corn | 1.447 | 3.674 | 55.0000 | 0.000 | 17.000 | 11 | 0.805 | 1.929 | 0.8086 |
2 | Alfalfa | 3.711 | 8.810 | 141.0000 | 0.000 | 31.000 | 11 | 0.803 | 1.927 | 0.8292 |
3 | VWR | 15.711 | 36.368 | 597.0000 | 0.000 | 193.000 | 36 | 0.654 | 2.342 | 0.8364 |
Dragonfly’s: N = 4 Species | ||||||||||
Number | Name | Mean | Stand. Dev | Sum | Minimum | Maximum | S | E | H’ | D |
1 | Corn | 0.500 | 1.000 | 2.0000 | 0.000 | 2.000 | 1 | NaN | 0.000 | 0.0000 |
2 | Alfalfa | 0.500 | 1.000 | 2.0000 | 0.000 | 2.000 | 1 | NaN | 0.000 | 0.0000 |
3 | VWR | 26.500 | 37.899 | 106.0000 | 2.000 | 83.000 | 4 | 0.521 | 0.722 | 0.3665 |
Butterfly’s: N = 7 Species | ||||||||||
Number | Name | Mean | Stand. Dev | Sum | Minimum | Maximum | S | E | H’ | D |
1 | Corn | 4.286 | 8.976 | 30.0000 | 0.000 | 24.000 | 2 | 0.722 | 0.500 | 0.3200 |
2 | Alfalfa | 0.286 | 0.488 | 2.0000 | 0.000 | 1.000 | 2 | 1.000 | 0.693 | 0.5000 |
3 | VWR | 1.286 | 1.113 | 9.0000 | 2.000 | 3.000 | 5 | 0.946 | 1.523 | 0.7654 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apfelbaum, S.I.; Lehnhardt, S.M.; Boston, M.; Daly, L.; Pinnow, G.; Gillespie, K.; Waller, D.M. Native Grass Enhances Bird, Dragonfly, Butterfly and Plant Biodiversity Relative to Conventional Crops in Midwest, USA. Agriculture 2025, 15, 1666. https://doi.org/10.3390/agriculture15151666
Apfelbaum SI, Lehnhardt SM, Boston M, Daly L, Pinnow G, Gillespie K, Waller DM. Native Grass Enhances Bird, Dragonfly, Butterfly and Plant Biodiversity Relative to Conventional Crops in Midwest, USA. Agriculture. 2025; 15(15):1666. https://doi.org/10.3390/agriculture15151666
Chicago/Turabian StyleApfelbaum, Steven I., Susan M. Lehnhardt, Michael Boston, Lea Daly, Gavin Pinnow, Kris Gillespie, and Donald M. Waller. 2025. "Native Grass Enhances Bird, Dragonfly, Butterfly and Plant Biodiversity Relative to Conventional Crops in Midwest, USA" Agriculture 15, no. 15: 1666. https://doi.org/10.3390/agriculture15151666
APA StyleApfelbaum, S. I., Lehnhardt, S. M., Boston, M., Daly, L., Pinnow, G., Gillespie, K., & Waller, D. M. (2025). Native Grass Enhances Bird, Dragonfly, Butterfly and Plant Biodiversity Relative to Conventional Crops in Midwest, USA. Agriculture, 15(15), 1666. https://doi.org/10.3390/agriculture15151666