Previous Issue
Volume 7, June
 
 

Vehicles, Volume 7, Issue 3 (September 2025) – 12 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
18 pages, 10565 KiB  
Article
Handling Data Structure Issues with Machine Learning in a Connected and Autonomous Vehicle Communication System
by Pranav K. Jha and Manoj K. Jha
Vehicles 2025, 7(3), 73; https://doi.org/10.3390/vehicles7030073 - 11 Jul 2025
Abstract
Connected and Autonomous Vehicles (CAVs) remain vulnerable to cyberattacks due to inherent security gaps in the Controller Area Network (CAN) protocol. We present a structured Python (3.11.13) framework that repairs structural inconsistencies in a public CAV dataset to improve the reliability of machine [...] Read more.
Connected and Autonomous Vehicles (CAVs) remain vulnerable to cyberattacks due to inherent security gaps in the Controller Area Network (CAN) protocol. We present a structured Python (3.11.13) framework that repairs structural inconsistencies in a public CAV dataset to improve the reliability of machine learning-based intrusion detection. We assess the effect of training data volume and compare Random Forest (RF) and Extreme Gradient Boosting (XGBoost) classifiers across four attack types: DoS, Fuzzy, RPM spoofing, and GEAR spoofing. XGBoost outperforms RF, achieving 99.2 % accuracy on the DoS dataset and 100 % accuracy on the Fuzzy, RPM, and GEAR datasets. The Synthetic Minority Oversampling Technique (SMOTE) further enhances minority-class detection without compromising overall performance. This methodology provides a generalizable framework for anomaly detection in other connected systems, including smart grids, autonomous defense platforms, and industrial control networks. Full article
27 pages, 6541 KiB  
Article
Multi-Object-Based Efficient Traffic Signal Optimization Framework via Traffic Flow Analysis and Intensity Estimation Using UCB-MRL-CSFL
by Zainab Saadoon Naser, Hend Marouane and Ahmed Fakhfakh
Vehicles 2025, 7(3), 72; https://doi.org/10.3390/vehicles7030072 - 11 Jul 2025
Abstract
Traffic congestion has increased significantly in today’s rapidly urbanizing world, influencing people’s daily lives. Traffic signal control systems (TSCSs) play an important role in alleviating congestion by optimizing traffic light timings and improving road efficiency. Yet traditional TSCSs neglected pedestrians, cyclists, and other [...] Read more.
Traffic congestion has increased significantly in today’s rapidly urbanizing world, influencing people’s daily lives. Traffic signal control systems (TSCSs) play an important role in alleviating congestion by optimizing traffic light timings and improving road efficiency. Yet traditional TSCSs neglected pedestrians, cyclists, and other non-monitored road users, degrading traffic signal optimization (TSO). Therefore, this framework proposes a multi-object-based traffic flow analysis and intensity estimation model for efficient TSO using Upper Confidence Bound Multi-agent Reinforcement Learning Cubic Spline Fuzzy Logic (UCB-MRL-CSFL). Initially, the real-time traffic videos undergo frame conversion and redundant frame removal, followed by preprocessing. Then, the lanes are detected; further, the objects are detected using Temporal Context You Only Look Once (TC-YOLO). Now, the object counting in each lane is carried out using the Cumulative Vehicle Motion Kalman Filter (CVMKF), followed by queue detection using Vehicle Density Mapping (VDM). Next, the traffic flow is analyzed by Feature Variant Optical Flow (FVOF), followed by traffic intensity estimation. Now, based on the siren flashlight colors, emergency vehicles are separated. Lastly, UCB-MRL-CSFL optimizes the Traffic Signals (TSs) based on the separated emergency vehicle, pedestrian information, and traffic intensity. Therefore, the proposed framework outperforms the other conventional methodologies for TSO by considering pedestrians, cyclists, and so on, with higher computational efficiency (94.45%). Full article
Show Figures

Figure 1

21 pages, 4187 KiB  
Article
Mix Controller Design for Active Suspension of Trucks Integrated with Online Estimation of Vehicle Mass
by Choutao Ma, Yiming Hu, Weiwei Zhao and Dequan Zeng
Vehicles 2025, 7(3), 71; https://doi.org/10.3390/vehicles7030071 - 11 Jul 2025
Abstract
Active suspension can improve vehicle vibrations caused by road excitation. For trucks, the vehicle mass change is usually large, and changes in vehicle mass will affect the control performance of the active suspension. In order to solve the problem of active suspension control [...] Read more.
Active suspension can improve vehicle vibrations caused by road excitation. For trucks, the vehicle mass change is usually large, and changes in vehicle mass will affect the control performance of the active suspension. In order to solve the problem of active suspension control performance decreasing due to large changes in vehicle mass, this paper proposes an active suspension control method integrating online mass estimation. This control method is designed based on the mass estimation algorithm of the recursive least squares method with a forgetting factor (FFRLS) and the Linear Quadratic Regulator (LQR) algorithm. A set of feedback control matrices K is obtained according to different vehicle masses. Then, the mass estimation algorithm can estimate the actual vehicle mass in real-time during the vehicle acceleration process. According to the mass estimation value, a corresponding feedback control matrix K is selected from the control matrix set, and K is used as the actual control gain matrix of the current active suspension. With specific simulation cases, the vehicle vibration response is studied by the numerical simulation method. The results of the simulation process have shown that when the vehicle mass changes largely, the suspension dynamic deflection and tire dynamic deformation are significantly reduced while keeping a good vehicle body attitude control effect by using an active suspension controller integrated with online mass estimation. In the random road simulation, suspension dynamic deflection is reduced by 3.26%, and tire dynamic deformation is reduced by 5.91% compared with the original active suspension controller. In the road bump simulation, suspension dynamic deflection and tire dynamic deformation are also significantly reduced. As a consequence, the stability and comfort of the vehicle have been greatly enhanced. Full article
19 pages, 6211 KiB  
Article
Contact Analysis of EMB Actuator Considering Assembly Errors with Varied Braking Intensities
by Xinyao Dong, Lihui Zhao, Peng Yao, Yixuan Hu, Liang Quan and Dongdong Zhang
Vehicles 2025, 7(3), 70; https://doi.org/10.3390/vehicles7030070 - 9 Jul 2025
Abstract
Differential planetary roller lead screw (DPRS) serves as a quintessential actuating mechanism within the electromechanical braking (EMB) systems of vehicles, where its operational reliability is paramount to ensuring braking safety. Considering different braking intensities, how assembly errors affect the contact stress in DPRS [...] Read more.
Differential planetary roller lead screw (DPRS) serves as a quintessential actuating mechanism within the electromechanical braking (EMB) systems of vehicles, where its operational reliability is paramount to ensuring braking safety. Considering different braking intensities, how assembly errors affect the contact stress in DPRS was analyzed via the finite element method. Firstly, the braking force of the EMB system that employed DPRS was verified by the braking performance of legal provisions. Secondly, a rigid body dynamics model of DPRS was established to analyze the response time, braking clamping force, and axial contact force of DPRS under varied braking intensities. Finally, a finite element model of DPRS was constructed. The impact of assembly errors in the lead screw and rollers on the contact stress were investigated within the DPRS mechanism based on this model. The results indicate that as braking intensity increases, the deviation of the lead screw exerts a greater influence on the contact stress generated by the engagement between the lead screw and rollers compared to that between the nut and rollers. The skewness of the rollers also affects the contact stress generated by the engagement of both the lead screw with rollers and the nut with rollers. When assembly errors reach a certain threshold, the equivalent plastic strain is induced to exceed the critical value. This situation significantly impairing the normal operation of DPRS. This study provides guidance for setting the threshold of assembly errors in DPRS mechanisms. It also holds significant implications for the operational reliability of EMB systems. Full article
(This article belongs to the Special Issue Reliability Analysis and Evaluation of Automotive Systems)
Show Figures

Figure 1

21 pages, 4791 KiB  
Article
Research on the Active Suspension Control Strategy of Multi-Axle Emergency Rescue Vehicles Based on the Inverse Position Solution of a Parallel Mechanism
by Qinghe Guo, Dingxuan Zhao, Yurong Chen, Shenghuai Wang, Hongxia Wang, Chen Wang and Renjun Liu
Vehicles 2025, 7(3), 69; https://doi.org/10.3390/vehicles7030069 - 9 Jul 2025
Abstract
Aiming at the problems of complex control processes, strong model dependence, and difficult engineering application when the existing active suspension control strategy is applied to multi-axle vehicles, an active suspension control strategy based on the inverse position solution of a parallel mechanism is [...] Read more.
Aiming at the problems of complex control processes, strong model dependence, and difficult engineering application when the existing active suspension control strategy is applied to multi-axle vehicles, an active suspension control strategy based on the inverse position solution of a parallel mechanism is proposed. First, the active suspension of the three-axle emergency rescue vehicle is grouped and interconnected within the group, and it is equivalently constructed into a 3-DOF parallel mechanism. Then, the displacement of each equivalent suspension actuating hydraulic cylinder is calculated by using the method of the inverse position solution of a parallel mechanism, and then the equivalent actuating hydraulic cylinder is reversely driven according to the displacement, thereby realizing the effective control of the attitude of the vehicle body. To verify the effectiveness of the proposed control strategy, a three-axis vehicle experimental platform integrating active suspension and hydro-pneumatic suspension was built, and a pulse road experiment and gravel pavement experiment were carried out and compared with hydro-pneumatic suspension. Both types of road experimental results show that compared to hydro-pneumatic suspension, the active suspension control strategy based on the inverse position solution of a parallel mechanism proposed in this paper exhibits different degrees of advantages in reducing the peak values of the vehicle vertical displacement, pitch angle, and roll angle changes, as well as suppressing various vibration accelerations, significantly improving the vehicle’s driving smoothness and handling stability. Full article
Show Figures

Figure 1

19 pages, 1145 KiB  
Article
Speed Prediction Models for Tangent Segments Between Horizontal Curves Using Floating Car Data
by Giulia Del Serrone and Giuseppe Cantisani
Vehicles 2025, 7(3), 68; https://doi.org/10.3390/vehicles7030068 - 5 Jul 2025
Viewed by 196
Abstract
The integration of connected autonomous vehicles (CAVs), advanced driver assistance systems (ADAS), and conventional vehicles necessitates the development of robust methodologies to enhance traffic efficiency and ensure safety across heterogeneous traffic streams. A comprehensive understanding of vehicle interactions and operating speed variability is [...] Read more.
The integration of connected autonomous vehicles (CAVs), advanced driver assistance systems (ADAS), and conventional vehicles necessitates the development of robust methodologies to enhance traffic efficiency and ensure safety across heterogeneous traffic streams. A comprehensive understanding of vehicle interactions and operating speed variability is essential to support informed decision-making in traffic management and infrastructure design. This study presents operating speed models aimed at estimating the 85th percentile speed (V85) on straight road segments, utilizing floating car data (FCD) for both calibration and validation purposes. The dataset encompasses approximately 2000 km of the Italian road network, characterized by diverse geometric features. Speed observations were analyzed under three traffic conditions: general traffic, free-flow, and free-flow with dry pavement. Results indicate that free-flow conditions improve the model’s explanatory power, while dry pavement conditions introduce greater speed variability. Initial models based exclusively on geometric parameters exhibited limited predictive accuracy. However, the inclusion of posted speed limits significantly enhanced model performance. The most influential predictors identified were the V85 on the preceding curve and the length of the straight segment. These findings provide empirical evidence to inform road safety evaluations and geometric design practices, offering insights into driver behavior in mixed-traffic environments. The proposed model supports the development of data-driven strategies for the seamless integration of automated and non-automated vehicles. Full article
Show Figures

Figure 1

28 pages, 898 KiB  
Article
ADAS Technologies and User Trust: An Area-Based Study with a Sociodemographic Focus
by Salvatore Leonardi and Natalia Distefano
Vehicles 2025, 7(3), 67; https://doi.org/10.3390/vehicles7030067 - 4 Jul 2025
Viewed by 144
Abstract
This study investigates the knowledge, perception and trust in Advanced Driver Assistance Systems (ADAS) among drivers in Eastern Sicily, a Mediterranean region characterized by infrastructural and socio-economic differences. A structured survey (N = 961) was conducted to assess user attitudes towards eight key [...] Read more.
This study investigates the knowledge, perception and trust in Advanced Driver Assistance Systems (ADAS) among drivers in Eastern Sicily, a Mediterranean region characterized by infrastructural and socio-economic differences. A structured survey (N = 961) was conducted to assess user attitudes towards eight key ADAS technologies using two validated indices: the Knowledge Index (KI) and the Importance Index (II). To capture user consistency, a normalized product (z(KI) × z(II)) was calculated for each technology. This composite metric enabled the identification of three latent dimensions through exploratory factor analysis: Emergency-Triggered Systems, Adaptive and Reactive Systems and Driver Vigilance and Stability Systems. The results show a clear discrepancy between perceived importance (56.6%) and actual knowledge (35.1%). Multivariate analyses show that direct experience with ADAS-equipped vehicles significantly increases both awareness and confidence. Age is inversely correlated with knowledge, while gender has only a marginal influence. The results are consistent with established acceptance models such as TAM and UTAUT, which emphasize the role of perceived usefulness and trust. The study presents an innovative integration of psychometric metrics and behavioral theory that provides a robust and scalable framework for assessing user readiness in evolving mobility contexts, particularly in regions facing infrastructural heterogeneity and cultural changes in travel behavior. Full article
Show Figures

Figure 1

18 pages, 17565 KiB  
Article
Compact Full-Spectrum Driving Simulator Optimization for NVH Applications
by Haoxiang Xue, Gabriele Fichera, Massimiliano Gobbi, Giampiero Mastinu, Giorgio Previati and Diego Minen
Vehicles 2025, 7(3), 66; https://doi.org/10.3390/vehicles7030066 - 30 Jun 2025
Viewed by 154
Abstract
Evaluating noise, vibration, and harshness (NVH) performance is crucial in vehicle development. However, NVH evaluation is often subjective and challenging to achieve through numerical simulation, and typically prototypes are required. Dynamic driving simulators are emerging as a viable solution for assessing NVH performance [...] Read more.
Evaluating noise, vibration, and harshness (NVH) performance is crucial in vehicle development. However, NVH evaluation is often subjective and challenging to achieve through numerical simulation, and typically prototypes are required. Dynamic driving simulators are emerging as a viable solution for assessing NVH performance in the early development phase before physical prototypes are available. However, most current simulators can reproduce vibrations only in a single direction or within a limited frequency range. This paper presents a comprehensive design optimization approach to enhance the dynamic response of a full-spectrum driving simulator, addressing these limitations. Specifically, in complex driving simulators, vibration crosstalk is a critical and common issue, which usually leads to an inaccurate dynamic response of the system, compromising the realism of the driving experience. Vibration crosstalk manifests as undesired vibration components in directions other than the main excitation direction due to structural coupling. To limit the system crosstalk, a flexible multibody dynamics model of the driving simulator has been developed, validated, and employed for a global sensitivity analysis. From this analysis, it turns out that the bushings located below the seat play a crucial role in the crosstalk characteristics of the system and can be effectively optimized to obtain the desired performances. Bushings’ stiffness and locations have been used as design variables in a multiobjective optimization with the aims of increasing the direct transmissibility of the actuators’ excitation and, at the same time, reducing the crosstalk contributions. A surrogate model approach is employed for reducing the computational cost of the process. The results show substantial crosstalk reduction, up to 57%. The proposed method can be effectively applied to improve the dynamic response of driving simulators allowing for their extensive use in the assessment of vehicles’ NVH performances. Full article
Show Figures

Figure 1

14 pages, 1776 KiB  
Article
Dynamic Obstacle Avoidance Approach Based on Integration of A-Star and APF Algorithms for Vehicles in Complex Mountainous Environments
by Changlong Chen, Yuejin Lin, Lulin Zhan, Yuling He, Yi Zhang, Xiqiang Chi and Menghu Chen
Vehicles 2025, 7(3), 65; https://doi.org/10.3390/vehicles7030065 - 29 Jun 2025
Viewed by 204
Abstract
Complex mountainous environments pose significant challenges for dynamic path planning and obstacle avoidance of transport vehicles. In response, this paper presents an innovative path planning approach that combines an enhanced A* algorithm with the artificial potential field (APF) method. Firstly, the heuristic function [...] Read more.
Complex mountainous environments pose significant challenges for dynamic path planning and obstacle avoidance of transport vehicles. In response, this paper presents an innovative path planning approach that combines an enhanced A* algorithm with the artificial potential field (APF) method. Firstly, the heuristic function of the A* algorithm was improved, and path inflection points were optimized to enhance global path-planning efficiency and smoothness. Secondly, a target distance factor was introduced to modify the APF algorithm’s repulsive field function, solving the traditional APF’s target-unreachable problem. The integrated algorithm uses the A*-optimized inflection points as sub-target points for the APF, meeting real-time obstacle avoidance requirements in dynamic environments and conducting secondary path planning to avoid local minima. Impressively, static environment simulations demonstrated the integrated algorithm’s outstanding path-planning capabilities in complex terrains. Moreover, dynamic obstacle avoidance experiments revealed its remarkable ability to not only detect and evade dynamic obstacles but also maintain a safe distance from static ones. The findings highlight that this method significantly boosts path-planning efficiency while ensuring safety and global optimality in dynamic settings. This breakthrough offers crucial theoretical support for enhancing the navigation of mountain transport vehicles in complex, real-world scenarios, potentially improving their operation. Full article
(This article belongs to the Special Issue Design and Control of Autonomous Driving Systems)
Show Figures

Figure 1

18 pages, 5428 KiB  
Article
Computational Analysis of Wind-Induced Driving Safety Under Wind–Rain Coupling Effect Based on Field Measurements
by Dandan Xia, Chen Chen, Yongzhu Hu, Ziyong Lin, Zhiqun Yuan and Li Lin
Vehicles 2025, 7(3), 64; https://doi.org/10.3390/vehicles7030064 - 24 Jun 2025
Viewed by 247
Abstract
Extreme events such as tropical cyclones frequently occur in coastal areas in China. With high wind speeds and rainfall during such extreme events, the vehicles on sea-crossing bridges may face severe instability problems. In this study, the dynamics of vehicles on a cross-sea [...] Read more.
Extreme events such as tropical cyclones frequently occur in coastal areas in China. With high wind speeds and rainfall during such extreme events, the vehicles on sea-crossing bridges may face severe instability problems. In this study, the dynamics of vehicles on a cross-sea bridge under the wind–rain coupling effect were analyzed based on field measurement data using computational fluid dynamics (CFD). Wind field parameters of the coastal area in China were obtained using wind speed data from measurement towers. Based on CFD, the sliding grid method was applied to establish an aerodynamic analysis model of a container truck moving on a bridge under wind and rain conditions. The discrete phase model based on the Euler–Lagrange method was used to investigate the influence of rain and obtain the aerodynamic characteristics of the truck under the coupled wind and rain effects. Based on the computational analysis results, considering the turbulence intensity, the yaw angle peaks of the tractor and trailer increased by 5.2% and 3.8%, respectively, and the lateral displacement of the truck’s center of mass increased by 9.8%. Rainfall may cause the vehicle to have a higher response, resulting in a high risk of skidding. The results show that skidding occurs for the considered container truck when rainfall is at 9.8%. These results can provide parameters for traffic control strategies under such extreme climate events in coastal areas. Full article
Show Figures

Figure 1

19 pages, 4327 KiB  
Article
Research on a Two-Stage Human-like Trajectory-Planning Method Based on a DAC-MCLA Network
by Hao Xu, Guanyu Zhang and Huanyu Zhao
Vehicles 2025, 7(3), 63; https://doi.org/10.3390/vehicles7030063 - 24 Jun 2025
Viewed by 324
Abstract
Due to the complexity of the unstructured environment and the high-level requirement of smoothness when a tracked transportation vehicle is traveling, making the vehicle travel as safely and smoothly as when a skilled operator is maneuvering the vehicle is a critical issue worth [...] Read more.
Due to the complexity of the unstructured environment and the high-level requirement of smoothness when a tracked transportation vehicle is traveling, making the vehicle travel as safely and smoothly as when a skilled operator is maneuvering the vehicle is a critical issue worth studying. To this end, this study proposes a trajectory-planning method for human-like maneuvering. First, several field equipment operators are invited to manipulate the model vehicle for obstacle avoidance driving in an outdoor scene with densely distributed obstacles, and the manipulation data are collected. Then, in terms of the lateral displacement, by comparing the similarity between the data as well as the curvature change degree, the data with better smoothness are screened for processing, and a dataset of human manipulation behaviors is established for the training and testing of the trajectory-planning network. Then, using the dynamic parameters as constraints, a two-stage planning approach utilizes a modified deep network model to map trajectory points at multiple future time steps through the relationship between the spatial environment and the time series. Finally, after the experimental test and analysis with multiple methods, the root-mean-square-error and the mean-average-error indexes between the planned trajectory and the actual trajectory, as well as the trajectory-fitting situation, reveal that this study’s method is capable of planning long-step trajectory points in line with human manipulation habits, and the standard deviation of the angular acceleration and the curvature of the planned trajectory show that the trajectory planned using this study’s method has a satisfactory smoothness. Full article
Show Figures

Figure 1

20 pages, 3571 KiB  
Article
Investigation of Driving Safety on Desert Highways Under Crosswind Direction Disturbances
by Zheguang Zhang, Songli Chen and Wei Zhang
Vehicles 2025, 7(3), 62; https://doi.org/10.3390/vehicles7030062 - 23 Jun 2025
Viewed by 215
Abstract
Desert highways, with open terrain and minimal wind barriers, expose high-speed vehicles to significant stability risks from combined crosswinds and sand accumulation. This study uses numerical simulation to assess the effects of varying wind direction angles and sand thicknesses on vehicle stability across [...] Read more.
Desert highways, with open terrain and minimal wind barriers, expose high-speed vehicles to significant stability risks from combined crosswinds and sand accumulation. This study uses numerical simulation to assess the effects of varying wind direction angles and sand thicknesses on vehicle stability across different models. Five dynamic indicators—lateral displacement, yaw angle, aerodynamic sideslip angle, lateral acceleration, and roll angle—are analyzed. The results show that a 120° wind angle causes the most pronounced parameter changes, while stability is lowest at 150°, where critical thresholds are reached within 0.75 s and danger thresholds by 2.25 s. Rapid wind speed variations further degrade stability. Compared to small SUVs, mid-size SUVs perform worse under identical conditions. A comprehensive stability evaluation function is proposed to quantify the combined impact of wind angle and surface friction, providing a new approach for safety assessment on sand-covered desert roads. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop