Mitigating Power Deficits in Lean-Burn Hydrogen Engines with Mild Hybrid Support for Urban Vehicles
Abstract
1. Introduction
2. Materials and Methods
2.1. Engine Modeling and Lean Hydrogen Combustion Strategy
2.2. Vehicle Model and DoE for Hybrid Powertrain Optimization
3. Results and Discussion
3.1. Component Optimziation
3.2. Vehicle Behaviour
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BTE | Brake Thermal Efficiency |
CLTC-P | China Light-Duty Vehicle Test Cycle—Passenger |
DoE | Design of Experiments |
FTP75 | Federal Test Procedure 75 |
GT-SUITE | Gamma Technologies Simulation Environment |
ICE | Internal Combustion Engine |
LHS | Latin Hypercube Sampling |
NEDC | New European Driving Cycle |
NOx | Nitrogen Oxides |
NYCC | New York City Cycle |
P0, P1 | Mild Hybrid Powertrain Configurations (crankshaft-mounted motor architectures) |
RBC | Rule-Based Control |
WLTC | Worldwide Harmonized Light Vehicles Test Cycle |
Appendix A
- Engine Off, Vehicle Stopped;
- Engine Start, Vehicle Stopped;
- Engine Idle, Vehicle Stopped;
- Engine Start, Vehicle Moving;
- Normal Mode.
- Engine On–Off Status;
- Requested Engine Torque;
- Requested Motor Torque (Engine Equivalent);
- Brake Mode (0 = calculated, 1 = pass driver input);
- Friction Brake Torque (if calculated, Brake Mode == 1).
References
- Boningari, T.; Smirniotis, P.G. Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement. Curr. Opin. Chem. Eng. 2016, 13, 133–141. [Google Scholar] [CrossRef]
- Aryal, B.; Gurung, R.; Camargo, A.F.; Fongaro, G.; Treichel, H.; Mainali, B.; Angove, M.J.; Ngo, H.H.; Guo, W.; Puadel, S.R. Nitrous oxide emission in altered nitrogen cycle and implications for climate change. Environ. Pollut. 2022, 314, 12027. [Google Scholar] [CrossRef] [PubMed]
- Konnov, A.A.; Colson, G.; De Ruyck, J. NO formation rates for hydrogen combustion in stirred reactors. Fuel 2001, 80, 49–65. [Google Scholar] [CrossRef]
- Józsa, V. Mixture temperature-controlled combustion: A revolutionary concept for ultra-low NOX emission. Fuel 2021, 291, 120200. [Google Scholar] [CrossRef]
- Jamrozik, A. Lean combustion by a pre-chamber charge stratification in a stationary spark ignited engine. J. Mech. Sci. Technol. 2015, 29, 2269–2278. [Google Scholar] [CrossRef]
- Malakhov, O.S.; Usatiy, D.Y.; Dyorina, N.V. The Engine Control Unit Improvement for Air-Mixture Control and Engine Power Development. In Proceedings of the 2021 International Russian Automation Conference, Sochi, Russia, 5–11 September 2021; pp. 154–158. [Google Scholar] [CrossRef]
- Ran, Z.; Hariharan, D.; Lawler, B.; Mamalis, S. Experimental study of lean spark ignition combustion using gasoline, ethanol, natural gas, and syngas. Fuel 2019, 235, 530–537. [Google Scholar] [CrossRef]
- Wittek, K.; Cogo, V.; Prante, G. Full load optimization of a hydrogen fuelled industrial engine. Int. J. Hydrogen Energy 2024, 77, 230–243. [Google Scholar] [CrossRef]
- Patil, C.; Varade, S.; Wadkar, S. A Review of Engine Downsizing and its Effects. Int. J. Curr. Eng. Technol. 2017, Special Is, 319–324. Available online: https://inpressco.com/wp-content/uploads/2017/06/Paper75319-324.pdf (accessed on 22 August 2025).
- Silva, L.S.; Silva, J.A.; Henríquez, J.R.; de Lira Junior, J.C. Numerical Analysis of Effects of Engine Downsizing and Turbocharging on the Parameters of Performance and Emissions of an Internal Combustion Engine. Arab. J. Sci. Eng. 2023, 48, 2795–2805. [Google Scholar] [CrossRef]
- Fraser, N.; Blaxill, H.; Lumsden, G.; Bassett, M. Challenges for Increased Efficiency through Gasoline Engine Downsizing. SAE Int. J. Engines 2009, 2, 991–1008. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, Y.G.; Lai, M.C. Fuel economy improvement and emission reduction of 48 V mild hybrid electric vehicles with P0, P1, and P2 architectures with lithium battery cell experimental data. Adv. Mech. Eng. 2021, 13, 1–10. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, X.; Pei, H.; Peng, Z. Comparison of power-split and parallel hybrid powertrain architectures with a single electric machine: Dynamic programming approach. Appl. Energy 2016, 168, 683–690. [Google Scholar] [CrossRef]
- Zhang, B.; Shi, P.; Mou, X.; Li, H.; Zhao, Y.; Zheng, L. Energy Management Strategy for P1 + P3 Plug-In Hybrid Electric Vehicles. World Electr. Veh. J. 2023, 14, 332. [Google Scholar] [CrossRef]
- Bibiloni, S.; Irimescu, A.; Martinez-Boggio, S.; Merola, S.; Curto-Risso, P. Mild Hybrid Powertrain for Mitigating Loss of Volumetric Efficiency and Improving Fuel Economy of Gasoline Vehicles Converted to Hydrogen Fueling. Machines 2024, 12, 35. [Google Scholar] [CrossRef]
- Broussely, M. Battery Requirements for HEVs, PHEVs, and EVs: An Overview. In Electric and Hybrid Vehicles; Elsevier: North York, NY, USA, 2010; pp. 305–345. [Google Scholar] [CrossRef]
- Qiao, Q.; Zhao, F.; Liu, Z.; Jiang, S.; Hao, H. Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China. Appl. Energy 2017, 204, 1399–1411. [Google Scholar] [CrossRef]
- Challa, R.; Kamath, D.; Anctil, A. Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US. J. Environ. Manag. 2022, 308, 114592. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, H.; Li, Y.; Gao, J.; Dave, K.; Chen, J.; Li, T.; Tu, R. Exhaust and non-exhaust emissions from conventional and electric vehicles: A comparison of monetary impact values. J. Clean. Prod. 2022, 331, 129965. [Google Scholar] [CrossRef]
- Oh, H.; Lee, J.; Woo, S.; Park, H. Effect of synergistic engine technologies for 48 V mild hybrid electric vehicles. Energy Convers. Manag. 2021, 244, 114515. [Google Scholar] [CrossRef]
- Benajes, J.; García, A.; Monsalve-Serrano, J.; Martínez-Boggio, S. Optimization of the parallel and mild hybrid vehicle platforms operating under conventional and advanced combustion modes. Energy Convers. Manag. 2019, 190, 73–90. [Google Scholar] [CrossRef]
- Hao, C.; Lu, Z.; Feng, Y.; Bai, H.; Wen, M.; Wang, T. Optimization of fuel/air mixing and combustion process in a heavy-duty diesel engine using fuel split device. Appl. Therm. Eng. 2021, 186, 116458. [Google Scholar] [CrossRef]
- Zhang, M.; Cao, J. Effects of Lean Burn on Combustion and Emissions of a DISI Engine Fueled with Methanol–Gasoline Blends. Energies 2024, 17, 4023. [Google Scholar] [CrossRef]
- Chintala, V.; Subramanian, K.A. CFD analysis on effect of localized in-cylinder temperature on nitric oxide (NO) emission in a compression ignition engine under hydrogen-diesel dual-fuel mode. Energy 2016, 116, 470–488. [Google Scholar] [CrossRef]
- Li, R.; Liu, Z.; Han, Y.; Tan, M.; Xu, Y.; Tian, J.; Yan, J.; Meng, X.; Wei, M.; Hu, S.; et al. Experimental study of the combustion and emission characteristics of ethanol, diesel-gasoline, n-heptane-iso-octane, n-heptane-ethanol and decane-ethanol in a constant volume vessel. Fuel 2018, 232, 233–250. [Google Scholar] [CrossRef]
- White, C.M.; Steeper, R.R.; Lutz, A.E. The hydrogen-fueled internal combustion engine: A technical review. Int. J. Hydrogen Energy 2006, 31, 1292–1305. [Google Scholar] [CrossRef]
- Irimescu, A.; Vaglieco, B.M.; Merola, S.S.; Zollo, V.; De Marinis, R. Conversion of a Small-Size Passenger Car to Hydrogen Fueling: 0D/1D Simulation of EGR and Related Flow Limitations. Appl. Sci. 2024, 14, 844. [Google Scholar] [CrossRef]
- Zhai, C.; Zhang, J.; Li, K.; Dong, P.; Jin, Y.; Chang, F.; Luo, H. Comparative analysis and normalization of single-hole vs. multi-hole spray characteristics: 1st report on spray characteristic comparison. Green Energy Resour. 2025, 3, 100120. [Google Scholar] [CrossRef]
- An, C.; Liu, L.; Luo, H.; Zhou, B.; Liu, Y.; Li, X.; Nishida, K. Threshold sensitivity study on spray–spray impingement under flexible injection strategy for fuel/air mixture evaluation. Phys. Fluids 2025, 37, 65124. [Google Scholar] [CrossRef]
- Gao, J.; Wang, X.; Song, P.; Tian, G.; Ma, C. Review of the backfire occurrences and control strategies for port hydrogen injection internal combustion engines. Fuel 2022, 307, 121553. [Google Scholar] [CrossRef]
- Ricci, F.; Zembi, J.; Avana, M.; Grimaldi, C.N.; Battistoni, M.; Papi, S. Analysis of Hydrogen Combustion in a Spark Ignition Research Engine with a Barrier Discharge Igniter. Energies 2024, 17, 1739. [Google Scholar] [CrossRef]
- Martinez, S.; Irimescu, A.; Merola, S.; Lacava, P.; Curto-Riso, P. Flame Front Propagation in an Optical GDI Engine under Stoichiometric and Lean Burn Conditions. Energies 2017, 10, 1337. [Google Scholar] [CrossRef]
- Martinez, S.; Lacava, P.; Curto, P.L.; Irimescu, A.; Merola, S.S. Effect of Hydrogen Enrichment on Flame Morphology and Combustion Evolution in a SI Engine Under Lean Burn Conditions. In Proceedings of the SAE World 2018, Detroit, MI, USA, 10–12 April 2018; pp. 1–15. [Google Scholar] [CrossRef]
- Kosmadakis, G.M.; Rakopoulos, D.C.; Rakopoulos, C.D. Methane/hydrogen fueling a spark-ignition engine for studying NO, CO and HC emissions with a research CFD code. Fuel 2016, 185, 903–915. [Google Scholar] [CrossRef]
- Mehra, R.K.; Duan, H.; Juknelevičius, R.; Ma, F.; Li, J. Progress in hydrogen enriched compressed natural gas (HCNG) internal combustion engines—A comprehensive review. Renew. Sustain. Energy Rev. 2017, 80, 1458–1498. [Google Scholar] [CrossRef]
- Joshi, A. A Review of Emissions Control Technologies for On-Road Vehicles. In Engines and Fuels for Future Transport; Springer Nature: Berlin/Heidelberg, Germany, 2022; pp. 39–56. [Google Scholar] [CrossRef]
- Basavaradder, A.B.; Dayananda, P.K.; Chethan, K.N. Review on alternative propulsion in automotives -hybrid vehicles. Int. J. Eng. Technol. 2018, 7, 1311. [Google Scholar] [CrossRef]
Parameter | Specification |
---|---|
Engine displacement | 599 cm3 |
Cylinder configuration | 3 in-line cylinders |
Intake system | Turbocharged |
Fuel delivery | PFI: 3.5 bar (gasoline), 5.0 bar (hydrogen) |
Peak output | 40 kW at 5250 rpm |
Ignition setup | Dual-spark, inductive discharge per cylinder |
Bore and stroke | 63.5 mm × 63 mm |
Compression ratio | 9.5:1 |
Valvetrain | 2 valves per cylinder |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez-Boggio, S.; Bibiloni, S.; Rivoir, F.; Irimescu, A.; Merola, S. Mitigating Power Deficits in Lean-Burn Hydrogen Engines with Mild Hybrid Support for Urban Vehicles. Vehicles 2025, 7, 88. https://doi.org/10.3390/vehicles7030088
Martinez-Boggio S, Bibiloni S, Rivoir F, Irimescu A, Merola S. Mitigating Power Deficits in Lean-Burn Hydrogen Engines with Mild Hybrid Support for Urban Vehicles. Vehicles. 2025; 7(3):88. https://doi.org/10.3390/vehicles7030088
Chicago/Turabian StyleMartinez-Boggio, Santiago, Sebastián Bibiloni, Facundo Rivoir, Adrian Irimescu, and Simona Merola. 2025. "Mitigating Power Deficits in Lean-Burn Hydrogen Engines with Mild Hybrid Support for Urban Vehicles" Vehicles 7, no. 3: 88. https://doi.org/10.3390/vehicles7030088
APA StyleMartinez-Boggio, S., Bibiloni, S., Rivoir, F., Irimescu, A., & Merola, S. (2025). Mitigating Power Deficits in Lean-Burn Hydrogen Engines with Mild Hybrid Support for Urban Vehicles. Vehicles, 7(3), 88. https://doi.org/10.3390/vehicles7030088