Research on Electric Vehicle Differential System Based on Vehicle State Parameter Estimation
Abstract
1. Introduction
2. Design of Vehicle State Parameter Estimator
2.1. Vehicle Model
2.2. Tire Model
2.3. Design of Maximum Correntropy Criterion Unscented Kalman Filter Estimator
3. Design of Speed Differential and Torque Differential Controllers
3.1. Speed Differential Control
3.2. Torque Differential Control
3.2.1. Design of a Novel Sliding Mode Controller
3.2.2. Torque Distribution Strategy
4. Simulation Analysis
4.1. Simulation of Vehicle State Parameter Estimation
4.1.1. Double Lane Change
4.1.2. Slalom Test
4.2. Vehicle Stability Simulation
4.2.1. Double Lane-Change Maneuver on Road Surfaces
4.2.2. Double Lane-Change Maneuver Under Low Tire–Road Friction Coefficients
4.2.3. Slalom Test on Composite Road Surfaces
4.2.4. Slalom Test Under Low Tire–Road Friction Coefficients
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.D.; Guo, G.F. A review of torque allocation strategies for distributed drive electric vehicles. Automot. Pract. Technol. 2020, 45, 230–236+248. [Google Scholar] [CrossRef]
- Xue, H.Y.; Lian, J.Y.; Wang, J.L.; Ren, Y.Q. Improvement of Ackerman steering model and simulation of electronic differential control. Automot. Pract. Technol. 2020, 10, 118–121. [Google Scholar] [CrossRef]
- Wang, P.; Tao, X.S.; Cao, X.Y. Review on electronic differential system for pure electric vehicles. Automot. Pract. Technol. 2020, 6, 27–30. [Google Scholar] [CrossRef]
- Zhao, N.N.; Shi, B. Research on torque-based electronic differential control strategies for distributed electric vehicles. Mech. Sci. Technol. 2024, 43, 1915–1922. [Google Scholar] [CrossRef]
- Yao, F.; Lin, X.H.; Wu, Z.B.; Li, G.Q. Review of electronic differential control technologies for electric vehicles. Acta Autom. Sin. 2021, 47, 1785–1798. [Google Scholar] [CrossRef]
- Xu, J.L.; Zhang, G.J. Vehicle state estimation using adaptive two-layer unscented Kalman filter. J. Chongqing Univ. Technol. (Nat. Sci.) 2024, 38, 29–36. [Google Scholar]
- Jin, X.; Yang, J.; Xu, L.; Xu, L.; Wei, C.; Wang, Z.; Yin, G. Combined estimation of vehicle dynamic state and inertial parameter for electric vehicles based on dual central difference Kalman filter method. Chin. J. Mech. Eng. 2023, 36, 357–372. [Google Scholar] [CrossRef]
- Dawei, C.; Wen, P. Vehicle state and parameter estimation based on adaptive robust unscented particle filter. J. Vibroeng. 2022, 25, 392–408. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, X. RBCKF-based vehicle state estimation by adaptive weighted fusion strategy considering composite-state tire model. World Electr. Veh. J. 2024, 15, 517. [Google Scholar] [CrossRef]
- Fan, R.; Li, G.; Wu, Y. State estimation of distributed drive electric vehicle based on adaptive Kalman filter. Sustainability 2023, 15, 13531. [Google Scholar] [CrossRef]
- Van Dong, N.; Thai, P.Q.; Duc, P.M.; Thuan, N.V. Estimation of vehicle dynamics states using Luenberger observer. Int. J. Mech. Eng. Robot. Res. 2019, 8, 430–436. [Google Scholar]
- Moussa, B.H.; Bakhti, M. Nonlinear tyre model-based sliding mode observer for vehicle state estimation. Int. J. Dyn. Control 2024, 12, 2944–2957. [Google Scholar] [CrossRef]
- Yang, B.; Wang, H.; Shi, Z. Interacting multiple model adaptive robust Kalman filter for process and measurement modeling errors simultaneously. Signal Process 2025, 227, 109743. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Deng, K.; Shi, B.; Wang, X.; Li, L.; Song, J. Vehicle Dynamics Estimator Utilizing LSTM-Ensembled Adaptive Kalman Filter. IEEE Trans. Ind. Electron. 2025, 72, 5429–5439. [Google Scholar] [CrossRef]
- Ding, H.T.; Guo, K.H.; Chen, H. LQR method for yaw moment decision in vehicle stability control. J. Jilin Univ. (Eng. Technol. Ed.) 2010, 40, 597–601. [Google Scholar] [CrossRef]
- Zhu, S.; Lu, J.; Zhu, L.; Chen, H.; Gao, J.; Xie, W. Coordinated control of differential drive-assist steering and direct yaw moment control for distributed-drive electric vehicles. Electronics 2024, 13, 3711. [Google Scholar] [CrossRef]
- Xue, H.T.; Zhang, Y.L.; Song, Z.W.; Feng, H. Fault-tolerant control of four-wheel-hub-drive electric vehicles based on MPC-MSCA. J. Traffic Transp. Eng. 2024, 24, 148–158. [Google Scholar] [CrossRef]
- Feng, H.; Tao, Y.; Feng, J.; Zhang, Y.; Xue, H.; Wang, T.; Xing, X.; Chen, P. Fault-tolerant collaborative control of four-wheel-drive electric vehicle for one or more in-wheel motors’ faults. Sensors 2025, 25, 1540. [Google Scholar] [CrossRef]
- Liao, Z.; Cai, L.; Li, J.; Zhang, Y.; Liu, C. Direct yaw moment control of eight-wheeled distributed drive electric vehicles based on super-twisting sliding mode control. Front. Mech. Eng. 2024, 9, 115. [Google Scholar] [CrossRef]
- Liu, J.; Shen, J.; Liu, H.; Huang, H. Direct yaw-moment control of vehicles based on phase plane analysis. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2022, 236, 2459–2474. [Google Scholar] [CrossRef]
- Wang, F.X.; Yin, G.D.; Shen, T.; Ren, Y.; Wang, Y.; Feng, B. Nonlinear robust fusion estimation of sideslip angle and tire lateral force for four-wheel-drive electric vehicles. China Mech. Eng. 2022, 33, 2673–2683. [Google Scholar]
- Fu, X.; Sun, W.; Huang, B.; Xing, A.J.; Wang, J. Road adhesion coefficient estimation based on exponentially weighted fading memory unscented Kalman filter. Automob. Technol. 2018, 1, 31–37. [Google Scholar] [CrossRef]
- Chen, B.; Liu, X.; Zhao, H.; Principe, J.C. Maximum correntropy Kalman filter. Automatica 2017, 76, 70–77. [Google Scholar] [CrossRef]
- Liu, X.; Ren, Z.; Lyu, H.; Jiang, Z.; Ren, P.; Chen, B. Linear and nonlinear regression-based maximum correntropy extended Kalman filtering. IEEE Trans. Syst. 2019, 51, 3093–3102. [Google Scholar] [CrossRef]
- Zhang, F.; Feng, J.; Qi, D.; Liu, Y.; Shao, W.; Qi, J.; Lin, Y. Joint estimation of vehicle state and parameter based on maximum correntropy adaptive unscented Kalman filter. Int. J. Automot. Technol. 2023, 24, 1553–1566. [Google Scholar] [CrossRef]
- Zhang, H.F. Research on Electronic Differential Control Strategy for Compact Cars Based on Ackerman Model. Master’s Thesis, Inner Mongolia University of Technology, Hohhot, China, 2023. [Google Scholar] [CrossRef]
- Zhu, J.N. Research on Yaw Stability Control Strategy for Distributed Drive Electric Vehicles Based on Torque Distribution. Master’s Thesis, Beijing Institute of Technology, Beijing, China, 2017. [Google Scholar] [CrossRef]
- Qin, Y.F. Research on Rear-Wheel Differential Steering Control for Electric Vehicles. Master’s Thesis, Changchun University of Technology, Changchun, China, 2022. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, F.; Zhang, Y.; Su, L.; Gong, G. Yaw stability research of the distributed drive electric bus by adaptive nonsingular fast terminal sliding mode control. Machines 2022, 10, 969. [Google Scholar] [CrossRef]
- Zhu, S.P.; Lyu, C. Distributed Drive Control Technology for Hub Motors; China Machine Press: Beijing, China, 2022; p. 231. [Google Scholar]
Parameter | Value |
---|---|
Total vehicle mass/kg | 1412 |
Distance from center of mass to front axis/m | 1.015 |
Distance from center of mass to rear axis/m | 1.895 |
Yaw moment of inertia/(kg·m2) | 1536.7 |
Track width/m | 1.675 |
Height of center of gravity/m | 0.54 |
Tire rolling radius/m | 0.325 |
Parameter | UKF | MCCUKF | Difference |
---|---|---|---|
Longitudinal velocity | 0.02350 | 0.00890 | 0.01460 |
Sideslip angle at the center of mass | 0.00100 | 0.00078 | 0.00022 |
Yaw rate | 0.00120 | 0.00079 | 0.00041 |
Parameter | UKF | MCCUKF | Difference |
---|---|---|---|
Longitudinal velocity | 0.02020 | 0.00870 | 0.01150 |
Sideslip angle at the center of mass | 0.00053 | 0.00038 | 0.00015 |
Yaw rate | 0.00220 | 0.00083 | 0.00137 |
Parameter | Without Control | Speed Control | Torque Control |
---|---|---|---|
Yaw rate | 0.0166 | 0.0115 | 0.0092 |
Sideslip angle at the center of mass | 0.0094 | 0.0088 | 0.0084 |
Parameter | Without Control | Speed Control | Torque Control |
---|---|---|---|
Yaw rate | 0.0316 | 0.0254 | 0.0203 |
Sideslip angle at the center of mass | 0.0065 | 0.0054 | 0.0028 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Wang, H. Research on Electric Vehicle Differential System Based on Vehicle State Parameter Estimation. Vehicles 2025, 7, 80. https://doi.org/10.3390/vehicles7030080
Sun H, Wang H. Research on Electric Vehicle Differential System Based on Vehicle State Parameter Estimation. Vehicles. 2025; 7(3):80. https://doi.org/10.3390/vehicles7030080
Chicago/Turabian StyleSun, Huiqin, and Honghui Wang. 2025. "Research on Electric Vehicle Differential System Based on Vehicle State Parameter Estimation" Vehicles 7, no. 3: 80. https://doi.org/10.3390/vehicles7030080
APA StyleSun, H., & Wang, H. (2025). Research on Electric Vehicle Differential System Based on Vehicle State Parameter Estimation. Vehicles, 7(3), 80. https://doi.org/10.3390/vehicles7030080