Previous Issue
Volume 11, September
 
 

J. Fungi, Volume 11, Issue 10 (October 2025) – 50 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
23 pages, 2591 KB  
Review
Edible Fungi Melanin: Recent Advances in Extraction, Characterization, Biological Activity and Applications
by Jiandong Tang, Hebin Shen, Wenyu Lv, Jingxuan Zhang and Junsheng Fu
J. Fungi 2025, 11(10), 738; https://doi.org/10.3390/jof11100738 (registering DOI) - 14 Oct 2025
Abstract
Natural melanin biopolymers exhibit a variety of biological activities, but their commercial development is constrained by numerous factors, including high costs, unsustainable sources, the use of harmful solvents during extraction, and low extraction efficiency. Notably, existing research indicates that synthetic melanin differs from [...] Read more.
Natural melanin biopolymers exhibit a variety of biological activities, but their commercial development is constrained by numerous factors, including high costs, unsustainable sources, the use of harmful solvents during extraction, and low extraction efficiency. Notably, existing research indicates that synthetic melanin differs from natural melanin in nature, and this difference may directly impact its application efficacy. Additionally, the extraction process itself is highly challenging, primarily due to the diversity and complexity of melanin biopolymer structures. The melanin produced by edible fungi primarily belongs to the eumelanin category. Given its outstanding sustainability and accessibility, it is regarded as an ideal raw material for industrial production. To deepen our understanding of edible fungus-derived melanin and promote its effective application across various fields, a comprehensive review of research on melanin isolated from edible fungi is urgently needed. Such a review will help researchers from different disciplinary backgrounds recognize the importance of edible fungus melanin and provide reference information for their research planning. With this objective in mind, this report reviews the latest research progress in recent years regarding extraction methods, structural characterization, biological activity, and application areas of edible fungus-derived melanin. Additionally, the report explores key characteristic parameters for distinguishing different types of melanin and emphasizes the importance of deepening our understanding of the biosynthetic mechanisms of edible mushroom melanin, aiming to lay the foundation for its efficient production and application in the future. Full article
(This article belongs to the Special Issue Research Progress on Edible Fungi)
Show Figures

Figure 1

15 pages, 3399 KB  
Article
Comparative Symbiotic Effects of Mycorrhizal Fungal Strains from Different Hosts on Seed Germination and Seedling Growth in Dendrobium officinale
by Jian-Yu He, Xiao-Yan Xie, Zhuo-Qi Liang, Jian-Xia Zhang, Shu Liu and Xiao-Lan Zhao
J. Fungi 2025, 11(10), 737; https://doi.org/10.3390/jof11100737 (registering DOI) - 14 Oct 2025
Abstract
Compatible fungal partners of orchids can significantly enhance seed germination and increase seedling establishment under both in vitro and in situ conditions. This study isolated 14 Tulasnella isolates from five-year-old potted plants of three D. officinale cultivars. Three phylogenetically representative strains (Dca122, Dca222, [...] Read more.
Compatible fungal partners of orchids can significantly enhance seed germination and increase seedling establishment under both in vitro and in situ conditions. This study isolated 14 Tulasnella isolates from five-year-old potted plants of three D. officinale cultivars. Three phylogenetically representative strains (Dca122, Dca222, and Dca113) and two additional orchid mycorrhizal fungus (OMFs, ML01 and Pi) were selected to evaluate their effects on D. officinale seed germination and seedling development in vitro, and subsequent seedling growth under greenhouse conditions. All five OMFs supported seed germination and seedling development in vitro. Notably, Dca113, Pi, and ML01 exhibited the most pronounced effects, producing protocorms 3–4 times larger in volume than controls. By day 25, 37.54%, 37.34%, and 42.6% of protocorms developed cotyledons with these isolates, respectively. Furthermore, after 120 days, ML01 and Dca113 treatments yielded 35.6% and 30.68% autotrophic seedlings with fully differentiated roots. Under greenhouse, ML01, Pi, and Dca122 significantly enhanced fresh weight accumulation, plant height, and stem node number in potted seedlings. In contrast, Dca222 primarily stimulated sprouting tillers and adventitious root formation. Our results demonstrate that the mycorrhizal effectiveness of OMFs from different hosts varies significantly in D. officinale. ML01 and Dca113 are ideal candidates for reintroduction programs due to their strong promotion of seed germination and rapid formation of rooted seedlings. ML01 proved the most effective OMF for enhancing growth in potted seedlings, while Dca222 demonstrated potential for co-inoculation strategies. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

28 pages, 7993 KB  
Article
AoMbp1 Governs Conidiation and Trap Morphogenesis in Arthrobotrys oligospora Via Direct Transcriptional Activation of the MAPK Sensor AoSho1
by Ruobing Li, Lixiang Wei, Yanseng Sun, Chengzhi Zhang, Yuhang Nie, Qinglong Meng, Shuang Chen, Ming Wu, Xuepeng Cai, Jie Li, Qingling Meng and Jun Qiao
J. Fungi 2025, 11(10), 736; https://doi.org/10.3390/jof11100736 (registering DOI) - 13 Oct 2025
Abstract
The nematode-trapping fungus (NTF) Arthrobotrys oligospora (A. oligospora) is a promising biocontrol agent, but the transcriptional regulators governing its predation remain poorly understood. Here, we demonstrated that the APSES transcription factor AoMbp1 is a master regulator of its development and stress [...] Read more.
The nematode-trapping fungus (NTF) Arthrobotrys oligospora (A. oligospora) is a promising biocontrol agent, but the transcriptional regulators governing its predation remain poorly understood. Here, we demonstrated that the APSES transcription factor AoMbp1 is a master regulator of its development and stress adaptation. Deletion of AoMbp1 severely impaired mycelial growth, conidiation, trap formation, and tolerance to oxidative and osmotic stresses. Transcriptome analysis revealed that these defects were associated with the widespread downregulation of genes, including those within the MAPK signaling pathway. Crucially, we showed that AoMbp1 directly binds to the promoter of AoSho1, a key upstream sensor of the MAPK cascade, and activates its expression. This finding establishes a direct AoMbp1-AoSho1 regulatory axis controlling trap morphogenesis and environmental adaptation. Our study provides novel mechanistic insights into the regulation of nematode trapping and identifies a potential target for enhancing the efficacy of A. oligospora as a biocontrol agent. Full article
(This article belongs to the Special Issue Stress Research in Filamentous Fungi and Yeasts)
Show Figures

Graphical abstract

11 pages, 654 KB  
Systematic Review
Candida krusei Empyema: A Lung Transplant Case and Systematic Review of the Literature
by Shifa Karatela, Sangeeta Nair-Collins, Gabriel Godart, Mary Ann Peacock, Kelly Larimore, Kristin Cuthbert, Bala Munipalli, Rohit Chitale, Ravi Durvasula and Justin Oring
J. Fungi 2025, 11(10), 735; https://doi.org/10.3390/jof11100735 (registering DOI) - 13 Oct 2025
Viewed by 91
Abstract
Candida krusei empyema is a rare but serious manifestation of invasive candidiasis, characterized by intrinsic resistance to fluconazole, biofilm formation, and high mortality, with limited case-level data to inform management. This review aims to systematically identify and synthesize all reported English-language cases of [...] Read more.
Candida krusei empyema is a rare but serious manifestation of invasive candidiasis, characterized by intrinsic resistance to fluconazole, biofilm formation, and high mortality, with limited case-level data to inform management. This review aims to systematically identify and synthesize all reported English-language cases of Candida krusei empyema from January 2005 to June 2025 using PubMed, ScienceDirect, OVID MEDLINE, and Gale OneFile and perform descriptive analysis on them. Screening, data extraction, and eligibility assessment were performed, and those articles not clearly meeting eligibility criteria were reviewed by additional reviewers with consensus resolution. Seven publications (six individual cases and two cohorts) were included. We additionally describe the clinical course, management, and outcome of a 70-year-old bilateral lung transplant patient who developed persistent C. krusei empyema despite optimized antifungal therapy. Patients ranged from 11 to 74 years of age (median 62.5 years). Predisposing factors included esophageal perforation (n = 4), post-transplant hemorrhage (n = 1), community-acquired empyema (n = 1), and thoracic surgery (n = 1). Empiric fluconazole was switched to caspofungin (3/4), with others receiving amphotericin B, voriconazole, or combination therapy. Source control varied: chest tube drainage (n = 3), percutaneous catheter (n = 3), and surgical decortication (n = 2). Mortality was 14.3% (1/7). In the absence of clear guidelines and robust literature, the management approach remains heterogeneous. Optimal care requires early recognition, aggressive multimodal antifungal therapy, and effective source control tailored to patient risk. Standardized antifungal protocols and larger case series are needed to guide clinicians in managing this challenging infection. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

9 pages, 281 KB  
Brief Report
Baseline Sensitivity and Resistance Detection of Stemphylium lycopersici to Pydiflumetofen
by Xiangyu Liu, Kexin Yang, Jie Wu, Qiuyan Bi, Fen Lu, Jiqiang Wang and Jianjiang Zhao
J. Fungi 2025, 11(10), 734; https://doi.org/10.3390/jof11100734 (registering DOI) - 11 Oct 2025
Viewed by 111
Abstract
Tomato gray leaf spot (TGLS), caused by Stemphylium spp., is a common disease leading to significant economic losses in tomato production. Pydiflumetofen is a novel succinate dehydrogenase inhibitor (SDHI) fungicide that has been registered for TGLS management. To evaluate the susceptibility of S. [...] Read more.
Tomato gray leaf spot (TGLS), caused by Stemphylium spp., is a common disease leading to significant economic losses in tomato production. Pydiflumetofen is a novel succinate dehydrogenase inhibitor (SDHI) fungicide that has been registered for TGLS management. To evaluate the susceptibility of S. lycopersici to pydiflumetofen in tomato-producing regions of Hebei Province, we determined the sensitivity of 212 S. lycopersici isolates using mycelial growth inhibition. The sensitivity distribution exhibited a multimodal pattern. Resistance to pydiflumetofen was observed in some field isolates, with highly resistant isolates being identified in Chengde, Hengshui, and Tangshan. After removing outliers, the baseline sensitivity of S. lycopersici to pydiflumetofen was established, with a mean EC50 value of 1.0400 ± 0.0515 μg/mL. Sequence analysis revealed point mutations only in SdhC (SdhCS73P, SdhCG79R, SdhCH134R, SdhCS135R) among the resistant isolates. No significant differences were observed between certain resistant isolates (FQSL1-10 and FQSL1-14) and the sensitive isolates in temperature adaptability, mycelial growth rate, or pathogenicity. These results suggest that pydiflumetofen has high activity against TGLS, but integrated fungicide application is necessary for delaying resistance evolution in TGLS management. Full article
(This article belongs to the Special Issue Plant Fungal Diseases and Crop Protection, 2nd Edition)
Show Figures

Figure 1

13 pages, 1627 KB  
Technical Note
Development and Optimization of Multi-Well Colorimetric Assays for Growth of Coccidioides posadasii Spherules and Their Application in Large-Scale Screening
by Augusto Vazquez-Rodriguez, Jieh-Juen Yu, Chiung-Yu Hung and Jose L. Lopez-Ribot
J. Fungi 2025, 11(10), 733; https://doi.org/10.3390/jof11100733 (registering DOI) - 11 Oct 2025
Viewed by 170
Abstract
Coccidioides immitis and Coccidioides posadasii, the causative agents of coccidioidomycosis, represent a major public health concern in endemic regions of North and South America. The disease spectrum ranges from mild respiratory illness to severe disseminated infections, with thousands of cases reported annually [...] Read more.
Coccidioides immitis and Coccidioides posadasii, the causative agents of coccidioidomycosis, represent a major public health concern in endemic regions of North and South America. The disease spectrum ranges from mild respiratory illness to severe disseminated infections, with thousands of cases reported annually in the United States and an increasing recognition of its global impact. Despite existing antifungal therapies, treatment remains challenging due to toxicity, drug resistance, and limited therapeutic options. High-throughput screening platforms have revolutionized drug discovery for infectious diseases; however, progress in antifungal screening for Coccidioides spp. has been hampered by the requirement for Biosafety Level 3 (BSL-3) containment. To overcome these barriers, we leveraged an attenuated C. posadasii strain that can be safely handled under BSL-2 conditions. Here, we describe the development and optimization of 96-well and 384-well plate screening methodologies, providing a safer and more efficient platform for antifungal discovery. This approach enhances the feasibility of large-scale screening efforts and may facilitate the identification of novel therapeutics for coccidioidomycosis. Full article
Show Figures

Figure 1

14 pages, 13425 KB  
Article
Evaluation of Wood Decay and Identification of Fungi Found in the USS Cairo, a Historic American Civil War Ironclad Gunboat
by Robert A. Blanchette, Benjamin W. Held, Claudia Chemello and Paul Mardikian
J. Fungi 2025, 11(10), 732; https://doi.org/10.3390/jof11100732 (registering DOI) - 11 Oct 2025
Viewed by 151
Abstract
Studies of microbial degradation of historic woods are essential to help protect and preserve these important cultural properties. The USS Cairo is a historic Civil War gunboat and one of the first steam-powered and ironclad ships used in the American Civil War. Built [...] Read more.
Studies of microbial degradation of historic woods are essential to help protect and preserve these important cultural properties. The USS Cairo is a historic Civil War gunboat and one of the first steam-powered and ironclad ships used in the American Civil War. Built in 1861, the ship sank in the Yazoo River of Mississippi in 1862 after a mine detonated and tore a hole in the port bow. The ship remained on the river bottom and was gradually buried with sediments for over 98 years. After recovery of the ship, it remained exposed to the environment before the first roofed structure was completed in 1980, and it has been displayed under a tensile fabric canopy with open sides at the Vicksburg National Military Park in Vicksburg, Mississippi. Concerns over the long-term preservation of the ship initiated this investigation to document the current condition of the wooden timbers, identify the fungi that may be present, and determine the elemental composition resulting from past wood-preservative treatments. Micromorphological characteristics observed using scanning electron microscopy showed that many of the timbers were in advanced stages of degradation. Eroded secondary cell walls leaving a weak framework of middle lamella were commonly observed. Soft rot attack was prevalent, and evidence of white and brown rot degradation was found in some wood. DNA extraction and sequencing of the ITS region led to the identification of a large group of diverse fungi that were isolated from ship timbers. Soft rot fungi, including Alternaria, Chaetomium, Cladosporium, Curvularia, Xylaria and others, and white rot fungi, including Bjerkandera, Odontoefibula, Phanerodontia, Phlebiopsis, Trametes and others, were found. No brown rot fungi were isolated. Elemental analyses using induced coupled plasma spectroscopy revealed elevated levels of all elements as compared to sound modern types of wood. High concentrations of boron, copper, iron, lead, zinc and other elements were found, and viable fungi were isolated from this wood. Biodegradation issues are discussed to help long-term conservation efforts to preserve the historic ship for future generations. Full article
(This article belongs to the Special Issue Mycological Research in Cultural Heritage Protection)
Show Figures

Figure 1

22 pages, 471 KB  
Review
Azole-Resistant Aspergillus fumigatus: Epidemiology, Diagnosis, and Treatment Considerations
by Anna Zubovskaia
J. Fungi 2025, 11(10), 731; https://doi.org/10.3390/jof11100731 (registering DOI) - 10 Oct 2025
Viewed by 444
Abstract
Invasive aspergillosis is an opportunistic infection caused by the Aspergillus species. It is a significant cause of morbidity and mortality in susceptible populations, including recipients of bone marrow and solid organ transplants. Azole antifungals have remained the first-line treatment for invasive aspergillosis for [...] Read more.
Invasive aspergillosis is an opportunistic infection caused by the Aspergillus species. It is a significant cause of morbidity and mortality in susceptible populations, including recipients of bone marrow and solid organ transplants. Azole antifungals have remained the first-line treatment for invasive aspergillosis for a long time; however, the advance of azole resistance in Aspergillus fumigatus, driven predominantly by extensive commercial and agricultural use of azole fungicides and environmental exposure of susceptible populations to the resistant strains, renders the traditional therapeutic approaches less effective and results in further increase in mortality. The epidemiology, molecular mechanisms of azole resistance, diagnostic approaches, and clinical implications of azole resistance in Aspergillus fumigatus sensu stricto will be discussed in this article (for ease of comprehension, the rest of this article will refer to A. fumigatus sensu stricto as A. fumigatus). Full article
13 pages, 10246 KB  
Article
A Model of the Current Geographic Distribution and Predictions of Future Range Shifts of Lentinula edodes in China Under Multiple Climate Change Scenarios
by Wei-Jun Li, Rui-Heng Yang, Ting Guo, Sheng-Jin Wu, Yu Li and Da-Peng Bao
J. Fungi 2025, 11(10), 730; https://doi.org/10.3390/jof11100730 - 10 Oct 2025
Viewed by 265
Abstract
Due to its ecological functions, huge economic benefits, and excellent nutritional and physiological activities, Lentinula edodes is a very popular edible fungus in Asia, especially in China. Changes in the distribution and population of wild L. edodes play an important role in conservation, [...] Read more.
Due to its ecological functions, huge economic benefits, and excellent nutritional and physiological activities, Lentinula edodes is a very popular edible fungus in Asia, especially in China. Changes in the distribution and population of wild L. edodes play an important role in conservation, variety improvements, and breeding. This investigation detected wild L. edodes in 28 provinces and municipalities in China, encompassing approximately 300 regions and natural reserves. MaxEnt analysis of 53 effective distribution locations indicated that host plants, Bio19 (precipitation in the coldest quarter), Bio10 (mean temperature of the warmest quarter), and Bio17 (precipitation in the driest quarter) made the most critical contributions to this model. The areas of suitable and highly suitable habitats were 55.386 × 104 km2 and 88.493 × 104 km2, respectively. Under four climate change scenarios, the L. edodes distribution was predicted to decrease and the suitable habitat area shifted to the north and west of China. The decrease in highly suitable habitat area ranged from 21.155% in the 2070s under the ssp1-2.6 scenario to 90.522% in the 2050s under the ssp3-7.5 scenario. This sharp reduction in habitat areas suggests that we should take measures to prevent the deterioration of the environment and climate and thus to ensure the survival of L. edodes. Full article
Show Figures

Figure 1

14 pages, 4062 KB  
Article
The Cytochrome P450 Enzyme SsCyp64 Mediates γ-linolenyl Alcohol in Regulating Sexual Mating/Filamentation and Pathogenicity of Sporisorium scitamineum
by Enping Cai, Bo Xiong, Qiuping Ling, Xueting Li, Xinglong Chen, Changqing Chang, Jiayun Wu and Nannan Zhang
J. Fungi 2025, 11(10), 729; https://doi.org/10.3390/jof11100729 - 10 Oct 2025
Viewed by 225
Abstract
Sugarcane smut, caused by Sporisorium scitamineum, is a devastating fungal disease of sugarcane. Sexual mating/filamentation of opposite mating types is a key step in the infection and pathogenicity of S. scitamineum, yet its regulation remains unclear. In this study, we identified [...] Read more.
Sugarcane smut, caused by Sporisorium scitamineum, is a devastating fungal disease of sugarcane. Sexual mating/filamentation of opposite mating types is a key step in the infection and pathogenicity of S. scitamineum, yet its regulation remains unclear. In this study, we identified a cytochrome P450 enzyme-encoding gene, SsCYP64, which plays an important role in oxidative stress and maintaining cell membrane stability in S. scitamineum. Further investigations revealed that deletion of SsCYP64 leads to a decrease in the transcriptional level of SsPRF1, a key transcription factor regulating the sexual mating of S. scitamineum. Subsequently, the constitutive expression of SsPRF1 restored the defect in sexual mating/filamentation of the SsCYP64 deletion mutant, indicating that SsCyp64 regulates the sexual reproduction of S. scitamineum by mediating the transcriptional level of SsPRF1. In addition, metabolomic analysis revealed that the fatty alcohol metabolite γ-linolenyl alcohol significantly decreased in the SsCYP64 deletion mutant, whereas exogenous supplementation with γ-linolenyl alcohol increased the transcriptional level of SsPRF1 and partially restored the sexual mating/filamentation of the SsCYP64 deletion mutant. In conclusion, our results indicated that SsCyp64 mediated the transcription of SsPRF1 by modulating γ-linolenyl alcohol levels, thereby regulating the formation of dikaryotic hyphae in S. scitamineum. These findings provide new insights into the role of cytochrome P450 enzymes in the pathogenic process of plant pathogenic fungi. Full article
Show Figures

Figure 1

20 pages, 3748 KB  
Article
Identification of the Antagonistic Fungus Diaporthe phoenicicola Against Rhododendron Brown Spot Disease and Its Disease Control and Plant Growth-Promoting Efficacy
by Yajiao Sun, Jian Liu, Huali Li, Guangyao Zhu, Chengfen Zhu, Junjia Lu and Yunqiang Ma
J. Fungi 2025, 11(10), 728; https://doi.org/10.3390/jof11100728 - 10 Oct 2025
Viewed by 261
Abstract
To explore superior biocontrol resources for Rhododendron brown spot disease, five antagonistic fungal strains exhibiting significant inhibitory activity against the pathogen responsible for RBS were isolated from healthy Rhododendron hybridum Ker Gawl leaves. Among them, strain DJW5-2-1 demonstrated the highest inhibition rate, reaching [...] Read more.
To explore superior biocontrol resources for Rhododendron brown spot disease, five antagonistic fungal strains exhibiting significant inhibitory activity against the pathogen responsible for RBS were isolated from healthy Rhododendron hybridum Ker Gawl leaves. Among them, strain DJW5-2-1 demonstrated the highest inhibition rate, reaching 63.88% against the pathogenic fungus. Based on morphological characteristics and multigene phylogenetic analysis (ITS, β-tubulin, and tef1-α), DJW5-2-1 was identified as Diaporthe phoenicicola (Traverso & Spessa) Udayanga, Crous & K.D. Hyde. Dual culture assays further confirmed its broad-spectrum antifungal activity, with inhibition rates ranging from 39.15% to 72.54% against various phytopathogenic fungi. Biochemical analyses revealed that DJW5-2-1 secretes multiple extracellular enzymes and exhibits plant growth-promoting traits. In both in vitro and potted plant efficacy assays, the biocontrol efficacy of strain DJW5-2-1 against RBS was 49.67% and 50.61%, respectively, indicating that strain DJW5-2-1 exhibits a certain level of control efficacy against RBS. Through pot experiments, we found that strain DJW5-2-1 could promote the growth of rhododendron seedlings and significantly increase growth indicators. Among these indicators, the growth-promoting rates of plant height and stem diameter were 15.27% and 41.27%, respectively. Moreover, DJW5-2-1 contributed to improved host resistance by elevating the activities of key defense-related enzymes, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and polyphenol oxidase (PPO). Taken together, these findings suggest that strain DJW5-2-1 represents a promising microbial agent for the integrated control of RBS and the development of fungal-based biofertilizers. Further investigation is warranted to assess its performance under field conditions and elucidate its underlying mechanisms of action. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

19 pages, 1973 KB  
Article
Molecular Identification, Mycelial Growth Kinetics, and Antimicrobial Potential of Newly Isolated Medicinal Mushroom Fomitopsis pinicola from Bulgaria
by Petya Stefanova, Anateya Georgieva, Mariya Brazkova, Radka Baldzhieva, Bogdan Goranov, Denica Blazheva, Anton Slavov and Galena Angelova
J. Fungi 2025, 11(10), 727; https://doi.org/10.3390/jof11100727 - 10 Oct 2025
Viewed by 337
Abstract
The present study is focused on a newly isolated Fomitopsis strain obtained from black pine (Pinus nigra) from the Sredna Gora Mountains, Bulgaria. Molecular identification, based on ITS1-5.8S-ITS2 region sequencing, confirmed the strain as Fomitopsis pinicola with 99.84 BLAST percent identity. [...] Read more.
The present study is focused on a newly isolated Fomitopsis strain obtained from black pine (Pinus nigra) from the Sredna Gora Mountains, Bulgaria. Molecular identification, based on ITS1-5.8S-ITS2 region sequencing, confirmed the strain as Fomitopsis pinicola with 99.84 BLAST percent identity. Phylogenetic analysis verified that the new fungal isolate belongs to the European F. pinicola clade. The morphological analysis of the strain revealed several distinctive structures that further support its identification. The influence of culture media composition on fungal development was evaluated by analyzing the mycelial growth kinetics using both the logistic growth model and the reversible autocatalytic model. Submerged cultivation was employed to produce fungal biomass, which was subsequently lyophilized and used for the assessment of the antimicrobial potential of the fungal strain. The results demonstrated notable antimicrobial effects against all tested bacterial strains. The most significant activity was observed for the aqueous extract against Escherichia coli and the hexane extract against Salmonella enteritidis, both with a minimum inhibitory concentration of 312.5 µg/mL. These findings highlight the promising potential of the newly isolated F. pinicola strain for future applications in the medical and pharmaceutical industries, particularly in developing drugs to combat multidrug resistance, based on the promising results of its water extracts. Full article
(This article belongs to the Special Issue Fungal Diversity in Various Environments, 4th Edition)
Show Figures

Figure 1

14 pages, 2520 KB  
Article
Distribution of Airborne Fungi in Vehicles and Its Association with Usage Patterns
by Raúl Asael Rodríguez-Villarreal, Mariana Elizondo-Zertuche, Nydia Orué-Arreola, Juan Adame-Rodríguez, Larissa E. Gordillo-Mata, Miguel González-Enríquez, Brandon Ortega-Castillo, Patricio Adrián Zapata-Morín and Efrén Robledo-Leal
J. Fungi 2025, 11(10), 725; https://doi.org/10.3390/jof11100725 - 10 Oct 2025
Viewed by 287
Abstract
Airborne fungal exposure in confined indoor environments is a growing public health concern, however the microbial composition of air inside private vehicles remains underexplored. This study aimed to characterize culturable airborne fungi in vehicle cabins and evaluate their association with environmental and behavioral [...] Read more.
Airborne fungal exposure in confined indoor environments is a growing public health concern, however the microbial composition of air inside private vehicles remains underexplored. This study aimed to characterize culturable airborne fungi in vehicle cabins and evaluate their association with environmental and behavioral variables. Air samples (100 L) were collected from 69 vehicles using a standardized culture-based method. Simultaneously, a detailed survey was administered to vehicle owners to document usage patterns, maintenance habits, and odor perception. Results revealed a total culturable fungal load of 31,901 CFU/m3, with Cladosporium, Aspergillus, and Penicillium as the most frequently isolated genera. Statistical analysis showed that fungal abundance and community composition were significantly associated with vehicle usage factors such as air disturbance, parking environment, air filter maintenance, and perception of musty odors. Vehicles parked outdoors had significantly higher Bipolaris levels, while lack of regular filter replacement was strongly associated with elevated Alternaria abundance. The presence of musty or moldy odors correlated with a 2.5-fold increase in Aspergillus levels. Redundancy analysis confirmed that odor perception and parking behavior were the strongest predictors of fungal community structure, with specific genera displaying distinct ecological preferences across usage conditions. Usage patterns and maintenance habits significantly influence in-cabin fungal communities, with implications for respiratory health, particularly due to the presence of allergenic and opportunistic genera like Aspergillus, Alternaria, and Bipolaris. Regular air filter maintenance and attention to odor cues may help reduce fungal load and associated health risks. Full article
(This article belongs to the Special Issue Mycological Research in Mexico)
Show Figures

Figure 1

26 pages, 1029 KB  
Review
Exploring Fungal Communication Mechanisms in the Rhizosphere Microbiome for a Sustainable Green Agriculture
by Jing Gao, Anqi Dong, Jiayi Li, Jiayu Xu, Zhihong Liang and Antonio Francesco Logrieco
J. Fungi 2025, 11(10), 726; https://doi.org/10.3390/jof11100726 - 9 Oct 2025
Viewed by 407
Abstract
In the long-term evolutionary process, species maintain a natural balance within certain limits through communication. As plants grow and function as producers, root enrichment fosters a dynamic rhizosphere microbiome, which serves not only as a disintegrator within the ecological niche but also as [...] Read more.
In the long-term evolutionary process, species maintain a natural balance within certain limits through communication. As plants grow and function as producers, root enrichment fosters a dynamic rhizosphere microbiome, which serves not only as a disintegrator within the ecological niche but also as a medium for interaction between the host and the soil environment. The life cycle of fungi within the microbiome alternates between single-cell resting spores and multicellular trophic mycelia. This cycle not only establishes a stable rhizosphere environment but also plays a crucial role in regulating both intra- and interspecific information transmission, significantly impacting the environment and plant health. The rhizosphere microbiome, particularly the fungi it contains, can be harnessed to repair environmental damage and either promote the growth of the plant host or inhibit pathogens. However, the mechanisms underlying these actions remain inadequately understood, hindering the advancement of artificial regulation. Additionally, the variability of influencing factors, along with unstable genes and traits, poses challenges to industrial development. In conclusion, this paper focuses on the fungal components of the rhizosphere microbiome, introduces the mechanisms of communication and current applications, and further analyzes existing bottlenecks and potential solutions. The aim is to provide theoretical support for achieving green, sustainable agriculture through biological means. Full article
(This article belongs to the Section Environmental and Ecological Interactions of Fungi)
Show Figures

Figure 1

17 pages, 3620 KB  
Article
The Mechanism of Fraxetin as a Sustainable Fungicide for Larch Shoot Blight: Lipid Peroxidation and Oxidative Stress in Neofusicoccum laricinum
by Shuang Zhang, Ruizhi Zhang, Rui Xia, Xinyan Chen, Jiarui Chen, Yuchun Yang, Majid Mujtaba, Danlei Li and Feng Wang
J. Fungi 2025, 11(10), 724; https://doi.org/10.3390/jof11100724 - 8 Oct 2025
Viewed by 277
Abstract
Larch shoot blight, caused by Neofusicoccum laricinum, threatens global larch resources, while conventional chemical control is constrained by pollution and resistance. To address this gap, we integrated metabolomics, transcriptomics, and antifungal efficacy assays to identify Fraxetin, a disease-induced phytoalexin, and to elucidate [...] Read more.
Larch shoot blight, caused by Neofusicoccum laricinum, threatens global larch resources, while conventional chemical control is constrained by pollution and resistance. To address this gap, we integrated metabolomics, transcriptomics, and antifungal efficacy assays to identify Fraxetin, a disease-induced phytoalexin, and to elucidate its antifungal activity and mechanism. Metabolomics showed infection-triggered accumulation of Fraxetin in resistant Larix olgensis shoots. Antifungal experiments showed that within the range of 68–1088 μg/mL, the optimal antifungal concentration was 1088 μg/mL. When inoculated larches were treated with 1088 μg/mL Fraxetin, the maximum inhibition rate of pathogen growth reached 66.67% within 12 days, and the symptoms of the treated plants were alleviated. Transcriptomics revealed activation of damage responses, disruption of oxidative homeostasis, and compromised membrane integrity in the pathogen under Fraxetin treatment. Physiological measurements confirmed increased lipid peroxidation, redox collapse, membrane leakage, and reduced fungal viability. These findings indicate a lipid peroxidation–mediated oxidative–membrane mode of action and support the potential of plant-derived Fraxetin for more sustainable management of larch shoot blight. Full article
(This article belongs to the Section Environmental and Ecological Interactions of Fungi)
Show Figures

Figure 1

8 pages, 426 KB  
Case Report
When Fungal Prophylaxis Fails: A Rare Case of Rhodotorula mucilaginosa Fungemia with Suspected Abdominal Origin
by Elia Asensi-Díaz, Laura Barbero del Olmo, Patricia Urrutia, Ana Lario, Elia Gómez-G. de la Pedrosa, Alejandro G. García-Ruiz de Morales, Pilar Martín-Dávila and Jesús Fortún
J. Fungi 2025, 11(10), 723; https://doi.org/10.3390/jof11100723 - 8 Oct 2025
Viewed by 323
Abstract
We report a rare case of Rhodotorula mucilaginosa fungemia with a suspected abdominal origin in a 73-year-old man with advanced haematological disease on fluconazole prophylaxis. The patient presented with febrile neutropenia caused by a jejunal microperforation. Despite broad-spectrum antibiotics, the fever persisted, and [...] Read more.
We report a rare case of Rhodotorula mucilaginosa fungemia with a suspected abdominal origin in a 73-year-old man with advanced haematological disease on fluconazole prophylaxis. The patient presented with febrile neutropenia caused by a jejunal microperforation. Despite broad-spectrum antibiotics, the fever persisted, and Rhodotorula mucilaginosa was isolated from blood cultures. High-dose liposomal amphotericin B achieved microbiological clearance and clinical improvement. The case was further complicated by coinfection with Aspergillus fumigatus and Klebsiella oxytoca. To our knowledge, this is one of the few reported cases of abdominal Rhodotorula fungemia, and the first described in the context of fluconazole prophylaxis. This report emphasises the importance of recognising Rhodotorula as a true pathogen and highlights the challenges of managing rare fungal infections in immunocompromised hosts. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

17 pages, 1152 KB  
Article
From Isolation to Genomics: Characterization of Aspergillus uvarum HT4 as a Novel Producer of Extracellular Tannase
by Erika Arbildi, Karen Ovsejevi, Diego Roldán, Rosario Durán, Magdalena Portela, Gabriela Garmendia and Silvana Vero
J. Fungi 2025, 11(10), 722; https://doi.org/10.3390/jof11100722 - 7 Oct 2025
Viewed by 410
Abstract
Tannases (tannin acyl hydrolases, EC 3.1.1.20) are enzymes of industrial interest due to their ability to hydrolyze hydrolyzable tannins into bioactive compounds like gallic acid. In this study fungal strains capable of producing extracellular tannase were isolated and identified. From tannin-rich substrates, 24 [...] Read more.
Tannases (tannin acyl hydrolases, EC 3.1.1.20) are enzymes of industrial interest due to their ability to hydrolyze hydrolyzable tannins into bioactive compounds like gallic acid. In this study fungal strains capable of producing extracellular tannase were isolated and identified. From tannin-rich substrates, 24 fungal isolates were obtained, of which 17 showed tannase activity. Molecular identification based on calmodulin gene sequencing identified three species of tannase-producing black aspergilli: Aspergillus luchuensis, A. niger (formerly A. welwitschiae), and A. uvarum. The isolate A. uvarum HT4 exhibited the highest extracellular tannase activity (182 U/mL) and was selected for further study. Whole-genome sequencing of HT4 revealed 15 putative tannase genes, most sharing high identity with A. uvarum CBS 121591. Two divergent genes appeared to be acquired via horizontal gene transfer from Aspergillus brunneoviolaceus and Penicillium angulare. Proteomic analysis of the secretome confirmed the expression of two extracellular tannases. The enzyme showed optimal activity at pH 5.0–6.0 and 40–50 °C. Secretome analysis revealed hydrolytic enzymes typical of saprophytic fungi in lignocellulose-rich environments. Importantly, no biosynthetic gene clusters of major mycotoxins were detected, supporting the biosafety of HT4 for industrial applications. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

19 pages, 1294 KB  
Review
Fungal Innovations—Advancing Sustainable Materials, Genetics, and Applications for Industry
by Hannes Hinneburg, Shanna Gu and Gita Naseri
J. Fungi 2025, 11(10), 721; https://doi.org/10.3390/jof11100721 - 6 Oct 2025
Viewed by 797
Abstract
Fungi play a crucial yet often unnoticed role in our lives and the health of our planet by breaking down organic matter through their diverse enzymes or eliminating environmental contamination, enhancing biomass pretreatment, and facilitating biofuel production. They offer transformative possibilities not only [...] Read more.
Fungi play a crucial yet often unnoticed role in our lives and the health of our planet by breaking down organic matter through their diverse enzymes or eliminating environmental contamination, enhancing biomass pretreatment, and facilitating biofuel production. They offer transformative possibilities not only for improving the production of materials they naturally produce, but also for the production of non-native and even new-to-nature materials. However, despite these promising applications, the full potential of fungi remains untapped mainly due to limitations in our ability to control and optimize their complex biological systems. This review focuses on developments that address these challenges, with specific emphasis on fungal-derived rigid and flexible materials. To achieve this goal, the application of synthetic biology tools—such as programmable regulators, CRISPR-based genome editing, and combinatorial pathway optimization—in engineering fungal strains is highlighted, and how external environmental parameters can be tuned to influence material properties is discussed. This review positions filamentous fungi as promising platforms for sustainable bio-based technologies, contributing to a more sustainable future across various sectors. Full article
(This article belongs to the Special Issue Utilizing Fungal Diversity for Sustainable Biotechnology)
Show Figures

Figure 1

21 pages, 718 KB  
Review
HTS and PCR Methods Are the Most Used in the Diagnosis of Aspergillosis: Advantages over Other Molecular Methods
by Carlos Alberto Castro-Fuentes, Esperanza Duarte-Escalante, María Guadalupe Frías-De-León, María del Carmen Auxilio González-Villaseñor and María del Rocío Reyes-Montes
J. Fungi 2025, 11(10), 720; https://doi.org/10.3390/jof11100720 - 6 Oct 2025
Viewed by 574
Abstract
Aspergillosis includes a variety of diseases caused by species of the genus Aspergillus, ranging from non-invasive allergic diseases to chronic, invasive pulmonary infections, which are potentially fatal in immunocompromised hosts. Therefore, there is an urgent need for new diagnostic tools and the [...] Read more.
Aspergillosis includes a variety of diseases caused by species of the genus Aspergillus, ranging from non-invasive allergic diseases to chronic, invasive pulmonary infections, which are potentially fatal in immunocompromised hosts. Therefore, there is an urgent need for new diagnostic tools and the optimization of existing tests to improve patient care. This work reviews the most commonly used molecular methods for the diagnosis of aspergillosis from clinical samples, emphasizing their advantages. These methods included HTS, NTS, ISH, microarrays, PCR-RFLP, LAMP, and PCR in various modalities (qPCR, multiplex PCR, nested PCR, RT-PCR, endpoint PCR, U-dHRM, and ddPCR). The review showed that the most commonly used methods for diagnosing aspergillosis are NGS and PCR in their different modalities; however, each method has advantages and disadvantages. qPCR is the method that has demonstrated the greatest sensitivity and specificity on clinical samples (such as blood, serum, bronchoalveolar lavage [BAL], tissue, or sputum), since it detects specific sequences, and the validation of this method shows greater progress in achieving this objective. Likewise, NGS showed that BAL is the most suitable sample, with a higher fungal load than sputum or blood. On the other hand, NGS is not a targeted technique, since it sequences all the genetic material present. Additionally, the sensitivity for detecting pathogens decreases when clinical samples are used due to the high background of nucleic acids present in the human host. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

17 pages, 8447 KB  
Article
Evaluation of Fungal Sensitivity to Biosynthesized Copper-Oxide Nanoparticles (CuONPs) in Grapevine Tissues and Fruits
by Domingo Martínez-Soto, Erisneida Campos-Jiménez, Alejandro Cabello-Pasini, Luis Enrique Garcia-Marin, Anaid Meza-Villezcas and Ernestina Castro-Longoria
J. Fungi 2025, 11(10), 719; https://doi.org/10.3390/jof11100719 - 6 Oct 2025
Viewed by 434
Abstract
Grape production is one of the most agronomically important activities worldwide. However, it is threatened by diseases caused by phytopathogenic microorganisms, which cause severe economic losses. The primary strategy to control phytopathogenic fungi is the application of fungicides; however, they affect the environment [...] Read more.
Grape production is one of the most agronomically important activities worldwide. However, it is threatened by diseases caused by phytopathogenic microorganisms, which cause severe economic losses. The primary strategy to control phytopathogenic fungi is the application of fungicides; however, they affect the environment and induce resistance in fungi. Nanomaterials, especially those green-synthesized, emerge as an eco-friendly and sustainable alternative to control fungal pathogens. The objective of this work is to evaluate the sensitivity of fungal phytopathogens to biosynthesized copper-oxide nanoparticles (CuONPs). Nanoparticles were evaluated as preventive and corrective treatments in grapevine green tissues and fruits under field conditions, using in vitro and in vivo experimental approaches. Interestingly, corrective treatment was highly effective and showed little accumulation of Cu on the fruits, even less than a commercial copper-based fungicide. Moreover, we report that Aspergillus niger causes lesions in photosynthetic tissues and severe disease symptoms in grapes. We also describe for the first time the presence of Alternaria alternata causing lesions, mainly on the stems and young leaves of grapevine plants in Mexico. These pathogens were inhibited by the biosynthesized CuONPs. All these findings show the effectiveness of using CuONPs to control phytopathogenic fungi, even under field conditions, shedding light on their potential use in agriculture with a less environmental impact than the commercial fungicides and agrochemicals currently used. Full article
(This article belongs to the Special Issue Fungal Development and Interactions Under Hostile Environments)
Show Figures

Graphical abstract

18 pages, 1057 KB  
Review
The Role of microRNAs and Cell-Free DNAs in Fungal Infections: Systematic Review and Meta-Analysis of the Literature
by Ayse Kalkanci, Fatma Bozdag, Isil Fidan, Ozlem Guzel Tunccan, Sultan Pinar Cetintepe and Mustafa Necmi Ilhan
J. Fungi 2025, 11(10), 718; https://doi.org/10.3390/jof11100718 - 4 Oct 2025
Viewed by 447
Abstract
Background: Invasive fungal infections (IFIs) remain a major cause of morbidity and mortality among immunocompromised patients, despite advances in antifungal therapy. Conventional diagnostics are limited, highlighting the need for novel biomarkers. Circulating microRNAs (miRNAs) and cell-free DNA (cfDNA) have emerged as promising tools [...] Read more.
Background: Invasive fungal infections (IFIs) remain a major cause of morbidity and mortality among immunocompromised patients, despite advances in antifungal therapy. Conventional diagnostics are limited, highlighting the need for novel biomarkers. Circulating microRNAs (miRNAs) and cell-free DNA (cfDNA) have emerged as promising tools due to their roles in immune regulation, pathogen–host interactions, and disease monitoring. This systematic review and meta-analysis evaluate their diagnostic and prognostic potential in fungal infections. Methods: A systematic search of PubMed, Web of Science, SCOPUS, and EMBASE was conducted up to May 2025 in line with PRISMA guidelines (PROSPERO protocol CRD42021287150). Eligible studies included clinical research on confirmed fungal infections assessing cfDNA or miRNAs. Random-effects meta-analyses were performed for cfDNA, and miRNA findings were synthesized descriptively. Results: In total, 526 studies were included. cfDNA positivity was observed in 12% of all tested samples (95% CI: 0.06–0.22) and in 79% of patients with proven fungal infections (95% CI: 0.62–0.90), supporting its value as a minimally invasive, culture-independent diagnostic marker. Six studies on miRNAs identified disease-specific signatures, including miR-132 and miRNA panels for aspergillosis, with high diagnostic accuracy (AUC ≥ 0.98). miR-146a, miR-223, and miR-545 further correlated with prognosis and mortality. Conclusions: cfDNA and miRNAs show strong potential for early diagnosis, prognosis, and treatment monitoring in IFIs. Standardized methodologies and large-scale validation are essential for clinical translation. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

15 pages, 1766 KB  
Article
Serendipita indica Enhances Drought Tolerance in Phoebe sheareri Seedlings by Improving Photosynthetic Efficiency, Stimulating the Antioxidant Defense System, and Modulating Hormone Synthesis
by Xiaohu Chen, Rui Sun, Die Hu, Yujie Yang, Zihan Cheng, Ping Hu and Yongjun Fei
J. Fungi 2025, 11(10), 717; https://doi.org/10.3390/jof11100717 - 3 Oct 2025
Viewed by 395
Abstract
In the context of contemporary climate change, drought is widely recognized as a major stressor affecting plant growth. While numerous studies have demonstrated that Serendipita indica enhances stress resistance in host plants and is widely used in agriculture, research on its symbiotic interactions [...] Read more.
In the context of contemporary climate change, drought is widely recognized as a major stressor affecting plant growth. While numerous studies have demonstrated that Serendipita indica enhances stress resistance in host plants and is widely used in agriculture, research on its symbiotic interactions with woody plants for improving drought tolerance remains limited. This study investigated the effects of S. indica inoculation on the growth of Phoebe sheareri seedlings under varying drought conditions—well-watered (WW), moderate drought (MD), and severe drought (SD)—and explored the physiological mechanisms underlying improved drought resistance. The results showed that under WW conditions, S. indica inoculation promoted seedling growth and development. Under MD and SD conditions, although drought stress inhibited growth, inoculation significantly increased plant biomass, root parameters, chlorophyll content, and photosynthetic efficiency. Additionally, it alleviated drought-induced damage by reducing REC, MDA, H2O2, and O2 levels, while enhancing SOD, POD, and CAT activities, and increasing root ABA, GA, IAA, and CTK content. Under MD stress, adaptive changes in root architecture and hormone levels were observed, including increases in total root length, surface area, volume, average diameter, and elevated IAA and CTK levels—all of which were further enhanced by S. indica inoculation. In conclusion, symbiosis with S. indica improved drought tolerance in P. sheareri seedlings likely through enhanced photosynthesis, antioxidant enzyme activity, and hormone regulation. Full article
(This article belongs to the Special Issue Plant Fungal Diseases and Crop Protection, 2nd Edition)
Show Figures

Figure 1

16 pages, 1191 KB  
Article
First Report of Candida auris Candidemia in Portugal: Genomic Characterisation and Antifungal Resistance-Associated Genes Analysis
by Isabel M. Miranda, Micael F. M. Gonçalves, Dolores Pinheiro, Sandra Hilário, José Artur Paiva, João Tiago Guimarães and Sofia Costa de Oliveira
J. Fungi 2025, 11(10), 716; https://doi.org/10.3390/jof11100716 - 3 Oct 2025
Viewed by 545
Abstract
Candida auris has emerged as a global public health threat due to its high mortality rates, multidrug resistance, and rapid transmission in healthcare settings. This study reports the first documented cases of C. auris candidemia in Portugal, comprising eight isolates from candidemia and [...] Read more.
Candida auris has emerged as a global public health threat due to its high mortality rates, multidrug resistance, and rapid transmission in healthcare settings. This study reports the first documented cases of C. auris candidemia in Portugal, comprising eight isolates from candidemia and colonised patients admitted to a major hospital in northern Portugal in 2023. Whole-genome sequencing (WGS) was performed to determine the phylogenetic relationships of the isolates, which were classified as belonging to Clade I. Genome sequencing also enabled the detection of missense mutations in antifungal resistance genes, which were correlated with antifungal susceptibility profiles determined according to EUCAST (European Committee on Antimicrobial Susceptibility Test) protocols and guidelines. All isolates exhibited resistance to fluconazole and amphotericin B according to the recently established EUCAST epidemiological cut-offs (ECOFFs). Most of the isolates showed a resistant phenotype to anidulafungin and micafungin. All isolates were resistant to caspofungin. Missense mutations identified included Y132F in ERG11, E709D in CDR1, A583S in TAC1b, K52N and E1464K in SNQ2, K74E in CIS2, M192I in ERG4, a novel mutation S237T in CRZ1, and variants in GCN5, a gene involved in chromatin remodelling and stress-response regulation. Identifying known and novel mutations highlights the evolution of antifungal resistance mechanisms in C. auris. These findings underscore the need for further research to understand C. auris resistance pathways and to guide effective clinical management strategies. Full article
(This article belongs to the Collection Invasive Candidiasis)
Show Figures

Figure 1

7 pages, 894 KB  
Commentary
Advancing Peptide-Based Vaccines Against Candida: A Comparative Perspective on Liposomal and Synthetic Formulations
by Hong Xin
J. Fungi 2025, 11(10), 715; https://doi.org/10.3390/jof11100715 - 2 Oct 2025
Viewed by 496
Abstract
The growing threat of multidrug-resistant fungal pathogens, especially Candida auris, has underscored the need for effective antifungal vaccines. This commentary highlights recent advances in peptide-based vaccination using the SNAP (Spontaneous Nanoliposome Antigen Presentation) platform, focusing on the FM-SNAP vaccine, a bivalent liposomal [...] Read more.
The growing threat of multidrug-resistant fungal pathogens, especially Candida auris, has underscored the need for effective antifungal vaccines. This commentary highlights recent advances in peptide-based vaccination using the SNAP (Spontaneous Nanoliposome Antigen Presentation) platform, focusing on the FM-SNAP vaccine, a bivalent liposomal formulation targeting the surface-expressed peptides fructose bisphosphate aldolase (Fba) and methionine synthase (Met6). Compared to earlier constructs such as MP12, FM-SNAP achieves superior immunogenicity and long-lasting protection at lower antigen doses. It elicits balanced Th1/Th2 cytokine responses and demonstrates durable efficacy in both immunocompetent and complement-deficient mouse models. The platform’s compatibility with clinically approved adjuvants (MPLA and QS-21), modular peptide design, and potential for multi-pathogen applications underscores its translational promise. FM-SNAP exemplifies a next-generation vaccine strategy that is both scalable and adaptable for high-risk immunocompromised populations. Full article
Show Figures

Figure 1

22 pages, 6066 KB  
Article
Genome-Wide Identification and Analysis of Chitinase GH18 Gene Family in Trichoderma longibrachiatum T6 Strain: Insights into Biocontrol of Heterodera avenae
by Cizhong Duan, Jia Liu, Shuwu Zhang and Bingliang Xu
J. Fungi 2025, 11(10), 714; https://doi.org/10.3390/jof11100714 - 1 Oct 2025
Viewed by 419
Abstract
The cereal cyst nematode, Heterodera avena, is responsible for substantial economic losses in the global production of wheat, barley, and other cereal crops. Extracellular enzymes, particularly those from the glycoside hydrolase 18 (GH18) family, such as chitinases secreted by Trichoderma spp., play [...] Read more.
The cereal cyst nematode, Heterodera avena, is responsible for substantial economic losses in the global production of wheat, barley, and other cereal crops. Extracellular enzymes, particularly those from the glycoside hydrolase 18 (GH18) family, such as chitinases secreted by Trichoderma spp., play a crucial role in nematode control. However, the genome-wide analysis of Trichoderma longibrachiatum T6 (T6) GH18 family genes in controlling of H. avenae remains unexplored. Through phylogenetic analysis and bioinformatics tools, we identified and conducted a detailed analysis of 18 GH18 genes distributed across 13 chromosomes. The analysis encompassed gene structure, evolutionary development, protein characteristics, and gene expression profiles following T6 parasitism on H. avenae, as determined by RT-qPCR. Our results indicate that 18 GH18 members in T6 were clustered into three major groups (A, B, and C), which comprise seven subgroups. Each subgroup exhibits highly conserved catalytic domains, motifs, and gene structures, while the cis-acting elements demonstrate extensive responsiveness to hormones, stress-related signals, and light. These members are significantly enriched in the chitin catabolic process, extracellular region, and chitinase activity (GO functional enrichment), and they are involved in amino sugar and nucleotide sugar metabolism (KEGG pathway enrichment). Additionally, 13 members formed an interaction network, enhancing chitin degradation efficiency through synergistic effects. Interestingly, 18 members of the GH18 family genes were expressed after T6 parasitism on H. avenae cysts. Notably, GH18-3 (Group B) and GH18-16 (Group A) were significantly upregulated, with average increases of 3.21-fold and 3.10-fold, respectively, from 12 to 96 h after parasitism while compared to the control group. Meanwhile, we found that the GH18-3 and GH18-16 proteins exhibit the highest homology with key enzymes responsible for antifungal activity in T. harzianum, demonstrating dual biocontrol potential in both antifungal activity and nematode control. Overall, these results indicate that the GH18 family has undergone functional diversification during evolution, with each member assuming specific biological roles in T6 effect on nematodes. This study provides a theoretical foundation for identifying novel nematicidal genes from T6 and cultivating highly efficient biocontrol strains through transgenic engineering, which holds significant practical implications for advancing the biocontrol of plant-parasitic nematodes (PPNs). Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

16 pages, 616 KB  
Systematic Review
Pediatric Coccidioidal Meningitis: A Systematic Review and Proportional Synthesis of Cases Reported in the Fluconazole Era (2000–2025)
by Maria F. De la Cerda-Vargas, Pedro Navarro-Dominguez, Elizabeth Meza-Mata, Melisa A. Muñoz-Hernandez, Fany Karina Segura-Lopez, Marisela Del Rocio Gonzalez-Martinez, Hector A. Delgado-Aguirre, Sergio Valente Flores-Miranda, David de Jesús Mercado-Rubio, Yair O. Adame-Martínez, Geovanni A. Valadez-Altamira and Jose Antonio Candelas-Rangel
J. Fungi 2025, 11(10), 713; https://doi.org/10.3390/jof11100713 - 1 Oct 2025
Viewed by 469
Abstract
Coccidioidal meningitis (CM) is a rare but life-threatening complication of disseminated coccidioidomycosis, occurring in ~16% of cases, particularly among children in endemic regions such as the southwestern US and northern Mexico. Without timely diagnosis and antifungal therapy, pediatric CM is almost universally fatal [...] Read more.
Coccidioidal meningitis (CM) is a rare but life-threatening complication of disseminated coccidioidomycosis, occurring in ~16% of cases, particularly among children in endemic regions such as the southwestern US and northern Mexico. Without timely diagnosis and antifungal therapy, pediatric CM is almost universally fatal within the first year. Hydrocephalus develops in up to 50% of cases. In 2000, Galgiani et al. established fluconazole as first-line therapy for CM. Subsequent guidelines refined management but did not specifically address pediatric patients (>1 month–≤19 years). No studies in the fluconazole era have systematically evaluated risk factors for complications in this population. We therefore conducted a systematic review and proportional synthesis of pediatric CM cases, focusing on CNS complications and outcomes. PubMed/MEDLINE, Embase (Ovid), and Web of Science were systematically searched (2000–2025). PROSPERO registration ID (1130290). Inclusion criteria encompassed epidemiological studies, case series, and case reports that described at least one pediatric case of CM or CNS involvement, confirmed by diagnostic methods. Cases in adults, neonates (<1 month), congenital infections, teratogenicity studies, reviews, or incomplete reports were excluded. Only cases with complete individual data (n = 48) were included. Methodological rigor was ensured using JBI Critical Appraisal Tools. Of 1089 studies, 31 met the inclusion criteria, representing 3874 pediatric cases. CM/CNS involvement was confirmed in 165 cases (4.25%; 95% CI: 3.6–4.9%), with hydrocephalus in 62 (37.5%). Among 48 case reports with complete data, fluconazole was first-line therapy in 65%. Serum CF titers ≥ 1:16 were associated with hydrocephalus plus stroke (p = 0.027) and independently predicted adverse outcomes (relapse/death; OR = 4.5, p = 0.037), whereas lifelong azole therapy was associated with improved outcomes (overall survival mean, 82 vs. 32 months; p = 0.002). Pediatric CM remains highly lethal, with hydrocephalus a frequent and severe complication. High serum CF titers (≥1:16) predict poor outcomes, emphasizing the urgent need for standardized, pediatric-specific diagnosis and management guidelines. Full article
(This article belongs to the Special Issue Pediatric Fungal Infections, 2nd Edition)
Show Figures

Figure 1

27 pages, 2692 KB  
Review
Cochlioquinones 1968–2024: Chemistry, Biosynthesis, and Biological Activities with Future Perspectives
by Huiqi Fang, Qi Li, Lin Chen and Gang Ding
J. Fungi 2025, 11(10), 712; https://doi.org/10.3390/jof11100712 (registering DOI) - 30 Sep 2025
Viewed by 341
Abstract
Cochlioquinones are a member of meroterpenoids possessing a core 6/6/6/6 tetracyclic ring system, which originate from the polyketide-terpenoid hybrid biosynthesis. Up to date, there are eighty-one analogues with diverse post-modifications isolated from different fungi, most of which exhibit different biological activities, such as [...] Read more.
Cochlioquinones are a member of meroterpenoids possessing a core 6/6/6/6 tetracyclic ring system, which originate from the polyketide-terpenoid hybrid biosynthesis. Up to date, there are eighty-one analogues with diverse post-modifications isolated from different fungi, most of which exhibit different biological activities, such as phytotoxic, antibacterial, cytotoxic, and immunosuppressive effects. Structurally, cochlioquinones can be mainly categorized into two classes: benzoquinone-type and phenol-type cochlioquinones, respectively. In this review, chemistry and biology of cochlioquinones including the structures, NMR and MS features, bioactivities, and biosynthesis from 1968 to 2024 are systematically summarized, which might provide insights into the exploration and utilization of this group of meroterpenoids in the agricultural or pharmaceutical industry. Full article
(This article belongs to the Section Fungal Cell Biology, Metabolism and Physiology)
Show Figures

Figure 1

22 pages, 4646 KB  
Article
Analysis of Amino Acid and Derivative Diversity and Antioxidant Capacity in Ophiocordyceps sinensis and Its Substitutes
by Haoxu Tang, Bing Jia, Chuyu Tang, Chao Feng, Yuling Li and Xiuzhang Li
J. Fungi 2025, 11(10), 711; https://doi.org/10.3390/jof11100711 - 30 Sep 2025
Viewed by 370
Abstract
In this study, we used liquid chromatography–tandem mass spectrometry (LC-MS/MS) combined with multivariate statistical analysis to conduct comprehensive qualitative and quantitative profiling of amino acids and their derivatives in wild Ophiocordyceps sinensis (O. sinensis) samples from Naqu (NQ) and Xiaojin (XJ), [...] Read more.
In this study, we used liquid chromatography–tandem mass spectrometry (LC-MS/MS) combined with multivariate statistical analysis to conduct comprehensive qualitative and quantitative profiling of amino acids and their derivatives in wild Ophiocordyceps sinensis (O. sinensis) samples from Naqu (NQ) and Xiaojin (XJ), cultivated O. sinensis (RG), and Bailing Capsules (BL). The objective was to systematically characterize amino acid metabolism and assess its correlation with antioxidant functionality. A total of 82 amino acids and their derivatives were identified. XJ had the highest essential amino acids, while BL had significantly lower content (except lysine) (p < 0.05). Antioxidant assays revealed that NQ and XJ samples exhibited superior antioxidant activity in 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonate) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric ion reducing antioxidant power (FRAP) assays, and this activity showed a correlation to the contents of bioactive components such as total phenols (TPS), total polysaccharide (TPE), and total flavonoids (TF). Further pathway analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) suggested that arginine and proline metabolism, aromatic amino acid biosynthesis, and tryptophan metabolism may be critical pathways that could underpin regional differences in O. sinensis quality, while variation in tyrosine metabolism may account for differences in antioxidant activity. This study provides a systematic comparison of amino acid profiles and antioxidant capacities across O. sinensis and its substitutes, offering a robust theoretical foundation for the development and functional evaluation of these bioresources. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics, 2nd Edition)
Show Figures

Figure 1

18 pages, 2398 KB  
Article
Genome Analysis of Alternaria alstroemeriae L6 Associated with Black Spot of Strawberry: Secondary Metabolite Biosynthesis and Virulence
by Li Zhang, Boyuan Zhang, Lizhu Shao, Miaomiao Yang, Xueling Zhao, Ziyu Wang, Yingjun Zhang, Yuting Li, Yating Wang, Yuansen Hu and Peng Li
J. Fungi 2025, 11(10), 710; https://doi.org/10.3390/jof11100710 - 30 Sep 2025
Viewed by 453
Abstract
A pathogenic fungus was isolated from the leaves of strawberry black spot in Zhengzhou China. Based on morphological and phylogenetic analysis, the isolate was identified as Alternaria alstroemeriae. Hybrid sequencing and assembly yielded a high-quality 38.7 Mb genome with 12,781 predicted genes [...] Read more.
A pathogenic fungus was isolated from the leaves of strawberry black spot in Zhengzhou China. Based on morphological and phylogenetic analysis, the isolate was identified as Alternaria alstroemeriae. Hybrid sequencing and assembly yielded a high-quality 38.7 Mb genome with 12,781 predicted genes and 99.6% Benchmarking Universal Single-Copy Orthologs (BUSCO) completeness. Functional annotation revealed enrichment in carbohydrate metabolism, secondary metabolite biosynthesis, and virulence-associated genes. Strain L6 harbored 45 biosynthetic gene clusters(BGCs), including 12 clusters for terpenes, 7 for non-ribosomal peptide synthetases, and 7 for polyketide synthases. Six BGCs showed high similarity to known pathways producing alternariol (phytotoxic/mycotoxic compound), alternapyrone (phytotoxin), choline (osmoprotectant), terpestacin (anti-angiogenic agent), clavaric acid (anticancer terpenoid), and betaenone derivatives (phytotoxins). CAZyme analysis identified 596 carbohydrate-active enzymes, aligning with L6’s biotrophic lifestyle. Additionally, 996 secreted proteins were predicted, of which five candidate effectors contained the conserved RxLx [EDQ] host-targeting motif, suggesting potential roles in virulence. This genome resource highlights L6’s exceptional secondary metabolites (SMs) diversity, featuring both plant-pathogenic toxins and pharmacologically valuable compounds, indicating that this endophytic fungus is a potential producer of metabolites meriting further exploration and development. Full article
Show Figures

Figure 1

13 pages, 4462 KB  
Article
Application and Mechanism of Action of Carvacrol Against Aspergillus niger Causing Postharvest Rot of Garlic Scapes (Allium sativum L.)
by Pei Li, Wenqing Wu, Can He, Boxi Tan, Shijing Tang and Lu Yu
J. Fungi 2025, 11(10), 709; https://doi.org/10.3390/jof11100709 - 30 Sep 2025
Viewed by 425
Abstract
During prolonged storage of garlic scapes (Allium sativum L.), the proliferation of microorganisms, particularly fungi, frequently results in postharvest rot, which negatively impacts both product quality and market value. Carvacrol, a promising natural food preservative, exhibits broad-spectrum bioactivity against various microorganisms. In [...] Read more.
During prolonged storage of garlic scapes (Allium sativum L.), the proliferation of microorganisms, particularly fungi, frequently results in postharvest rot, which negatively impacts both product quality and market value. Carvacrol, a promising natural food preservative, exhibits broad-spectrum bioactivity against various microorganisms. In this study, a specific pathogenic fungal strain causing postharvest rot in garlic scapes, designated as HQ, was initially isolated from symptomatic garlic scapes. Based on a combination of physiological characteristics and molecular identification techniques, the HQ strain was identified as Aspergillus niger. Our findings further demonstrated that carvacrol exhibits significant in vitro inhibitory effects against Aspergillus niger with an EC50 value of 75.99 μg/L. Moreover, scanning electron microscopy (SEM) observations revealed that carvacrol induces irreversible morphological and structural changes in the hyphae, resulting in deformation and rupture. Additionally, integrated transcriptomic and proteomic analyses indicated that carvacrol primarily targets the cell wall integrity (CWI) signaling pathway within the mitogen-activated protein kinase (MAPK) signaling pathway in Aspergillus niger, thereby compromising cell membrane integrity and stability, which ultimately suppresses fungal growth and proliferation. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

Previous Issue
Back to TopTop