Fusarium pseudonygamai Promotes Blastospore Transformation in Ophiocordyceps sinensis: Insights into Microbial Interaction and Key Mechanisms
Abstract
1. Introduction
2. Materials and Methods
2.1. Fungal Strains and Culture Media
2.2. Bioassay to Evaluate the Effect of F. pseudonygamai Supernatant on the Transformation of O. sinensis
2.3. Transcriptomic Profiling of O. sinensis Treated with F. pseudonygamai Supernatant
2.4. Assessment of Crude Extracts from F. pseudonygamai on O. sinensis Transformation
2.5. Isolation and Identification of Bioactive Compounds from F. pseudonygamai
2.6. Effect of Identified Compounds on O. sinensis Transformation
2.7. Evaluation of Mannitol as a Key Metabolite Promoting O. sinensis Transformation
2.8. Measurement of Mannitol Concentration from F. pseudonygamai Supernatant by Refractive Index Detection High-Performance Liquid Chromatography (RID-HPLC)
2.9. Gene Expression Analysis (MDH and M1PDH) by qRT-PCR
2.10. Statistical Analysis
3. Results
3.1. Impact of F. pseudonygamai Supernatant on O. sinensis Transformation
3.2. Transcriptomic Profiling of O. sinensis in Response to F. pseudonygamai Supernatant
Validation of RNA-Seq
3.3. Bioactivity of Crude Extracts from F. pseudonygamai
3.4. Isolation and Identification of Bioactive Compounds
3.5. Mannitol Is the Key Metabolite from F. pseudonygamai Promoting Blastospore Transformation
3.6. Effect of Mannitol Biosynthesis Modulators on O. sinensis Transformation
3.7. Quantification of Mannitol Concentration in F. pseudonygamai Supernatants by RID-HPLC
3.8. Gene Expression Analysis of MDH and M1PDH in Response to Mannitol Modulator Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lo, H.C.; Hsieh, C.; Lin, F.Y.; Hsu, T.H. A systematic review of the mysterious caterpillar fungus ophiocordyceps sinensis in DongChongXiaCao (冬蟲夏草 dōng chóng xià cǎo) and related bioactive ingredients. J. Tradit. Complement. Med. 2013, 3, 16–32. [Google Scholar] [CrossRef]
- Chen, L.; Teng, H.; Chen, S.; Zhou, Y.; Wan, D.; Shi, Z. Future habitat shifts and economic implications for Ophiocordyceps sinensis under climate change. Ecol. Evol. 2025, 15, e71327. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhang, L.; Wang, J.; Wang, W.; Niyati, N.; Guo, Y.; Wang, X. Chinese caterpillar fungus (Ophiocordyceps sinensis) in China: Current distribution, trading, and futures under climate change and overexploitation. Sci. Total Environ. 2021, 755, 142548. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Yu, H.Y.; Zhang, H.; Zhu, W.; Wang, M.L.; Zhang, J.H.; Zhou, G.; Li, X.; Qin, Q.; Hu, S.; et al. Transcriptomic insight into the immune defenses in the ghost moth, Hepialus xiaojinensis, during an Ophiocordyceps sinensis fungal infection. Insect Biochem. Mol. Biol. 2015, 64, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Rao, Z.; Cao, L.; Wu, H.; Qiu, X.; Liu, G.; Han, R. Comparative transcriptome analysis of Thitarodes armoricanus in response to the entomopathogenic fungi Paecilomyces hepiali and Ophiocordyceps sinensis. Insects 2019, 11, 4. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, X.; Jiao, L.; Jiang, Y.; Li, H.; Jiang, S.; Lhosumtseiring, N.; Fu, S.; Dong, C.; Zhan, Y. A survey of the geographic distribution of Ophiocordyceps sinensis. Int. J. Microbiol. 2011, 49, 913–919. [Google Scholar] [CrossRef]
- Winkler, D. Caterpillar fungus (Ophiocordyceps sinensis) production and sustainability on the Tibetan Plateau and in the Himalayas. Asian Med. 2009, 5, 291–316. [Google Scholar] [CrossRef]
- Liu, G.; Han, R.; Cao, L. Artificial cultivation of the Chinese cordyceps from injected ghost moth larvae. Environ. Entomol. 2019, 48, 1088–1094. [Google Scholar] [CrossRef]
- Cao, L.; Ye, Y.; Han, R. Fruiting body production of the medicinal Chinese caterpillar mushroom, Ophiocordyceps sinensis (Ascomycetes), in artificial medium. Int. J. Med. Mushrooms 2015, 17, 1107–1112. [Google Scholar] [CrossRef]
- Qin, Q.L.; Zhou, G.L.; Zhang, H.; Meng, Q.; Zhang, J.H.; Wang, H.T.; Miao, L.; Li, X. Obstacles and approaches in artificial cultivation of Chinese cordyceps. Mycology 2018, 9, 7–9. [Google Scholar] [CrossRef]
- Han, R.C.; Wu, H.; Tao, H.P.; Qiu, X.H.; Liu, G.Q.; Rao, Z.C.; Cao, L. Research on Chinese cordyceps during the past 70 years in China. Chin. J. Appl. Entomol. 2019, 56, 849–883. [Google Scholar]
- Khalid, M.Z.; Khalid, M.A.; Han, R.; Cao, L. The intricate dance: Exploring the interactions between entomopathogenic fungi and insects with special focus on the formation/production of Chinese cordyceps. Fungal Biol. Rev. 2024, 50, 100397. [Google Scholar] [CrossRef]
- Wu, P.; Qin, Q.; Zhang, J.; Zhang, H.; Li, X.; Wang, H.; Meng, Q. The invasion process of the entomopathogenic fungus Ophiocordyceps sinensis into the larvae of ghost moths (Thitarodes xiaojinensis) using a GFP-labeled strain. Front. Microbiol. 2022, 13, 974323. [Google Scholar] [CrossRef]
- Liang, Y.; Hong, Y.; Mai, Z.; Zhu, Q.; Guo, L. Internal and external microbial community of the Thitarodes moth, the host of Ophiocordyceps sinensis. Microorganisms 2019, 7, 517. [Google Scholar] [CrossRef]
- Wu, H.; Rao, Z.C.; Cao, L.; De Clercq, P.; Han, R.C. Infection of Ophiocordyceps sinensis fungus causes dramatic changes in the microbiota of its Thitarodes host. Front. Microbiol. 2020, 11, 577268. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.; Mao, X.; Li, C.; Zhu, L.; He, Z.; Wang, B. Mannitol mediates the mummification behavior of Thitarodes xiaojinensis larvae infected with Ophiocordyceps sinensis. Front. Microbiol. 2024, 15, 1411645. [Google Scholar] [CrossRef] [PubMed]
- Allocco, J.J.; Nare, B.; Myers, R.W.; Feiglin, M.; Schmatz, D.M.; Profous-Juchelka, H. Nitrophenide (Megasul™) blocks Eimeria tenella development by inhibiting the mannitol cycle enzyme mannitol-1-phosphate dehydrogenase. J. Parasitol. 2001, 87, 1441–1448. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, K.; Kawanobe, H.; Ikawa, T.; Shiraiwa, Y. Characterization of salt-regulated mannitol-1-phosphate dehydrogenase in the red alga Caloglossa continua. Plant Physiol. 2003, 133, 893–900. [Google Scholar] [CrossRef]
- Nguyen, T.; Kim, T.; Ta, H.M.; Yeo, W.S.; Choi, J.; Mizar, P.; Lee, S.S.; Bae, T.; Chaurasia, A.K.; Kim, K.K. Targeting mannitol metabolism as an alternative antimicrobial strategy based on the structure-function study of mannitol-1-phosphate dehydrogenase in Staphylococcus aureus. mBio 2019, 10, 1110–1128. [Google Scholar] [CrossRef]
- Wang, X.; Li, B.; Liu, D.; Guo, Y.; Zhang, J.; Li, W.; Peng, T.; Ma, Q.; Shi, X. Isolation, characterization, and LC MS/MS determination of anti-obesity components from pine needles of Cedrus deodara (Roxb.) G. Don. Front. Nutr. 2024, 11, 1448908. [Google Scholar] [CrossRef]
- Nguyen, P.H.; Bui, T.Q.; Tran, T.T.; Bui, T.T.; Do, T.T.; To, D.C.; Tran, M.H.; Quy, P.T.; Co, N.Q.; Phu, N.V.; et al. Inhibitory activities of Aruncus dioicus alkaloidal glycosides against protein tyrosine phosphatase 1B and α-glucosidase: A methodical theory-experiment investigation. Nat. Prod. Commun. 2024, 19, 1934578X241271648. [Google Scholar] [CrossRef]
- Yi, W.; Chen, C.; Gan, X. Active metabolites from the endophyte Paenibacillus polymyxa Y-1 of Dendrobium nobile for the control of rice bacterial diseases. Front. Chem. 2022, 10, 879724. [Google Scholar] [CrossRef]
- Yang, R.H.; Wang, X.L.; Su, J.-H.; Li, Y.; Jiang, S.P.; Gu, F.; Yao, Y.-J. Bacterial diversity in native habitats of the medicinal fungus Ophiocordyceps sinensis on Tibetan Plateau as determined using Illumina sequencing data. FEMS Microbiol. Lett. 2015, 362, fnu044. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Yin, H.; Duo, H.; Li, S.; Qin, D.; Xie, L.; Xiao, Y.; Sun, J.; Tao, J.; Zhang, X.; Li, Y. Unlocking biological insights from differentially expressed Genes: Concepts, methods, and future perspectives. J. Adv. Res. 2024, 76, 135–157. [Google Scholar] [CrossRef]
- Sellem, C.H.; Marsy, S.; Boivin, A.; Lemaire, C.; Sainsard-Chanet, A. A mutation in the gene encoding cytochrome c1 leads to a decreased ROS content and to a long-lived phenotype in the filamentous fungus Podospora anserina. Fungal Genet. Biol. 2007, 44, 648–658. [Google Scholar] [CrossRef] [PubMed]
- Zeng, G.; Xu, X.; Kok, Y.J.; Deng, F.S.; Chow, E.W.L.; Gao, J.; Bi, X.; Wang, Y. Cytochrome c regulates hyphal morphogenesis by interfering with cAMP-PKA signaling in Candida albicans. Cell Rep. 2023, 42, 113473. [Google Scholar] [CrossRef] [PubMed]
- Turrion-Gomez, J.; Eslava, A.; Benito, E. The flavohemoglobin BCFHG1 is the main NO detoxification system and confers protection against nitrosative conditions but is not a virulence factor in the fungal necrotroph Botrytis cinerea. Fungal Genet. Biol. 2010, 47, 484–496. [Google Scholar] [CrossRef] [PubMed]
- Jürgensen, C.W.; Jacobsen, N.R.; Emri, T.; Havn Eriksen, S.; Pócsi, I. Glutathione metabolism and dimorphism in Aureobasidium pullulans. J. Basic Microbiol. 2001, 41, 131–137. [Google Scholar] [CrossRef]
- Thomas, D.; Klein, K.; Manavathu, E.; Dimmock, J.; Mutus, B. Glutathione levels during thermal induction of the yeast-to-mycelial transition in Candida albicans. FEMS Microbiol. Lett. 1991, 77, 331–334. [Google Scholar] [CrossRef]
- Manavathu, M.; Manavathu, E.; Gunasekaran, S.; Porte, Q.; Gunasekaran, M. Changes in glutathione metabolic enzymes during yeast-to-mycelium conversion of Candida albicans. Can. J. Microbiol. 1996, 42, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Pócsi, I.; Molnár, Z.; Pusztahelyi, T.; Varecza, Z.; Emri, T. Yeast-like cell formation and glutathione metabolism in autolysing cultures of Penicillium chrysogenum. Acta Biol. Hung. 2007, 58, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Wangsanut, T.; Pongpom, M. The role of the glutathione system in stress adaptation, morphogenesis and virulence of pathogenic fungi. Int. J. Mol. Sci. 2022, 23, 10645. [Google Scholar] [CrossRef]
- Polekhina, G.; Board, P.; Blackburn, A.; Parker, M. Crystal structure of maleylacetoacetate isomerase/glutathione transferase zeta reveals the molecular basis for its remarkable catalytic promiscuity. Biochemistry 2001, 40, 1567–1576. [Google Scholar] [CrossRef]
- Vélëz, H.; Glassbrook, N.J.; Daub, M.E. Mannitol metabolism in the phytopathogenic fungus Alternaria alternata. Fungal Genet. Biol. 2007, 44, 258–268. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalid, M.Z.; Zheng, X.; Han, R.; Cao, L. Fusarium pseudonygamai Promotes Blastospore Transformation in Ophiocordyceps sinensis: Insights into Microbial Interaction and Key Mechanisms. J. Fungi 2025, 11, 746. https://doi.org/10.3390/jof11100746
Khalid MZ, Zheng X, Han R, Cao L. Fusarium pseudonygamai Promotes Blastospore Transformation in Ophiocordyceps sinensis: Insights into Microbial Interaction and Key Mechanisms. Journal of Fungi. 2025; 11(10):746. https://doi.org/10.3390/jof11100746
Chicago/Turabian StyleKhalid, Muhammad Zaryab, Xuehong Zheng, Richou Han, and Li Cao. 2025. "Fusarium pseudonygamai Promotes Blastospore Transformation in Ophiocordyceps sinensis: Insights into Microbial Interaction and Key Mechanisms" Journal of Fungi 11, no. 10: 746. https://doi.org/10.3390/jof11100746
APA StyleKhalid, M. Z., Zheng, X., Han, R., & Cao, L. (2025). Fusarium pseudonygamai Promotes Blastospore Transformation in Ophiocordyceps sinensis: Insights into Microbial Interaction and Key Mechanisms. Journal of Fungi, 11(10), 746. https://doi.org/10.3390/jof11100746