Human Activity Impacts on Macrofungal Diversity: A Case Study of Grazing in Subtropical Forests
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.2.1. Plot and Quadrat Establishment
2.2.2. Control of Extraneous Variables
2.2.3. Record of Variables of Interest
2.2.4. Data Analyses
2.2.5. Taxonomic Studies
3. Results
3.1. Changes of Macrofungal Diversity After Grazing
3.2. Changes of Environmental Factors of Interest After Grazing
3.3. Correlation Between Macrofungal Diversity and Environmental Factors of Interest
3.4. Taxonomic Updates and Revisions
4. Discussion
4.1. Grazing Significantly Increases Within-Habitat Diversity of Macrofungi in Subtropical Forests
4.2. Grazing May Reduce Between-Habitat Diversity of Macrofungi in Subtropical Forests
4.3. Grazing Drives Functional Group Succession of Macrofungi in Subtropical Forests
4.4. Differential Responses to Grazing Across Forest Types
4.5. The Role of Fungal Taxonomy in Ecological Studies
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McLaughlin, D.J.; Joseph, W.S. Systematics and Evolution: Part A (The Mycota), 2nd ed.; Springer: Berlin, Germany, 2014; pp. 1–461. [Google Scholar] [CrossRef]
- McLaughlin, D.J.; Joseph, W.S. Systematics and Evolution: Part B (The Mycota), 2nd ed.; Springer: Berlin, Germany, 2015; pp. 1–311. [Google Scholar] [CrossRef]
- Yang, K.L.; Lin, J.Y.; Li, G.-M.; Li, T.H.; Yang, Z.L. Rediscovering Leucoagaricus sinicus, with the recognition of Leucoagaricus and Leucocoprinus as separate genera, and two new genera in Agaricaceae (Basidiomycota). Phytotaxa 2024, 676, 199–255. [Google Scholar] [CrossRef]
- Yang, K.L.; Lin, J.Y.; Li, G.-M.; Li, X.Y.; Liu, Z.C. Taxonomic revisions on termitomycetoid fungi from China. J. Fung. Res. 2025, 1–54. [Google Scholar] [CrossRef]
- Yang, K.L.; Lin, J.Y.; Li, G.-M.; Yang, Z.L. New and Interesting Fungi from Guangzhou City, South China, 1st ed.; Magnolia Press: Auckland, New Zealand, 2025; pp. 1–95. [Google Scholar] [CrossRef]
- Cowie, R.H.; Bouchet, P.; Fontaine, B. The Sixth Mass Extinction: Fact, fiction or speculation? Rev. Camb. Philos. Soc. 2022, 97, 640–663. [Google Scholar] [CrossRef]
- Yadav, P.K.; Saha, S.; Mishra, A.K.; Kapoor, M.; Kaneria, M.; Kaneria, M. Conserving Ophiocordyceps sinensis in the Nanda Devi Biosphere Reserve, India. Available online: https://ruffordorg.s3.amazonaws.com/media/project_reports/23353-2%20Detailed%20Final%20Report.pdf (accessed on 1 July 2025).
- Permits in Beaverhead-Deerlodge National Forest, 19 March 2025. Available online: https://www.fs.usda.gov/r01/beaverhead-deerlodge/permits (accessed on 1 July 2025).
- Announcement 2021 No. 15 from Ministry of Agriculture and Rural Affairs. Available online: https://www.forestry.gov.cn/main/3457/20210915/143259505655181.html (accessed on 1 July 2025).
- Norvell, L.; Kopecky, F.; Lindgren, J.; Roger, J. The chanterelle (Cantharellus cibarius): A peek at productivity. In Proceedings of the Business and Science of Special Forest Products—A Conference and Exposition, Hillsboro, OR, USA, 26–27 January 1994. [Google Scholar]
- Büntgen, U.; Kauserud, H.; Egli, S.B. Linking climate variability to mushroom productivity and phenology. Front. Ecol. Environ. 2012, 10, 14–19. [Google Scholar] [CrossRef]
- Boddy, L.; Büntgen, U.; Egli, S.B.; Gange, A.C.; Heegaard, E.; Kirk, P.M.; Mohammad, A.B.; Kauserud, H. Climate variation effects on fungal fruiting. Fungal Ecol. 2014, 10, 20–33. [Google Scholar] [CrossRef]
- Egli, S.B.; Peter, M.; Buser, C.; Stahel, W.A.; Ayer, F. Mushroom picking does not impair future harvests—Results of a long-term study in Switzerland. Biol. Conserv. 2006, 129, 271–276. [Google Scholar] [CrossRef]
- Parladé, J.; Martínez-Peña, F.; Pera, J. Effects of forest management and climatic variables on the mycelium dynamics and sporocarp production of the ectomycorrhizal fungus Boletus edulis. For. Ecol. Manag. 2017, 390, 73–79. [Google Scholar] [CrossRef]
- Ruiz-Almenara, C.; Gándara, E.; Gómez-Hernández, M. Comparison of diversity and composition of macrofungal species between intensive mushroom harvesting and non-harvesting areas in Oaxaca, Mexico. PeerJ 2019, 7, e8325. [Google Scholar] [CrossRef]
- Olano, J.M.; Martínez-Rodrigo, R.; Altelarrea, J.M.; Ágreda, T.; Fernández-Toirán, M.; García-Cervigón, A.I.; Rodríguez-Puerta, F.; Águeda, B. Primary productivity and climate control mushroom yields in Mediterranean pine forests. Agric. For. Meteorol. 2020, 288–289, 108015. [Google Scholar] [CrossRef]
- Ohtonen, R.; Markkola, A.M. Effect of local air pollution on the sporophore production of mycorrhizal fungi, mycorrhizae and microbial activity in Scots pine forests. Medd. Norveg. Inst. Skogforsk 1989, 42, 121–132. [Google Scholar]
- Fellner, R. Mycorrhiza-forming fungi as bioindicators of air pollution. Agric. Ecosyst. Environ. 1990, 28, 115–120. [Google Scholar] [CrossRef]
- Baar, J.; Kuyper, T.W. Litter removal in forests and effect on mycorrhizal fungi. In Fungi of Europe: Investigation, Recording and Conservation, 1st ed.; Pegler, D.N., Boddy, B., Ing, B., Kirk, P.M., Eds.; Royal Botanic Gardens, Kew: London, UK, 1993; pp. 275–286. [Google Scholar]
- Zervakis, G.I.; Venturella, G. Adverse effects of human activities on the diversity of macrofungi in forest ecosystems. Bocconea 2007, 21, 77–84. [Google Scholar]
- Varenius, K.; Kårén, O.; Lindahl, B.D.; Dahlberg, A. Long-term effects of tree harvesting on ectomycorrhizal fungal communities in boreal Scots pine forests. For. Ecol. Manag. 2016, 380, 41–49. [Google Scholar] [CrossRef]
- Gómez-Hernández, M.; Avendaño-Villegas, E.; Toledo-Garibaldi, M.; Gándara, E. Impact of urbanization on functional diversity in macromycete communities along an urban ecosystem in Southwest Mexico. PeerJ 2021, 9, e12191. [Google Scholar] [CrossRef]
- Greene, H.; Kazanski, C.E.; Kaufman, J.; Steinberg, E.; Johnson, K.; Cook-Patton, S.C.; Fargione, J. Silvopasture offers climate change mitigation and profit potential for farmers in the eastern United States. Front. Sustain. Food Syst. 2023, 7, 1158459. [Google Scholar] [CrossRef]
- Torres, B.; Herrera-Feijoo, R.; Torres, Y.; García, A. Global evolution of research on silvopastoral systems through bibliometric analysis: Insights from Ecuador. Agronomy 2023, 13, 479. [Google Scholar] [CrossRef]
- Poudel, S.; Pent, G.; Fike, J. Silvopastures: Benefits, past efforts, challenges, and future prospects in the United States. Agronomy 2024, 14, 1369. [Google Scholar] [CrossRef]
- Batcheler, M.; Smith, M.M.; Swanson, M.E.; Ostrom, M.; Carpenter-Boggs, L. Assessing silvopasture management as a strategy to reduce fuel loads and mitigate wildfire risk. Sci. Rep. 2024, 14, 5954. [Google Scholar] [CrossRef]
- Milchunas, D.G.; Lauenroth, W.K. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol. Monogr. 1993, 63, 328–366. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Pielou, E.C. The Measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Margalef, R. Information theory in ecology. Gen. Syst. 1958, 3, 36–71. [Google Scholar]
- Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Meissel, K.; Yao, E.S. Using Cliff’s delta as a non-parametric effect size measure: An accessible web app and R tutorial. Pract. Assess. Res. Eval. 2024, 29, 2. [Google Scholar] [CrossRef]
- Gewers, F.L.; Ferreira, G.R.; de Arruda, H.F.; Silva, F.N.; Comin, C.H.; Amancio, D.R.; Costa, L.D.F. Principal component analysis: A natural approach to data exploration. ACM Comput. Surv. 2021, 54, 70. [Google Scholar] [CrossRef]
- Clémençon, H.; Emmett, V.; Emmett, E.E. Cytology and Plectology of the Hymenomycetes, 2nd ed.; Gebrüder Borntraeger Verlagsbuchhandlung: Stuttgart, Germany, 2012; pp. 1–520. [Google Scholar]
- Vellinga, E.C.; Verbeken, A.; Noordeloos, M.E. Glossary. In Flora Agaricina Neerlandica Volume 7, 1st ed.; Noordeloos, M.E., Kuyper, T.W., Vellinga, E.C., Eds.; Candusso Editrice: Origgio, Italy, 2018; pp. 6–65. [Google Scholar]
- Yang, K.L.; Lin, J.Y.; Li, G.-M.; Liu, Z.-C.; Hosen, M.I.; Yang, Z.L. Heinemannomyces, Hymenagaricus and Xanthagaricus revisited (Basidiomycota, Agaricaceae). Phytotaxa 2024, 659, 112–164. [Google Scholar] [CrossRef]
- Chromas. Available online: https://technelysium.com.au/wp/chromas (accessed on 1 July 2025).
- Larsson, A. AliView: A fast and lightweight alignment viewer and editor for large data sets. Bioinformatics 2014, 30, 3276–3278. [Google Scholar] [CrossRef]
- GenBank. Available online: https://www.ncbi.nlm.nih.gov/nuccore (accessed on 1 July 2025).
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef]
- Xiang, C.Y.; Gao, F.L.; Jakovlić, I.; Lei, H.P.; Hu, Y.; Zhang, H.; Zou, H.; Wang, G.T.; Zhang, D. Using PhyloSuite for molecular phylogeny and tree-based analyses. iMeta 2023, 2, e87. [Google Scholar] [CrossRef]
- Edler, D.; Klein, J.; Antonelli, A.; Silvestro, D. RaxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods Ecol. Evol. 2020, 12, 373–377. [Google Scholar] [CrossRef]
- FigTree. Available online: http://tree.bio.ed.ac.uk/software/figtree (accessed on 1 July 2025).
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.D.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols, a Guide to Methods and Applications, 1st ed.; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: Cambridge, MA, USA, 1990; pp. 315–322. [Google Scholar]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes: Application to identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- Vilgalys Mycology Lab, Duke University. Available online: https://sites.duke.edu/vilgalyslab (accessed on 1 July 2025).
- Matheny, P.B.; Liu, Y.J.; Ammirati, J.F.; Hall, B.D. Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales). Am. J. Bot. 2002, 89, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerse II subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Rehner, S.A.; Buckley, E. A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 2005, 97, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Nagy, L.G.; Walther, G.; Házi, J.; Vágvölgyi, C.; Papp, T. Understanding the evolutionary processes of fungal fruiting bodies: Correlated evolution and divergence times in the Psathyrellaceae. Syst. Biol. 2011, 60, 303–317. [Google Scholar] [CrossRef]
- Kretzer, A.M.; Bruns, T.D. Use of atp6 in fungal phylogenetics: An example from the boletales. Mol. Biol. Evol. 1999, 13, 483–492. [Google Scholar] [CrossRef]
- Rehm, H. Ascomycetes philippinenses V. Leafl. Philipp. Bot. 1914, 6, 2191–2237. [Google Scholar]
- Pfister, D.H. A redescription of Peziza bananicola and comments on some similar tropical species. Mycotaxon 1991, 41, 505–507. [Google Scholar]
- van Vooren, N. Reinstatement of old taxa and publication of new genera for naming some lineages of the Pezizaceae (Ascomycota). Ascomycete.org 2020, 12, 179–192. [Google Scholar] [CrossRef]
- Pegler, D.N. Agaric flora of Sri Lanka. Kew Bull. 1986, S12, 1–519. [Google Scholar]
- Franco-Molano, A.E. Catatrama (Tricholomataceae), a new genus from Costa Rica. Mycologia 1991, 83, 501–505. [Google Scholar] [CrossRef]
- Yang, Z.L.; Cai, Q.; Cui, Y.Y. Phylogeny, diversity and morphological evolution of Amanitaceae. Biosyst. Ecol. Ser. 2018, 34, 359–380. [Google Scholar]
- Cui, Y.Y.; Cai, Q.; Tang, L.P.; Liu, J.-W.; Yang, Z.L. The family Amanitaceae: Molecular phylogeny, higher-rank taxonomy and the species in China. Fungal Divers. 2018, 91, 5–230. [Google Scholar] [CrossRef]
- Cai, Q.; Codjia, J.E.I.; Buyck, B.; Cui, Y.Y.; Ryberg, M.; Yorou, N.S.; Yang, Z.L. The evolution of ectomycorrhizal symbiosis and host-plant switches are the main drivers for diversification of Amanitaceae (Agaricales, Basidiomycota). BMC Biol. 2024, 22, 230. [Google Scholar] [CrossRef]
- Consiglio, G.; Setti, L. Contributo alla conoscenza del genere Limacella s. l. Riv. Micol. Rom. 2024, 40, 3–59. [Google Scholar] [CrossRef]
- Amoako-Attah, I.; Akrofi, A.Y.; Hakeem, R.B.; Asamoah, M.; Kumi-Asare, E. White thread blight disease caused by Marasmiellus scandens (Massee) Dennis Reid on cocoa and its control in Ghana. Afr. J. Agric. Res. 2016, 11, 5064–5070. [Google Scholar] [CrossRef]
- Amoako-Attah, I.; Shahin, A.S.; Aime, M.C.; Odamtten, G.T.; Cornelius, E.; Nyaku, S.T.; Kumi-Asare, E.; Yahaya, H.B.; Bailey, B.A. Identification and characterization of fungi causing thread blight diseases on cacao in Ghana. Plant Dis. 2020, 104, 3033–3042. [Google Scholar] [CrossRef]
- Oliveira, J.J.S.; Desjardin, D.E.; Jenkinson, T.S.; Margaritescu, S.; Capelari, M.; Moncalvo, J.-M. Taxonomic revision of Marasmius Fr. and Marasmiaceae Roze ex Kühner based on multigene phylogenetics and morphological evidence. Fungal Divers. 2024, 127, 1–54. [Google Scholar] [CrossRef]
- Petersen, R.H.; Hughes, K.W. Metacampanella gen. nov.: The Campanella dendrophora complex. Mycologia 2025, 16, 210–237. [Google Scholar] [CrossRef]
- Massee, G.E. Fungi exotici, X. Bull. Misc. Inf. Kew 1910, 1, 1–6. [Google Scholar] [CrossRef]
- Dennis, R.W.G.; Reid, D.A. Some marasmioid fungi allegedly parasitic on leaves and twigs in the tropics. Kew Bull. 1957, 12, 287–292. [Google Scholar] [CrossRef]
- Zhang, S.; Ye, S.; Tibpromma, S.; Karunarathna, S.C.; Zhao, G.; Mapook, A.; Xu, J. Taxonomy, phylogeny, and successful cultivation of Marasmiellus scandens (Basidiomycota) associated with Aquilaria sinensis (agarwood tree) in China. Phytotaxa 2023, 616, 60–68. [Google Scholar] [CrossRef]
- Liu, S.; Pan, M.; Cui, B.K.; Zhu, B. Catalogue of fungi in China 5. Preliminary survey of macrofungi in Medog, Southwest China. Mycology 2025, 1–48. [Google Scholar] [CrossRef]
- Desjardin, D.E.; Perry, B.A.; Shay, J.E.; Newman, D.S.; Randrianjohany, E. The type species of Tetrapyrgos and Campanella (Basidiomycota, Agaricales) are redescribed and epitypified. Mycosphere 2017, 8, 977–985. [Google Scholar] [CrossRef]
- Li, J.X.; Cao, B.; Phurbu, D.; He, M.Q.; Zhu, X.Y.; Parra, L.A.; Zhao, R.L. The revision of the taxonomic system of Lycoperdaceae. Mycosphere 2024, 15, 4919–5016. [Google Scholar] [CrossRef]
- Yang, X.; Duan, S.; Li, M.; Li, D.; Yang, R.; Zhang, S.; Xu, T.; Li, W.; Zhou, H.; Zhao, C. A new genus and three new species of Lycoperdaceae (Agaricales) from Southern China revealed by molecular phylogeny and taxonomy. MycoKeys 2025, 118, 147–177. [Google Scholar] [CrossRef]
- Berkeley, M.J.; Broome, C.E. Enumeration of the fungi of Ceylon. Part II. J. Linn. Soc. Bot. 1873, 14, 29–140. [Google Scholar] [CrossRef]
- Fan, L. Flora Fungorum Sinicorum, Volume 54, Lycoperdales, 1st ed.; Science Press: Beijing, China, 2019; pp. 1–129. [Google Scholar]
- Smith, A.H. North American Species of Mycena, 1st ed.; University of Michigan Press: Ann Arbor, MI, USA, 1947; pp. 1–521. [Google Scholar]
- Singer, R. The Agaricales in Modern Taxonomy, 4th ed.; Koeltz Scientific Books: Koenigstein, Germany, 1986; pp. 1–908. [Google Scholar]
- Maas Geesteranus, R.A. Mycenas of the Northern Hemisphere. II. Conspectus of the Mycenas of the Northern Hemispere. Verh. Kon. Ned. Akad. Wetensch. Afd. Natuurk. Tweede Reeks 1992, 90, 1–493. [Google Scholar]
- Bau, T.; Na, Q.; Liu, L.N. A Monograph of Mycenaceae (Agaricales) in China, 1st ed.; Science Press: Beijing, China, 2021; pp. 1–326. [Google Scholar]
- Vizzini, A.; Consiglio, G.; Marchetti, M.; Borovička, J.; Campo, E.; Cooper, J.; Lebeuf, R.; Ševčíková, H. New data in Porotheleaceae and Cyphellaceae: Epitypification of Prunulus scabripes Murrill, the status of Mycopan Redhead, Moncalvo & Vilgalys and a new combination in Pleurella Horak emend. Mycol. Prog. 2022, 21, 44. [Google Scholar] [CrossRef]
- Wang, G.S.; Cai, Q.; Hao, Y.J.; Bau, T.; Chen, Z.H.; Li, M.X.; David, N.; Kraisitudomsook, N.; Yang, Z.L. Phylogenetic and taxonomic updates of Agaricales, with an emphasis on Tricholomopsis. Mycology 2023, 15, 180–209. [Google Scholar] [CrossRef] [PubMed]
- Vizzini, A.; Alvarado, P.; Consiglio, G.; Marchetti, M.; Xu, J. Family matters inside the order Agaricales: Systematic reorganization and classification of incertae sedis clitocyboid, pleurotoid and tricholomatoid taxa based on an updated 6-gene phylogeny. Stud. Mycol. 2024, 107, 67–148. [Google Scholar] [CrossRef] [PubMed]
- Chew, A.L.C.; Tan, Y.S.; Desjardin, D.E.; Musa, Y.; Sabaratnam, V. Four new bioluminescent taxa of Mycena sect. Calodontes from Peninsular Malaysia. Mycologia 2014, 106, 976–988. [Google Scholar] [CrossRef] [PubMed]
- Ke, H.M.; Lee, H.H.; Lin, C.I.; Liu, Y.C.; Lu, M.R.; Hsieh, J.A.; Chang, C.C.; Wu, P.H.; Lu, M.J.; Li, J.Y.; et al. Mycena genomes resolve the evolution of fungal bioluminescence. Proc. Natl. Acad. Sci. USA 2020, 117, 31267–31277. [Google Scholar] [CrossRef]
- Silva-Filho, A.G.S.; Mombert, A.; Nascimento, C.C.; Nóbrega, B.B.; Soares, D.M.M.; Martins, A.G.S.; Domingos, A.H.R.; Santos, I.; Della-Torre, O.H.P.; Perry, B.A.; et al. Eoscyphella luciurceolata gen. and sp. nov. (Agaricomycetes) shed light on Cyphellopsidaceae with a new lineage of bioluminescent fungi. J. Fungi 2023, 9, 1004. [Google Scholar] [CrossRef]
- Singer, R. New genera of fungi. VIII. Notes concerning the sections of the genus Marasmius Fr. Mycologia 1958, 50, 103–110. [Google Scholar] [CrossRef]
- Na, Q.; Bau, T. Recognition of Mycena sect. Amparoina sect. nov. (Mycenaceae, Agaricales), including four new species and revision of the limits of sect. Sacchariferae. MycoKeys 2019, 52, 103–124. [Google Scholar] [CrossRef]
- Redhead, S.A.; Seifert, K.A.; Vilgalys, R.; Moncalvo, J. Rhacophyllus and Zorovaemyces—Teleomorphs or anamorphs? Taxon 2000, 49, 789–798. [Google Scholar] [CrossRef]
- Cooke, M.C. Exotic fungi. Grevillea 1880, 9, 10–15. [Google Scholar]
- Singer, R. Diagnoses fungorum novorum Agaricalium II. Sydowia 1962, 15, 45–83. [Google Scholar]
- Saccardo, P.A. Sylloge Hymenomycetum. Vol. I. Agaricineae. Syll. Fung. 1887, 5, 1–1146. [Google Scholar]
- Corner, E.J.H. Further descriptions of luminous agarics. Trans. Br. Mycol. Soc. 1954, 37, 256–271. [Google Scholar] [CrossRef]
- Chew, A.L.; Desjardin, D.E.; Tan, Y.S.; Musa, M.Y.; Sabaratnam, V. Bioluminescent fungi from Peninsular Malaysia—A taxonomic and phylogenetic overview. Fungal Divers. 2014, 70, 149–187. [Google Scholar] [CrossRef]
- Earle, F.S. The genera of North American gill fungi. Bull. N. Y. Bot. Gard. 1909, 5, 373–451. [Google Scholar]
- Vu, D.; Groenewald, M.; de Vries, M.; Gehrmann, T.; Stielow, B.; Eberhardt, U.; Al-Hatmi, A.; Groenewald, J.Z.; Cardinali, G.; Houbraken, J.; et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud. Mycol. 2019, 92, 135–154. [Google Scholar] [CrossRef]
- Na, Q.; Liu, Z.; Zeng, H.; Ke, B.; Song, Z.; Cheng, X.; Ge, Y. Taxonomic studies of bluish Mycena (Mycenaceae, Agaricales) with two new species from northern China. MycoKeys 2022, 90, 119–145. [Google Scholar] [CrossRef]
- Yang, Z.L.; Zhang, L.F.; Mueller, G.M.; Kost, G.W.; Rexer, K.-H. A new systematic arrangement of the genus Oudemansiella s. str. (Physalacriaceae, Agaricales). Mycosystema 2009, 28, 1–13. [Google Scholar]
- Redhead, S.A.; Vilgalys, R.; Moncalvo, J.-M.; Johnson, J.; Hopple, J.S. Coprinus Persoon and the disposition of Coprinus species sensu lato. Taxon 2001, 50, 203–241. [Google Scholar] [CrossRef]
- Liu, Z.W.; Na, Q.; Cheng, X.; Wu, X.; Ge, Y. Mycena yuezhuoi sp. nov. (Mycenaceae, Agaricales), a purple species from the peninsula areas of China. Phytotaxa 2021, 511, 148–162. [Google Scholar] [CrossRef]
- Liu, Z.W.; Ge, Y.P.; Zeng, H.; Cheng, X.H.; Na, Q. Four new species of Mycena sect. Calodontes (Agaricales, Mycenaceae) from northeast China. MycoKeys 2022, 93, 23–56. [Google Scholar] [CrossRef]
- Wei, R.; Ge, Y.; Qi, L.; Han, M.; Zeng, H.; Hu, Y.; Zou, L.; Cheng, X.; Wu, X.; Na, Q. Revealing brownish Mycena diversity in China: New discoveries and taxonomic insights. J. Fungi 2024, 10, 439. [Google Scholar] [CrossRef]
- Nagamune, K.; Hosaka, K.; Kigawa, S.; Sugawara, R.; Sotome, K.; Nakagiri, A.; Endo, N. Two new Mycena section Calodontes species: One newly discovered and the other new to Japan. Mycoscience 2024, 65, 111–122. [Google Scholar] [CrossRef]
- Harder, C.B.; Miyauchi, S.; Virágh, M.; Kuo, A.; Thoen, E.; Andreopoulos, B.; Lu, D.; Skrede, I.; Drula, E.; Henrissat, B.; et al. Extreme overall mushroom genome expansion in Mycena s. s. irrespective of plant hosts or substrate specializations. Cell Genom. 2024, 4, 100586. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.J.S.; Vargas-Isla, R.; Cabral, T.S.; Rodrigues, D.P.; Ishikawa, N.K. Progress on the phylogeny of the Omphalotaceae: Gymnopus s. str., Marasmiellus s. str., Paragymnopus gen. nov. and Pusillomyces gen. nov. Mycol. Prog. 2019, 18, 713–739. [Google Scholar] [CrossRef]
- Li, J.P.; Oliveira, J.J.S.; Pan, M.C.; Deng, C.Y.; Antonín, V.; Xiao, Z.D.; Li, F.F.; Li, T.H.; Li, Y.; Dai, Y.T.; et al. Notes on all genera of Omphalotaceae: Expanding the taxonomic spectrum in China and revisiting historical type specimens. Mycosphere 2024, 15, 1522–1594. [Google Scholar] [CrossRef]
- Mata, J.L.; Halling, R.E.; Petersen, R.H. New species and mating system reports in Gymnopus (Agaricales) from Costa Rica. Fungal Divers. 2004, 16, 113–129. [Google Scholar]
- Mešić, A.; Tkalčec, Z.; Deng, C.-Y.; Li, T.-H.; Plese, B.; Cetkovic, H. Gymnopus fuscotramus (Agaricales), a new species from southern China. Mycotaxon 2011, 117, 321–330. [Google Scholar] [CrossRef]
- Redhead, S.A. Nomenclatural novelties. Index Fung. 2012, 14, 1. [Google Scholar]
- Ge, Y.; Liu, Z.; Zeng, H.; Cheng, X.; Na, Q. Updated description of Atheniella (Mycenaceae, Agaricales), including three new species with brightly colored pilei from Yunnan Province, southwest China. MycoKeys 2021, 81, 139–164. [Google Scholar] [CrossRef] [PubMed]
- Fayod, V. Prodrome d’une histoire naturelle des Agaricinés. Ann. Sci. Nat. Bot. Sér. 7 1889, 9, 181–411. [Google Scholar]
- Redhead, S.A. Mycological observations 15–16: On Omphalia and Pleurotus. Mycologia 1986, 78, 522–528. [Google Scholar] [CrossRef]
- Antonín, V. Retocybe Velen. (Basidiomycotina, Tricholomataceae): Type revisions of species described by J. Velenovský with notes on status of the genus. Acta Mus. Morav. Sci. Biol. (Brno) 2002, 87, 201–207. [Google Scholar]
- Antonín, V. A revision of the type specimens of new species of Delicatula (Agaricales, Tricholomataceae) described by Josef Velenovský. Czech Mycol. 2003, 54, 205–233. [Google Scholar] [CrossRef]
- Cheon, S.H.; Woo, M.A.; Jo, S.; Kim, Y.K.; Kim, K.J. The chloroplast phylogenomics and systematics of Zoysia (Poaceae). Plants 2021, 10, 1517. [Google Scholar] [CrossRef]
- Yang, K.L.; Lin, J.Y.; Li, G.-M.; Yang, Z.L. Introducing one new genus and two new species of Psathyrellaceae (Basidiomycota, Agaricales), with notes on Candolleomyces and Ephemerocybe. Phytotaxa 2025, 702, 1–28. [Google Scholar] [CrossRef]
- Yang, K.L.; Lin, J.Y.; Li, G.-M.; Yang, Z.L. Mushrooms adapted to seawater: Two new species of Candolleomyces (Basidiomycota, Agaricales) from China. J. Fungi 2023, 9, 1204. [Google Scholar] [CrossRef]
- Chang, C.C.; Chou, W.N. Two new species of Mycena in Taiwan. Fungal Sci. 2019, 34, 9–17. [Google Scholar]
- Harder, C.B.; Hesling, E.; Botnen, S.S.; Lorberau, K.E.; Dima, B.; von Bonsdorff-Salminen, T.; Niskanen, T.; Jarvis, S.G.; Ouimette, A.; Hester, A.; et al. Mycena species can be opportunist-generalist plant root invaders. Environ. Microbiol. 2023, 25, 1875–1893. [Google Scholar] [CrossRef]
- Guzmán, G.; Cortés-Pérez, A.; Guzmán-Dávalos, L.; Ramírez-Guillén, F.; Sánchez-Jácome, M.D. An emendation of Scleroderma, new records, and review of the known species in Mexico. Rev. Mex. Biodivers. 2013, 84, 173–191. [Google Scholar] [CrossRef]
- Patouillard, M.N. Phlyctospora maculata, nouveau Gastéromycète de la Chine occidentale. Bull. Soc. Mycol. Fr. 1892, 8, 189–190. [Google Scholar]
- Guzmán, G. Monografía del género Scleroderma Pers. emend. Fr. (Fungi-Basidiomycetes). Darwiniana 1970, 16, 233–407. [Google Scholar]
- Ryoo, R.; Sou, H.D.; Park, H.; Ka, K.H. Astraeus ryoocheoninii sp. nov. from Korea and Japan and phylogenetic relationships within Astraeus. Mycotaxon 2017, 132, 63–72. [Google Scholar] [CrossRef]
- Phosri, C.; Martín, M.P.; Sihanonth, P.; Whalley, A.J.; Watling, R. Molecular study of the genus Astraeus. Mycol. Res. 2007, 111, 275–286. [Google Scholar] [CrossRef]
- Phosri, C.; Martín, M.P.; Watling, R. Astraeus: Hidden dimensions. IMA Fungus 2013, 4, 347–356. [Google Scholar] [CrossRef]
- Wang, R.; Herrera, M.; Xu, W.; Zhang, P.; Moreno, J.P.; Colinas, C.; Yu, F. Ethnomycological study on wild mushrooms in Pu’er Prefecture, Southwest Yunnan, China. J. Ethnobiol. Ethnomed. 2022, 18, 55. [Google Scholar] [CrossRef]
- Yang, K.L.; Lin, J.Y.; Li, G.-M.; Yang, Z.L. Updates of Scleroderma (Basidiomycota, Boletales): New data from 18 selected species in China. Phytotaxa 2025, 706, 209–254. [Google Scholar] [CrossRef]
- Léveillé, J.H. Descriptions des champignons de l’herbier du Muséum de Paris. Ann. Sci. Nat. Bot. Sér. 3 1846, 5, 111–167. [Google Scholar]
- Cui, B.K.; Li, H.-J.; Ji, X.; Zhou, J.-L.; Song, J.; Si, J.; Yang, Z.L.; Dai, Y.C. Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Divers. 2019, 97, 137–392. [Google Scholar] [CrossRef]
- Kunth, C.S. Synopsis plantarum. Syn. Pl. 1822, 1, 1–491. [Google Scholar]
- Fries, E.M. Systema orbis vegetabilis. Syst. Orb. Veg. 1825, 1, 1–369. [Google Scholar]
- Bi, Z.-S.; Zheng, G.-Y.; Liang, J.-Q.; Li, C.; Li, T.-H.; Zheng, W.-L.; Lian, M.-Z. Taxonomic studies on Marasmiellus from Dinghu Mountain of China. Acta Mycol. Sin. 1983, 2, 26–33. [Google Scholar]
- Bi, Z.S.; Zheng, G.Y.; Li, T.H.; Wang, Y.Z. Macrofungus Flora of the Mountainous District of North Guangdong, 1st ed.; Guangdong Science & Technology Press: Guangzhou, China, 1990; pp. 1–879. [Google Scholar]
Variables | Divisions | Notes |
---|---|---|
Species | - | Identified via morphology and/or molecular phylogeny |
Individual number * | 1 | 1 sporocarp; conspecific sporocarp(s) > 2 m away this sporocarp counted as another individual |
2 | Group of >1 sporocarps, with adjacent sporocarps inside this group ≤ 0.5 m in distance; conspecific sporocarp(s) > 2 m away this group counted as another individual | |
3 | Group of >1 sporocarps, with adjacent sporocarps inside this group ≤ 1 m in distance; conspecific sporocarp(s) > 2 m away this group counted as another individual | |
4 | Group of >1 sporocarps, with adjacent sporocarps inside this group ≤ 2 m in distance; conspecific sporocarp(s) > 2 m away this group counted as another individual | |
Trophic types | Soil saprotrophs | Fungi utilizing soil (including feces) as primary nutrients |
Wood saprotrophs | Fungi utilizing dead trees, branches and leaves as primary nutrients | |
Alga symbionts | Fungi forming close symbiotic (including parasitic) relationships with cyanobacteria and/or eukaryotic algae | |
Plant symbionts | Fungi forming close symbiotic (including parasitic) relationships with plants | |
Insect symbionts | Fungi forming close symbiotic (including parasitic) relationships with insects | |
Fungus symbionts | Fungi forming close symbiotic (including parasitic) relationships with other fungi | |
Attachment types | Soil-inhabiting | Sporocarps mainly formed on soil (including feces) |
Wood-inhabiting | Sporocarps mainly formed on wood | |
Sporocarp types | Agaricoid fungi | More or less stipito-pileate and fleshy basidiomycetes with more or less lamellate hymenophore |
Boletoid fungi | More or less stipito-pileate and fleshy basidiomycetes with more or less poroid hymenophore | |
Polyporoid fungi | Effused, dimidiate to stipito-pileate and more or less woody basidiomycetes with smooth, lamellate to poroid hymenophore | |
Cantharelloid fungi | More or less trumpet-like and fleshy basidiomycetes with smooth to lamellate hymenophore | |
Clavarioid fungi | More or less columnar and fleshy basidiomycetes with smooth hymenophore | |
Gastroid fungi | More or less globose and fleshy basidiomycetes with endogenous hymenophore | |
Jelly fungi | More or less lobate and gelatinous basidiomycetes with smooth hymenophore | |
Ascomycetes | Fungi forming sexual spores endogenous in asci | |
Slime molds | Fungus-like organisms with amoeboid stages in lifecycle | |
Taxonomic orders | - | A higher rank in taxonomic system reflecting an earlier level in evolutionary history, determined with recent phylogenetic studies of the corresponding group |
Geographic components | Cosmopolitan | Distribution center indistinct |
North temperate | Distribution center in northern temperate zone, occasionally extending to southern temperate zone | |
Pantropical | Distribution center in tropical and subtropical regions, occasionally reaching temperate zones | |
East Asian | Distribution center in East Asia | |
Edibility types | Edible | Edible or both edible and medicinal for most people |
Medicinal | Inedible (usually due to the hard texture) but medicinal for most people | |
Poisonous | Poisonous for most people | |
Unknown | Edibility currently undetermined | |
Litterfall thickness | Undecomposed layer thickness | Thickness of fresh to slightly decomposed litterfall with recognizable forms |
Semi-decomposed layer thickness | Thickness of partly decomposed and loosely structured litterfall still with organic morphology | |
Decomposed layer thickness | Thickness of highly decomposed and amorphous materials mixed with soil | |
Abundance of large plant remains | 1 | Almost none, not impeding free movement |
2 | Sparse, not impeding free movement | |
3 | Common, impeding movement in dense areas | |
4 | Abundant, significantly impeding movement |
Loci | Primer Pairs | Denaturation | Annealing | Elongation | References |
---|---|---|---|---|---|
ITS | ITS1-F/ITS4 | 94 °C, 30 s | 53 °C, 40 s | 72 °C, 60 s | [47,48] |
nrLSU | LR0R/LR5 | 94 °C, 30 s | 53 °C, 40 s | 72 °C, 90 s | [49] |
rpb1 | gRPB1-Af/fRPB1-Cr | 94 °C, 60 s | 52 °C, 60 s | 72 °C, 80 s | [50] |
rpb2 | brpb2-6F/brpb2-7.1R | 94 °C, 60 s | 52 °C, 60 s | 72 °C, 80 s | [51] |
tef-1α | EF1-983F/EF1-1567R | 94 °C, 30 s | 53 °C, 40 s | 72 °C, 60 s | [52] |
β-tub | B36f/B12r | 94 °C, 60 s | 53 °C, 60 s | 72 °C, 60 s | [53] |
atp6 | ATP6-1/ATP6-2 | 94 °C, 60 s | 52 °C, 60 s | 72 °C, 80 s | [54] |
Species | Collections | ITS | nrLSU | rpb1 | rpb2 | tef-1α | β-tub | atp6 |
---|---|---|---|---|---|---|---|---|
Amparoina heteracantha | HTBM2964 | PX308916 | - | - | - | - | - | - |
Astraeus maculatus | HKAS150766 (ET) | PX308869 | PX308986 | - | PX310901 | PX310950 | - | - |
Astraeus maculatus | HTBM3131 | PX308870 | PX308987 | - | PX310902 | PX310951 | - | - |
Astraeus ryoocheoninii | HTBM2842 | - | PX308988 | - | PX310903 | PX310952 | - | - |
Astraeus ryoocheoninii | HTBM3127 | - | PX308983 | - | PX310898 | PX310947 | - | - |
Astraeus ryoocheoninii | HTBM3128 | - | PX308984 | - | PX310899 | PX310948 | - | - |
Astraeus ryoocheoninii | HTBM3129 | PX308868 | PX308985 | - | PX310900 | PX310949 | - | - |
Candolleomyces striginus | HKAS150762 (HT) | PX308934 | PX309050 | - | - | PX310961 | PX310998 | - |
Candolleomyces striginus | HTBM0800 | PV155166 | PV147343 | - | - | PV156689 | PV156727 | - |
Candolleomyces striginus | HTBM1399 | PV155163 | PV147340 | - | - | PV156687 | PV156724 | - |
Candolleomyces striginus | HTBM1548 | PV155160 | PV147337 | - | - | PV156684 | PV156722 | - |
Candolleomyces vagabundoides | HKAS150768 (HT) | PX308889 | PX309007 | - | - | PX310954 | PX310997 | - |
Chaetocalathus galeatus | HTBM0583 | PX308914 | PX309023 | - | - | - | - | - |
Collybiopsis clavicystidiata | HTBM1311 | PX308926 | PX309046 | - | - | - | - | - |
Collybiopsis gibbosa | HTBM0911 | PX308928 | PX309042 | - | - | - | - | - |
Collybiopsis indocta | HTBM0739 | PX308904 | PX309025 | - | - | - | - | - |
Collybiopsis melanopus | HTBM1055 | PX308932 | PX309048 | - | - | - | - | - |
Collybiopsis menehune | HTBM0761 | PX308905 | PX309026 | - | - | - | - | - |
Collybiopsis silvopastoralis | HKAS150758 (HT) | PX308917 | PX309035 | - | - | - | - | - |
Collybiopsis silvopastoralis | HTBM3041 | PX308918 | PX309036 | - | - | - | - | - |
Collybiopsis subnuda | HTBM1094 | PX308909 | PX309029 | - | - | - | - | - |
Daedaleopsis glabra | HTBM0521 | PX308871 | PX308989 | - | - | - | - | - |
Daedaleopsis glabra | HTBM0570 | PX308875 | PX308990 | - | - | - | - | - |
Daedaleopsis glabra | HTBM0609 | PX308876 | PX308991 | - | - | - | - | - |
Daedaleopsis glabra | HTBM0650 | PX308872 | PX308992 | - | - | - | - | - |
Daedaleopsis glabra | HTBM0651 | PX308873 | PX308993 | - | - | - | - | - |
Gerronema angustum | HTBM1508 | PX308933 | PX309049 | - | - | - | - | - |
Gerronema kuruvense | HTBM3056 | PX308920 | PX309038 | - | - | - | - | - |
Gerronema microcarpum | HTBM3057 | PX308921 | PX309039 | - | - | - | - | - |
Gerronema pubescence | HTBM1200 | PX308924 | PX309044 | - | - | - | - | - |
Gugumyces columbarius | HKAS150763 (HT) | PX308864 | PX308981 | - | - | - | - | - |
Gugumyces columbarius | HTBM2032 | PX308861 | PX308978 | - | - | - | - | - |
Gugumyces columbarius | HTBM2166 | PX308862 | PX308979 | - | - | - | - | - |
Gugumyces columbarius | HTBM1028 | PX308863 | PX308980 | - | - | - | - | - |
Gugumyces columbarius | HTBM1559 | PX308865 | PX308982 | - | - | - | - | - |
Hexagonia apiaria | HTBM1180 | PX308877 | PX308995 | - | PX310906 | - | - | - |
Hexagonia apiaria | HTBM2346 | PX308878 | PX308996 | - | PX310904 | PX310953 | - | - |
Hexagonia apiaria | HTBM2754 | PX308879 | PX308997 | - | PX310905 | - | - | - |
Hexagonia apiaria | HTBM0779 | PX308874 | PX308994 | - | - | - | - | - |
Leucoinocybe parviauricoma | HKAS150759 (HT) | PX308922 | PX309040 | - | - | - | - | - |
Limacella yuexiuensis | HKAS150756 (HT) | PX308890 | PX309008 | - | PX310910 | PX310955 | - | - |
Limacella yuexiuensis | HTBM1240 | PX308891 | PX309009 | - | - | - | - | - |
Marasmiellomycena entolomatoides | HTBM2425 | PX308930 | PX309047 | - | - | - | - | - |
Marasmius maximus | HTBM2533 | PX308931 | - | - | - | - | - | - |
Neonothopanus nambi | HTBM0678 | PX308971 | PX309024 | - | - | - | - | - |
Oudemansiella raphanipes | HTBM2129 | PX308929 | - | - | - | - | - | - |
Paramarasmius palmivorus | HTBM0876 | PX308927 | PX309041 | - | - | - | - | - |
Paramarasmius palmivorus | HTBM1109 | PX308923 | PX309043 | - | - | - | - | - |
Paramarasmius palmivorus | HTBM1293 | PX308925 | PX309045 | - | - | - | - | - |
Paramarasmius palmivorus | HTBM1226 | PX308910 | PX309030 | - | - | - | - | - |
Paramarasmius palmivorus | HTBM1233 | PX308911 | PX309031 | - | - | - | - | - |
Paramarasmius palmivorus | HTBM1234 | PX308912 | PX309032 | - | - | - | - | - |
Paramarasmius palmivorus | HTBM3052 | PX308919 | PX309037 | - | - | - | - | - |
Purpureodiscus masticophilus | HKAS150755 (HT) | PX308961 | PX309081 | - | PX310942 | PX310993 | - | - |
Purpureodiscus masticophilus | HTBM2874 | - | PX309077 | PX310890 | PX310938 | PX310988 | - | - |
Purpureodiscus masticophilus | HTBM2073 | PX308966 | PX309086 | - | - | - | - | - |
Purpureodiscus masticophilus | HTBM2447 | PX308960 | - | PX310893 | - | PX310992 | - | - |
Purpureodiscus masticophilus | HTBM2449 | PX308962 | PX309082 | PX310894 | PX310943 | PX310994 | - | - |
Purpureodiscus masticophilus | HTBM2877 | PX308957 | PX309078 | - | PX310939 | PX310989 | - | - |
Purpureodiscus masticophilus | HTBM2878 | PX308958 | PX309079 | PX310891 | PX310940 | PX310990 | - | - |
Purpureodiscus masticophilus | HTBM2879 | PX308959 | PX309080 | PX310892 | PX310941 | PX310991 | - | - |
Purpureodiscus masticophilus | HTBM2489 | PX308963 | PX309083 | PX310895 | PX310944 | PX310995 | - | - |
Purpureodiscus masticophilus | HTBM2490 | PX308964 | PX309084 | PX310896 | PX310945 | PX310996 | - | - |
Purpureodiscus masticophilus | HTBM2491 | PX308965 | PX309085 | PX310897 | PX310946 | - | - | - |
Rufolamptera noctilucens | HTBM2224 | PX308903 | PX309022 | - | - | PX310960 | - | - |
Rufolamptera noctilucens | HTBM2623 | PX308899 | - | - | - | PX310959 | - | - |
Rufolamptera profundibambusae | HKAS150760 (HT) | PX308901 | PX309017 | - | PX310912 | PX310957 | - | - |
Rufolamptera profundibambusae | HTBM0921 | PX308900 | PX309018 | - | - | - | - | - |
Rufolamptera profundibambusae | HTBM2740 | PX308902 | PX309021 | - | PX310913 | PX310958 | - | - |
Rufolamptera profundibambusae | HTBM2233 | - | PX309019 | - | - | - | - | - |
Rufolamptera profundibambusae | HTBM2235 | - | PX309020 | - | - | - | - | - |
Satyrus qiandenghuensis | HKAS150764 (HT) | PX308880 | PX308998 | - | - | - | - | - |
Satyrus qiandenghuensis | HTBM2237 | PX308881 | PX308999 | - | - | - | - | PX310999 |
Satyrus qiandenghuensis | HTBM2238 | PX308882 | PX309000 | - | - | - | - | PX311000 |
Schizophyllum commune | HTBM2108 | PX308915 | PX309034 | - | PX310911 | PX310956 | - | - |
Scleroderma australe | HTBM2219 | PX308867 | - | - | - | - | - | - |
Scleroderma australe | HTBM2569 | PX308866 | - | - | - | - | - | - |
Scleroderma cruentatum | HKAS150765 (HT) | PX308883 | PX309001 | - | - | - | - | - |
Scleroderma cruentatum | HTBM2663 | PX308885 | PX309003 | - | - | - | - | - |
Scleroderma cruentatum | HTBM3023 | PX308884 | PX309002 | - | - | - | - | - |
Stygiomarasmius scandens | HTBM0776 | PX308907 | PX309028 | - | - | - | - | - |
Stygiomarasmius scandens | HTBM0778 | PX308908 | - | - | - | - | - | - |
Stygiomarasmius scandens | HTBM1236 | PX308913 | PX309033 | - | - | - | - | - |
Tetrapyrgos parvispora | HTBM0766 | PX308906 | PX309027 | - | - | - | - | - |
Trichoderma grossum | HTBM3134A | PX415258 | - | - | - | - | - | - |
Trichoderma grossum | HTBM3134B | PX415259 | - | - | - | - | - | - |
Tortoperdon suspectum | HKAS150757 (HT) | PX308896 | PX309010 | - | - | - | - | - |
Tortoperdon suspectum | HTBM0362 | PX308892 | PX309012 | - | - | - | - | - |
Tortoperdon suspectum | HTBM0367 | PX308893 | PX309013 | - | - | - | - | - |
Tortoperdon suspectum | HTBM0368 | PX308894 | PX309014 | - | - | - | - | - |
Tortoperdon suspectum | HTBM0391 | PX308895 | PX309015 | - | - | - | - | - |
Tortoperdon suspectum | HTBM1229 | PX308897 | PX309011 | - | - | - | - | - |
Tortoperdon suspectum | HTBM1266 | PX308898 | PX309016 | - | - | - | - | - |
Xanthagaricus popcorneus | HKAS150767 (HT) | PX308888 | PX309006 | - | PX310909 | - | - | - |
Xanthagaricus popcorneus | HTBM2744 | PX308886 | PX309005 | - | PX310907 | - | - | - |
Xanthagaricus popcorneus | HTBM2745 | PX308887 | PX309004 | - | PX310908 | - | - | - |
Xuaniella urbica | HKAS150761 (HT) | PX308937 | PX309053 | - | PX310915 | PX310964 | - | - |
Xuaniella urbica | HTBM0528 | PX308935 | PX309051 | - | - | - | - | - |
Xuaniella urbica | HTBM2910 | PX308939 | PX309056 | - | PX310918 | PX310967 | - | - |
Xuaniella urbica | HTBM2911 | PX308940 | PX309057 | - | PX310919 | PX310968 | - | - |
Xuaniella urbica | HTBM2536 | PX308943 | PX309060 | - | PX310921 | PX310971 | - | - |
Xuaniella urbica | HTBM2549 | PX308944 | PX309061 | - | PX310922 | PX310972 | - | - |
Xuaniella urbica | HTBM2550 | PX308945 | PX309062 | - | PX310923 | PX310973 | - | - |
Xuaniella urbica | HTBM2883 | PX308936 | - | - | - | PX310962 | - | - |
Xuaniella urbica | HTBM2884 | PX308972 | PX309052 | - | PX310914 | PX310963 | - | - |
Xuaniella urbica | HTBM2896 | PX308973 | PX309054 | - | PX310916 | PX310965 | - | - |
Xuaniella urbica | HTBM2897 | PX308938 | PX309055 | - | PX310917 | PX310966 | - | - |
Xuaniella urbica | HTBM1451 | PX308941 | PX309058 | - | - | PX310969 | - | - |
Xuaniella urbica | HTBM1996 | PX308942 | PX309059 | - | PX310920 | PX310970 | - | - |
Xuaniella urbica | HTBM2586 | PX308946 | PX309063 | - | PX310924 | PX310974 | - | - |
Xuaniella urbica | HTBM2587 | PX308947 | PX309064 | - | PX310925 | PX310975 | - | - |
Xuaniella urbica | HTBM2606 | PX308948 | PX309065 | - | PX310926 | PX310976 | - | - |
Xuaniella urbica | HTBM2610 | PX308949 | PX309066 | - | PX310927 | PX310977 | - | - |
Xuaniella urbica | HTBM2612 | PX308974 | PX309067 | - | PX310928 | PX310978 | - | - |
Xuaniella urbica | HTBM2613 | PX308950 | PX309068 | - | PX310929 | PX310979 | - | - |
Xuaniella urbica | HTBM2614 | PX308951 | PX309069 | - | PX310930 | PX310980 | - | - |
Xuaniella urbica | HTBM2616 | PX308975 | PX309070 | - | PX310931 | PX310981 | - | - |
Xuaniella urbica | HTBM2686 | PX308976 | PX309071 | - | PX310932 | PX310982 | - | - |
Xuaniella urbica | HTBM2697 | PX308952 | PX309072 | - | PX310933 | PX310983 | - | - |
Xuaniella urbica | HTBM2706 | PX308953 | PX309073 | - | PX310934 | PX310984 | - | - |
Xuaniella urbica | HTBM2716 | PX308954 | PX309074 | - | PX310935 | PX310985 | - | - |
Xuaniella urbica | HTBM2719 | PX308955 | PX309075 | - | PX310936 | PX310986 | - | - |
Xuaniella urbica | HTBM2721 | PX308956 | PX309076 | - | PX310937 | PX310987 | - | - |
Forest Types | Characterization Indices | Medians | U Values | p Values | Cliff’s Delta | Conclusions # | |
---|---|---|---|---|---|---|---|
Ungrazed | Grazed | ||||||
Secondary mixed forests | Diversity index | 0.570 | 0.680 | 48.0 | 0.173 | −0.333 | ↑ ++ |
Evenness index | 0.820 | 0.930 | 30.0 | 0.016 | −0.583 | ↑ * +++ | |
Richness index | 1.140 | 1.345 | 56.5 | 0.386 | −0.215 | ↑ + | |
Dense-tree plantations | Diversity index | 0.595 | 0.790 | 0 | 0 | −1.000 | ↑ * +++ |
Evenness index | 0.955 | 0.920 | 47.5 | 0.163 | −0.340 | ↓ ++ | |
Richness index | 0.960 | 1.835 | 0 | 0 | −1.000 | ↑ * +++ | |
Sparse-tree plantations | Diversity index | 0.440 | 0.705 | 13.5 | 0.001 | −0.813 | ↑ * +++ |
Evenness index | 0.920 | 0.915 | 71.5 | 1.000 | −0.007 | | − | |
Richness index | 0.910 | 1.315 | 22.5 | 0.005 | −0.688 | ↑ * +++ | |
General | Diversity index | 0.560 | 0.755 | 175.5 | 0 | −0.729 | ↑ * +++ |
Evenness index | 0.920 | 0.920 | 533.5 | 0.197 | −0.177 | ↑ + | |
Richness index | 0.960 | 1.600 | 241.0 | 0 | −0.628 | ↑ * +++ |
Forest Types | Treatments | Nos. | Species | Dominance Index |
---|---|---|---|---|
Secondary mixed forests | Ungrazed | 1 | Graphis scripta | 40.54% |
2 | Truncospora ochroleuca | 19.28% | ||
3 | Neofomitella guangxiensis | 9.02% | ||
Grazed | 1 | Graphis scripta | 33.12% | |
2 | Truncospora ochroleuca | 17.12% | ||
3 | Neofomitella guangxiensis | 9.18% | ||
Dense-tree plantations | Ungrazed | 1 | Graphis scripta | 43.20% |
2 | Coprinopsis urticicola | 10.33% | ||
3 | Basidopus amictus | 7.75% | ||
Grazed | 1 | Graphis scripta | 20.36% | |
2 | Sanguinoderma rugosum | 9.23% | ||
3 | Schizophyllum commune | 7.54% | ||
Sparse-tree plantations | Ungrazed | 1 | Graphis scripta | 51.14% |
2 | Sulzbacheromyces sinensis | 24.43% | ||
3 | Scortechinia diminuspora | 3.23% | ||
Grazed | 1 | Graphis scripta | 27.18% | |
2 | Sulzbacheromyces sinensis | 8.40% | ||
3 | Auricularia cornea | 7.51% | ||
General | Ungrazed | 1 | Graphis scripta | 44.08% |
2 | Truncospora ochroleuca | 10.49% | ||
3 | Sulzbacheromyces sinensis | 7.55% | ||
Grazed | 1 | Graphis scripta | 25.81% | |
2 | Truncospora ochroleuca | 7.11% | ||
3 | Sanguinoderma rugosum | 4.82% |
Forest Types | Nos. | Ungrazed | Grazed | ||
---|---|---|---|---|---|
Orders | Dominance Index | Orders | Dominance Index | ||
Secondary mixed forests | 1 | Ostropales | 40.54% | Polyporales | 40.69% |
2 | Polyporales | 38.84% | Ostropales | 33.12% | |
3 | Agaricales | 9.47% | Agaricales | 9.05% | |
Dense-tree plantations | 1 | Ostropales | 43.20% | Agaricales | 38.47% |
2 | Agaricales | 40.75% | Polyporales | 20.73% | |
3 | Lepidostromatales | 5.72% | Ostropales | 20.36% | |
Sparse-tree plantations | 1 | Ostropales | 51.14% | Ostropales | 27.18% |
2 | Lepidostromatales | 24.43% | Agaricales | 26.56% | |
3 | Agaricales | 11.49% | Polyporales | 21.64% | |
General | 1 | Ostropales | 44.08% | Agaricales | 27.00% |
2 | Polyporales | 21.58% | Polyporales | 26.51% | |
3 | Agaricales | 19.25% | Ostropales | 25.81% |
Forest Types | Nos. | Ungrazed | Grazed | ||
---|---|---|---|---|---|
Trophic Types | Dominance Index | Trophic Types | Dominance Index | ||
Secondary mixed forests | 1 | Wood saprotrophs | 49.99% | Wood saprotrophs | 55.36% |
2 | Alga symbionts | 40.54% | Alga symbionts | 33.12% | |
3 | Plant symbionts | 4.73% | Soil saprotrophs | 7.54% | |
Dense-tree plantations | 1 | Alga symbionts | 48.92% | Wood saprotrophs | 63.19% |
2 | Wood saprotrophs | 35.59% | Alga symbionts | 22.40% | |
3 | Soil saprotrophs | 15.49% | Soil saprotrophs | 14.41% | |
Sparse-tree plantations | 1 | Alga symbionts | 75.57% | Wood saprotrophs | 50.54% |
2 | Wood saprotrophs | 21.92% | Alga symbionts | 35.58% | |
3 | Soil saprotrophs | 2.51% | Soil saprotrophs | 13.88% | |
General | 1 | Alga symbionts | 51.63% | Wood saprotrophs | 57.50% |
2 | Wood saprotrophs | 38.82% | Alga symbionts | 29.09% | |
3 | Soil saprotrophs | 6.62% | Soil saprotrophs | 12.34% |
Forest Types | Nos. | Ungrazed | Grazed | ||
---|---|---|---|---|---|
Attachment Types | Dominance Index | Attachment Types | Dominance Index | ||
Secondary mixed forests | 1 | Wood-inhabiting | 91.90% | Wood-inhabiting | 89.72% |
2 | Soil-inhabiting | 8.10% | Soil-inhabiting | 10.28% | |
Dense-tree plantations | 1 | Wood-inhabiting | 78.79% | Wood-inhabiting | 83.55% |
2 | Soil-inhabiting | 21.21% | Soil-inhabiting | 16.45% | |
Sparse-tree plantations | 1 | Wood-inhabiting | 73.06% | Wood-inhabiting | 77.72% |
2 | Soil-inhabiting | 26.94% | Soil-inhabiting | 22.28% | |
General | 1 | Wood-inhabiting | 83.52% | Wood-inhabiting | 83.64% |
2 | Soil-inhabiting | 16.48% | Soil-inhabiting | 16.36% |
Forest Types | Nos. | Ungrazed | Grazed | ||
---|---|---|---|---|---|
Sporocarp Types | Dominance Index | Sporocarp Types | Dominance Index | ||
Secondary mixed forests | 1 | Ascomycetes | 42.22% | Polyporoid fungi | 46.58% |
2 | Polyporoid fungi | 38.84% | Ascomycetes | 33.12% | |
3 | Agaricoid fungi | 9.47% | Agaricoid fungi | 9.05% | |
Dense-tree plantations | 1 | Ascomycetes | 43.20% | Agaricoid fungi | 35.49% |
2 | Agaricoid fungi | 40.75% | Ascomycetes | 33.57% | |
3 | Clavarioid fungi | 5.72% | Polyporoid fungi | 22.95% | |
Sparse-tree plantations | 1 | Ascomycetes | 54.37% | Ascomycetes | 34.44% |
2 | Agaricoid fungi | 11.49% | Agaricoid fungi | 25.12% | |
3 | Polyporoid fungi | 9.70% | Polyporoid fungi | 21.64% | |
General | 1 | Ascomycetes | 45.62% | Ascomycetes | 42.52% |
2 | Polyporoid fungi | 21.58% | Polyporoid fungi | 29.12% | |
3 | Agaricoid fungi | 19.25% | Agaricoid fungi | 21.10% |
Forest Types | Nos. | Ungrazed | Grazed | ||
---|---|---|---|---|---|
Geographical Components | Dominance Index | Geographical Components | Dominance Index | ||
Secondary mixed forests | 1 | Cosmopolitan | 80.14% | Cosmopolitan | 80.95% |
2 | Pantropical | 19.86% | Pantropical | 13.16% | |
3 | - | - | North temperate | 4.38% | |
Dense-tree plantations | 1 | Cosmopolitan | 76.76% | Cosmopolitan | 70.80% |
2 | Pantropical | 23.24% | Pantropical | 27.33% | |
3 | - | - | North temperate/ East Asian | 0.93%/0.93% | |
Sparse-tree plantations | 1 | Cosmopolitan | 64.08% | Cosmopolitan | 76.92% |
2 | Pantropical | 35.92% | Pantropical | 18.76% | |
3 | - | - | North temperate | 2.89% | |
General | 1 | Cosmopolitan | 81.00% | Cosmopolitan | 75.29% |
2 | Pantropical | 19.00% | Pantropical | 19.21% | |
3 | - | - | North temperate | 2.36% |
Forest Types | Nos. | Ungrazed | Grazed | ||
---|---|---|---|---|---|
Edibility Types | Dominance Index | Edibility Types | Dominance Index | ||
Secondary mixed forests | 1 | Unknown | 90.22% | Unknown | 90.26% |
2 | Edible | 5.04% | Edible | 5.76% | |
3 | Poisonous | 3.05% | Poisonous | 2.47% | |
Dense-tree plantations | 1 | Unknown | 94.84% | Unknown | 70.57% |
2 | Edible | 3.14% | Edible | 14.42% | |
3 | Medical | 2.03% | Medical | 10.34% | |
Sparse-tree plantations | 1 | Unknown | 96.77% | Unknown | 82.39% |
2 | Medical | 3.23% | Edible | 11.84% | |
3 | - | - | Medical | 4.03% | |
General | 1 | Unknown | 93.22% | Unknown | 79.35% |
2 | Edible | 3.24% | Edible | 11.31% | |
3 | Medical | 2.15% | Medical | 6.13% |
Forest Types | Environmental Factors | Medians | U Values | p Values | Cliff’s Delta | Conclusions # | |
---|---|---|---|---|---|---|---|
Ungrazed | Grazed | ||||||
Secondary mixed forests | Undecomposed layer | 2.50 | 1.00 | 12.5 | 0.001 | −0.826 | ↓ * +++ |
Semi-decomposed layer | 1.25 | 0.50 | 14.0 | 0.001 | −0.806 | ↓ * +++ | |
Decomposed layer | 0.50 | 0.25 | 33.0 | 0.016 | −0.542 | ↓ * +++ | |
All litterfall layers | 4.25 | 1.75 | 13.0 | 0.001 | −0.819 | ↓ * +++ | |
Large plant remains | 2.00 | 3.00 | 22.5 | 0.003 | −0.6875 | ↑ * +++ | |
Dense-tree plantations | Undecomposed layer | 1.00 | 0.50 | 23.5 | 0.003 | −0.674 | ↓ * +++ |
Semi-decomposed layer | 0.50 | 0.25 | 60.0 | 0.437 | −0.167 | ↓ + | |
Decomposed layer | 0 | 0 | 72.0 | 1.000 | 0 | | − | |
All litterfall layers | 1.50 | 0.75 | 32.5 | 0.020 | −0.549 | ↓ * +++ | |
Large plant remains | 2.00 | 4.00 | 10.0 | 0 | −0.861 | ↑ * +++ | |
Sparse-tree plantations | Undecomposed layer | 1.00 | 1.00 | 52.0 | 0.203 | −0.278 | ↓ + |
Semi-decomposed layer | 0.50 | 0.25 | 66.0 | 0.713 | −0.083 | ↓ − | |
Decomposed layer | 0 | 0 | 72.0 | 1.000 | 0 | | − | |
All litterfall layers | 1.50 | 1.00 | 54.5 | 0.302 | −0.243 | ↓ + | |
Large plant remains | 1.50 | 3.00 | 3.0 | 0 | −0.958 | ↑ * +++ | |
General | Undecomposed layer | 1.00 | 1.00 | 298.5 | 0 | −0.539 | ↓ * +++ |
Semi-decomposed layer | 0.50 | 0.50 | 443.0 | 0.012 | −0.316 | ↓ * + | |
Decomposed layer | 0 | 0 | 561.0 | 0.179 | −0.134 | ↓ − | |
All litterfall layers | 1.50 | 1.00 | 358.5 | 0.001 | −0.447 | ↓ * ++ | |
Large plant remains | 2.00 | 4.00 | 116.0 | 0 | −0.821 | ↑ * +++ |
Generic Names of Concern | Basionym of Type Species | Comments | Generic Names Applied in This Study Being Threatened by Priority |
---|---|---|---|
Bactroboletus Clem. (1909) | Filoboletus mycenoides Henn. (1899) | Later synonym of Filoboletus Henn. (1899). | - |
Corrugaria Métrod (1949) | Corrugaria viridiflava Métrod (1949) | Type species unsequenced. Similar species with clear concept unrecognized. | Amparoina Singer (1958) Cruentomycena R.H. Petersen, Kovalenko & O.V. Morozova (2008) Cynema Maas Geest. & E. Horak (1995) Decapitatus Redhead & Seifert (2000) Resinomycena Redhead & Singer (1981) Roridomyces Rexer (1994) Rufolamptera (this study) |
Dictyoploca Mont. ex Pat. (1890) | Marasmius plectophyllus Mont. (1854) | Type species unsequenced. Similar species with clear concept unrecognized. | Amparoina Singer (1958) Basidopus Earle (1909) Collopus Earle (1909) Cruentomycena R.H. Petersen, Kovalenko & O.V. Morozova (2008) Cynema Maas Geest. & E. Horak (1995) Decapitatus Redhead & Seifert (2000) Favolaschia (Pat.) Pat. (1892) Filoboletus Henn. (1899) Galactopus Earle (1909) Insiticia Earle (1909) Linopodium Earle (1909) Resinomycena Redhead & Singer (1981) Roridomyces Rexer (1994) Rufolamptera (this study) |
Eomycenella G.F. Atk. (1902) | Eomycenella echinocephala G.F. Atk. (1902) | Type species unsequenced, similar to Amparoina Singer (1958) and Basidopus Earle (1909). | Amparoina Singer (1958) Basidopus Earle (1909) Collopus Earle (1909) Cruentomycena R.H. Petersen, Kovalenko & O.V. Morozova (2008) Cynema Maas Geest. & E. Horak (1995) Decapitatus Redhead & Seifert (2000) Galactopus Earle (1909) Insiticia Earle (1909) Linopodium Earle (1909) Resinomycena Redhead & Singer (1981) Roridomyces Rexer (1994) Rufolamptera (this study) |
Leiopoda Velen. (1947) | Leiopoda moranae Velen. (1947) | Type species unsequenced. Similar species with clear concept unrecognized. | Amparoina Singer (1958) Cruentomycena R.H. Petersen, Kovalenko & O.V. Morozova (2008) Cynema Maas Geest. & E. Horak (1995) Decapitatus Redhead & Seifert (2000) Resinomycena Redhead & Singer (1981) Roridomyces Rexer (1994) Rufolamptera (this study) |
Mycenoporella Overeem (1926) | Mycenoporella lutea Overeem (1926) | Type species unsequenced, similar to Favolaschia (Pat.) Pat. (1892) and Filoboletus Henn. (1899). | Amparoina Singer (1958) Cruentomycena R.H. Petersen, Kovalenko & O.V. Morozova (2008) Cynema Maas Geest. & E. Horak (1995) Decapitatus Redhead & Seifert (2000) Resinomycena Redhead & Singer (1981) Roridomyces Rexer (1994) Rufolamptera (this study) |
Mycenopsis Velen. (1947) | Mycenopsis globispora Velen. (1947) | Type species unsequenced. Similar species with clear concept unrecognized. | Amparoina Singer (1958) Cruentomycena R.H. Petersen, Kovalenko & O.V. Morozova (2008) Cynema Maas Geest. & E. Horak (1995) Decapitatus Redhead & Seifert (2000) Resinomycena Redhead & Singer (1981) Roridomyces Rexer (1994) Rufolamptera (this study) |
Mycenula P. Karst. (1889) | Agaricus purus Pers. (1794) | Later synonym of Prunulus Gray (1821). | - |
Phlebomycena R. Heim (1966) | Phlebomycena madecassensis R. Heim (1966) | Type species unsequenced. Similar species with clear concept unrecognized. | Cruentomycena R.H. Petersen, Kovalenko & O.V. Morozova (2008) Cynema Maas Geest. & E. Horak (1995) Decapitatus Redhead & Seifert (2000) Resinomycena Redhead & Singer (1981) Roridomyces Rexer (1994) Rufolamptera (this study) |
Poromycena Overeem (1926) | Poromycena decipiens Overeem (1926) | Type species unsequenced, similar to Favolaschia (Pat.) Pat. (1892) and Filoboletus Henn. (1899). | Amparoina Singer (1958) Cruentomycena R.H. Petersen, Kovalenko & O.V. Morozova (2008) Cynema Maas Geest. & E. Horak (1995) Decapitatus Redhead & Seifert (2000) Resinomycena Redhead & Singer (1981) Roridomyces Rexer (1994) Rufolamptera (this study) |
Pseudomycena Cejp (1929) | Agaricus tenerrimus Berk. (1836) | Later synonym of Basidopus Earle (1909). | - |
Stereopodium Earle (1909) | Agaricus galericulatus Scop. (1772) | Later synonym of Mycena (Pers.) Roussel (1806). | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.L.; Xiong, X.; Luo, Z.; Huang, Y.; Huang, R.; Chen, H.; Lin, J.Y.; Yang, Z.L.; Li, G.-M.; Jia, X. Human Activity Impacts on Macrofungal Diversity: A Case Study of Grazing in Subtropical Forests. J. Fungi 2025, 11, 749. https://doi.org/10.3390/jof11100749
Yang KL, Xiong X, Luo Z, Huang Y, Huang R, Chen H, Lin JY, Yang ZL, Li G-M, Jia X. Human Activity Impacts on Macrofungal Diversity: A Case Study of Grazing in Subtropical Forests. Journal of Fungi. 2025; 11(10):749. https://doi.org/10.3390/jof11100749
Chicago/Turabian StyleYang, Kun L., Xunan Xiong, Zejia Luo, Yanqun Huang, Rong Huang, Huajie Chen, Jia Y. Lin, Zhu L. Yang, Guang-Mei Li, and Xiaorong Jia. 2025. "Human Activity Impacts on Macrofungal Diversity: A Case Study of Grazing in Subtropical Forests" Journal of Fungi 11, no. 10: 749. https://doi.org/10.3390/jof11100749
APA StyleYang, K. L., Xiong, X., Luo, Z., Huang, Y., Huang, R., Chen, H., Lin, J. Y., Yang, Z. L., Li, G.-M., & Jia, X. (2025). Human Activity Impacts on Macrofungal Diversity: A Case Study of Grazing in Subtropical Forests. Journal of Fungi, 11(10), 749. https://doi.org/10.3390/jof11100749