Transcriptome Analysis and Its Application in Screening Genes Related to the Growth and Development of Sarcomyxa edulis
Abstract
1. Introduction
2. Materials and Methods
2.1. Strain and Collection of Samples at Different Developmental Stages
2.2. RNA Isolation, Library Construction, and Sequencing
2.3. Analysis of Differentially Expressed Genes (DGEs)
2.4. Validation of DEGs by qRT–PCR
3. Results
3.1. Global Transcriptomic Analysis
3.2. Gene Expression Level Analysis
3.3. Identification of DEGs Across Various Developmental Stages
3.4. KOG Functional Classification of DEGs
3.5. GO Annotation Analysis of DEGs
3.6. KEGG Annotation Analysis of DEGs
3.7. Tryptophan Metabolism
3.8. qRT–PCR Validation of DEGs at Different Growth and Development Stages
3.9. Genes and Proteins Potentially Critical for Growth and Development of S. edulis
4. Discussion
4.1. Comparative Analysis of the Transcriptome of Edible Fungi
4.2. Signal Pathways Involved in the Development of Fruiting Bodies in S. edulis
4.3. The Role of Tryptophan in Edible Fungi
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
COG | Cluster of Orthologous Groups of proteins |
GO | Gene Ontology |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
KOG | Clusters of orthologous groups for eukaryotic complete genomes |
Pfam | Protein Families Database |
TrEMBL | Translation of EMBL nucleotide sequence database |
eggNOG | evolutionary genealogy of genes: Non-supervised Orthologous Groups |
NR | Non-Redundant Protein Database |
DEG | Differentially expressed gene |
SE8–P | Primordia |
SE8–F | Fruiting body differentiation |
SE8–M | Mature fruiting body |
MF | Molecular Function |
CC | Cellular Component |
BP | Biological Process |
A. bisporus | Agaricus bisporus |
C. cinereus | Coprinus cinereus |
S. edulis | Sarcomyxa edulis |
S. commune | Schizophyllum commune |
P. ostreatus | Pleurotus ostreatus |
D. indusiata | Dictyophora indusiata |
L. edodes | Lentinula edodes |
M. importuna | Morchella importuna |
H. marmoreus | Hypsizygus marmoreus |
A. polytricha | Auricularia polytricha |
References
- Wang, G.S.; Cai, Q.; Hao, Y.J.; Bau, T.; Chen, Z.H.; Li, M.X.; David, N.; Kraisitudomsook, N.; Yang, Z.L. Phylogenetic and taxonomic updates of Agaricales, with an emphasis on Tricholomopsis. Mycology 2023, 15, 180–209. [Google Scholar] [CrossRef]
- Sui, Y.; Shu, F.; Cui, S.; Yang, S.R.; Liu, Y.; Wang, Q. Characteristics and antioxidant activities of polysaccharides from Sarcomyxa edulis. Acta Edulis Fungi 2021, 28, 48–56. [Google Scholar]
- Zhang, R.; Zhao, L.Y.; Wang, H.X.; Ng, T.B. A novel ribonuclease with antiproliferative activity toward leukemia and lymphoma cells and HIV-1 reverse transcriptase inhibitory activity from the mushroom, Hohenbuehelia serotina. Int. J. Mol. Med. 2014, 33, 209–214. [Google Scholar] [CrossRef]
- Li, X.Y.; Wang, L.; Wang, Z.Y. Radioprotective activity of neutral polysaccharides isolated from the fruiting bodies of Hohenbuehelia serotina. Phys. Medica 2015, 31, 352–359. [Google Scholar] [CrossRef]
- Qiu, T.M.; Wang, H.T.; Yu, Y.N.; Xu, L.L.; Lu, X.H. Domestication and nutritional composition analysis of a wild Panellus edulis strain. Edible Fungi China 2022, 41, 19–29. [Google Scholar]
- Jiang, W.Z.; Miao, L.; Wang, P. Biological characteristics and domestication cultivation analysis of wild Sarcomyxa edulis strain. J. Jilin Agric. Sci. Technol. Univ. 2024, 33, 1–8. [Google Scholar]
- Wang, P.; Yao, F.J.; Fang, M.; Jiu, L.D.; Zhai, Y.; Yuan, W.D. A new Panellus edulis cultivar ‘Qidong 1’. Acta Hortic. Sin. 2015, 42, 605–606. [Google Scholar]
- Jiu, L.D.; Yao, F.J.; Zhang, Y.M.; Zhao, N.; Zhu, M.Q. Study on the basidiospore germination characteristics and mycelia growth characteristics of Panellus edulis. Edible Fungi China 2015, 34, 10–12. [Google Scholar]
- Tian, M.X.; Rong, C.B.; Niu, Y.R.; Song, S.; Liu, Y.; Chen, Q.J. ISSR and SRAP analysis of genetic diversity of Hohenbuehelia serotina. Jiangsu Agric. Sci. 2018, 46, 43–47. [Google Scholar]
- Tian, F.H.; Li, C.T.; Li, Y. Genomic analysis of Sarcomyxa edulis reveals the basis of its medicinal properties and evolutionary relationships. Front. Microbiol. 2021, 12, 1614. [Google Scholar] [CrossRef]
- Duan, C.; Tian, F.H.; Yao, L.; Lv, J.H.; Jia, C.W.; Li, C.T. Comparative transcriptome and WGCNA reveal key genes involved in lignocellulose degradation in Sarcomyxa edulis. Sci. Rep. 2022, 12, 18379. [Google Scholar] [CrossRef]
- Duan, C.; Yao, L.; Lv, J.H.; Jia, C.W.; Tian, F.H.; Li, C.T. Systematic analysis of changes across different developmental stages of the mushroom Sarcomyxa edulis. Gene 2022, 824, 146450. [Google Scholar] [CrossRef] [PubMed]
- Song, L.L.; Xing, X.K.; Guo, S.X. Morphological process and regulation mechanisms of fruiting body differentiation in macrofungi:A review. Mycosystema 2018, 37, 671–684. [Google Scholar]
- Shen, N.; Zhang, J.C.; Wang, C.C.; Bian, Y.B.; Xiao, Y. Studies on transcriptome during fruiting body development of Lentinula edodes. Acta Hortic. Sin. 2022, 49, 801–815. [Google Scholar]
- Pelkmans, J.F.; Patil, M.B.; Gehrmann, T.; Reinders, M.J.T.; Wösten, H.A.B.; Lugones, L.G. Transcription factors of Schizophyllum commune involved in mushroom formation and modulation of vegetative growth. Sci. Rep. 2017, 7, 310. [Google Scholar] [CrossRef] [PubMed]
- Ohm, R.A.; Jong, J.F.D.; Bekker, C.D.; Han, A.B.W.; Lugones, L.G. Transcription factor genes of Schizophyllum commune involved in regulation of mushroom formation. Mol. Microbiol. 2011, 81, 1433–1445. [Google Scholar] [CrossRef]
- Boulianne, R.P.; Liu, Y.; Aebi, M.; Lu, B.C.; Kües, U. Fruiting body development in Coprinus cinereus: Regulated expression of two galectins secreted by a nonclassical pathway. Microbiology 2000, 146, 1841–1853. [Google Scholar] [CrossRef] [PubMed]
- Wagemaker, M.J.; Eastwood, D.C.; Van, D.D.C.; Jetten, M.S.; Burton, K.; Van Griensven, L.J.; Hj, O.D.C. Expression of the urease gene of Agaricus bisporus: A tool for studying fruit body formation and post-harvest development. Appl. Microbiol. Biotechnol. 2006, 71, 486–492. [Google Scholar]
- Wu, X.M.; Zhang, X.; Li, N.Y. Transcriptome analysis of Agaricus bisporus fruiting at different stages. Mycosystema 2017, 36, 193–203. [Google Scholar]
- Almási, E.; Sahu, N.; Krizsán, K.; Bálint, B.; Kovács, G.M.; Kiss, B.; Cseklye, J.; Drula, E.; Henrissat, B.; Nagy, I.; et al. Comparative genomics reveals unique wood-decay strategies and fruiting body development in the Schizophyllaceae. New Phytol. 2019, 224, 902–915. [Google Scholar] [CrossRef]
- Krizsánk, K.; Almási, E.; Merényi, Z.; Sahu, N.; Virágh, M.; Kószó, T.; Mondo, S.; Kiss, B.; Bálint, B.; Kües, U.; et al. Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi. Proc. Natl. Acad. Sci. USA 2019, 116, 7409–7418. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.Q.; Zhao, M.R.; Huang, C.Y.; Wu, X.L. Discovery and verification of a functional gene influencing the growth and development of Pleurotus ostreatus. Biotechnol. Bull. 2025, 41, 327–334. [Google Scholar]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.D.; et al. Full-length transcriptome assembly from RNA Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and Sensitive Protein Alignment Using Diamond. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Boeckmann, B.; Bairoch, A.M.; Apweiler, R.; Blatter, M.; Estreicher, A.; Gasteiger, E.; Martin, M.; Michoud, K.; Odonovan, C.; Phan, I.; et al. The SWISS- PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 2003, 31, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.Y.; Li, J.Q.; Wu, S.F.; Zhu, Y.P.; Chen, Y.W.; He, F.C. Integrated nr Database in Protein Annotation System and Its Localization. Comput. Eng. 2006, 32, 71–72. [Google Scholar]
- Tatusov, R.L.; Galperin, M.Y.; Natale, D.A. The COG database: A tool for genome scale analysis of protein functions and evolution. Nucleic Acids Res. 2000, 28, 33–36. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.L.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Huerta-Cepas, J.; Szklarczyk, D.; Forslund, K.; Cook, H.; Heller, D.; Walter, M.C.; Rattei, T.; Mende, D.R.; Sunagawa, S.; Kuhn, M.; et al. eggNOG 4.5: A hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016, 44, 286–293. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S.; Kawashima, S.; Okuno, Y.; Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004, 32, 277–280. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S.; Hattori, M.; Aokikinoshita, K.F.; Itoh, M.; Kawashima, S.; Katayama, T.; Araki, M.; Hirakawa, M. From genomics to chemical genomics: New developments in KEGG. Nucleic Acids Res. 2006, 34, 354–357. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10, R25. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Colin, N.D. RSEM: Accurate transcript quantification from RNA Seq data with or without a reference genome. BMC Bioinform. 2011, 4, 323. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Li, X.; Wang, F.; Liu, Q.; Li, Q.P.; Qian, Z.M.; Zhang, X.L.; Li, K.; Li, W.J.; Dong, C.H. Developmental transcriptomics of Chinese cordyceps reveals gene regulatory network and expression pro les of sexual development-related genes. BMC Genom. 2019, 20, 337. [Google Scholar]
- Müller, D.; Leyser, O. Auxin, cytokinin and the control of shoot branching. Ann. Bot. 2011, 107, 1203–1212. [Google Scholar] [CrossRef]
- Dhale, D.A.; Ankita, P.; Rathod, M.C. Production of IAA by endophytic fungi as Phyllanthus emblica Linn. Curr. Agric. Res. J. 2023, 11, 881–889. [Google Scholar]
- Cui, X.; Kong, W.L. Research progress of auxin IAA on the growth and development of edible fungi. China Cucurbits Veg. 2024, 37, 8–14. [Google Scholar]
- Jiang, X.L.; Huang, Q.X.; Li, H.; Zhao, J.P. A review of advances in plant thaumatin-like proteins. J. Zhejiang A&F Univ. 2012, 29, 279–287. [Google Scholar]
- Yang, Y.; Hu, X. A chromosome-scale genome of Trametes versicolor and transcriptome-based screening for light-induced genes that promote triterpene biosynthesis. J. Fungi 2025, 11, 81. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.X.; Li, Y.X.; Mao, Y.F.; Zhang, Y.S.; Zhou, B.T.; Liu, W.; Wang, W.; Zhang, C. Integrated transcriptomic and proteomic analyses reveal molecular mechanism of response to heat shock in Morchella sextelata. J. Fungi 2025, 11, 76. [Google Scholar] [CrossRef]
- Wen, X.F. Molecular Mechanism of Post-Harvest Morphological Development of Dictyophora indusiate. Master’s Thesis, Chengdu University, Chendu, China, 2022. [Google Scholar]
- Fu, Y.P.; Dai, Y.T.; Yang, C.T.; Wei, P.; Song, B.; Yang, Y.; Sun, L.; Zhang, Z.W.; Li, Y. Comparative transcriptome analysis identified candidate genes related to Bailinggu mushroom formation and genetic markers for genetic analyses and breeding. Sci. Rep. 2017, 7, 9266. [Google Scholar] [CrossRef]
- Tang, L.H.; Jian, H.H.; Song, C.Y.; Bao, D.P.; Shang, X.D.; Wu, D.Q.; Tan, Q.; Zhang, X.H. Transcriptome analysis of candidate genes and signaling pathways associated with light-induced brown film formation in Lentinula edodes. Appl. Microbiol. Biotechnol. 2013, 97, 4977–4989. [Google Scholar] [CrossRef]
- Wang, J.Q.; Ye, H.L.; Liang, D.W.; Liu, D.Y.; Geng, F.; Li, X. De novo sequencing and transcriptome analysis of Morchella importuna fruiting body. Food Sci. 2018, 39, 81–87. [Google Scholar]
- Wang, L.N. Characterization and Function Analysis of Catalase Genes in Pleurotus ostreatus. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2019. [Google Scholar]
- Zhang, J.J.; Ren, A.; Chen, H.; Zhao, M.W.; Shi, L.; Chen, M.G.; Wang, H.; Feng, Z.Y. Transcriptome analysis and its application in identifying genes associated with fruiting body development in basidiomycete Hypsizygus marmoreus. PLoS ONE 2015, 10, e0123025. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chen, L.F.; Fan, X.Z.; Bian, Y.B. De novo assembly of Auricularia polytricha transcriptome using Illumina sequencing for gene discovery and SSR marker identification. PLoS ONE 2014, 9, e91740. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.X.; Lu, L.S.; Zhang, Y.M.; Fang, M.; Shao, K.S.; Sun, X.; Yao, F.J. Velvet family members regulate pigment synthesis of the fruiting bodies of Auricularia cornea. J. Fungi 2023, 9, 412. [Google Scholar] [CrossRef]
- Ma, X.X.; Lu, L.X.; Yao, F.J.; Fang, M.; Wang, P.; Meng, J.J.; Shao, K.S.; Sun, X.; Zhang, Y.M. High-quality genome assembly and multi-omics analysis of pigment synthesis pathway in Auricularia cornea. Front. Microbiol. 2023, 14, 1211795. [Google Scholar] [CrossRef] [PubMed]
- Li, X.R.; Luo, L.; Wang, X.Y.; Zhu, M. Further insights into the molecular mechanisms underlying tobacco straw cultivation of Pleurotus ostreatus by comparative transcriptome analyses. Genomics 2025, 117, 110992. [Google Scholar] [CrossRef]
- Xu, D.; Liu, Q.; Chen, G.; Yan, Z.; Hu, H. Aldehyde dehydrogenase ALDH3F1 involvement in flowering time regulation through histone acetylation modulation on FLOWERING LOCUS C. J. Integr. Plant Biol. 2020, 62, 1080–1092. [Google Scholar] [CrossRef]
- Tola, A.J.; Jaballi, A.; Germain, H.; Missihoun, T.D. Recent development on plant aldehyde dehydrogenase enzymes and their functions in plant development and stress signaling. Genes 2020, 12, 51. [Google Scholar] [CrossRef]
- Li, X.B.; Qin, Y.; Kong, Y.F.; Karunarathna, S.C.; Liang, Y.; Xu, J.Z. Optimization of protoplast preparation conditions in Lyophyllum decastes and transcriptomic aunctional analysis of hydrophobin genes in sexual development of Botrytis cinerea. J. Fungi 2024, 10, 886. [Google Scholar] [CrossRef] [PubMed]
- Terhem, R.B.; van Kan, J.A. Functional analysis of hydrophobin genes in sexual development of Botrytis cinerea. Fungal Genet. Biol. 2014, 71, 42–51. [Google Scholar] [CrossRef]
- Li, X.; Liu, M.; Dong, C. Hydrophobin Gene Cmhyd4 negatively regulates fruiting body development in edible fungi Cordyceps militaris. Int. J. Mol. Sci. 2023, 24, 13. [Google Scholar] [CrossRef]
- Arnold, P.K.; Finley, L.W.S. Regulation and function of the mammalian tricarboxylic acid cycle. J. Biol. Chem. 2023, 299, 102838. [Google Scholar] [CrossRef]
- Fernie, A.R.; Carrari, F.; Sweetlove, L.J. Respiratory metabolism: Glycolysis, the TCA cycle and mitochondrial electron transport. Curr. Opin. Plant Biol. 2004, 7, 254–261. [Google Scholar] [CrossRef]
- Qian, L.; Zhang, Z.J.; Chen, X.M.; Li, S.F.; Luo, Y.; Liu, J.H. Polysaccharides content and activity of enzymes related to sugar metabolism from the fruiting bodies of Ganoderma lucidum at different growth stages. Storage Process 2019, 19, 128–131. [Google Scholar]
- Liu, P.H.; Xie, B.G.; Deng, Y.J.; Jiang, Y.J. Cloning, structural analyses and expression levels of phosphofructokinase gene in different strains of Volvariella volvacea. Mycosystema 2013, 32, 253–260. [Google Scholar]
- Xu, C.T.; Li, Z.H.; Pan, J.L.; Li, H.K.; Hu, Q.X.; Zou, Y.J.; Chen, X.H.; Mi, C.X. Cloning and expression analysis of Trehalose-6-Phosphate Synthase from Sanghuangporus vaninii. Acta Edulis Fungi 2024, 31, 45–52. [Google Scholar]
- Bhadoriya, P.; Jain, M.; Kaicker, G.; Saidullah, B.; Saran, S. Deletion of Htt cause alterations in cAMP signaling and spatial patterning in Dictyostelium discoideum. J. Cell. Physiol. 2019, 234, 18858–18871. [Google Scholar] [CrossRef]
- Bai, S.; Zhou, Z.C.; Mariga, A.M.; Shang, X.L.; Ma, N.; Fang, D.L.; Yang, W.J.; Hu, Q.H.; Gao, H.Y.; Chen, H.J.; et al. CA-g-CS/PLA film packaging improved storage stability through the MAPK signaling pathway of postharvest Agaricus bisporus. Postharvest Biol. Technol. 2024, 209, 112688. [Google Scholar] [CrossRef]
- Agger, S.; Gallego, F.L.; Dannert, C.S. Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus. Mol. Microbiol. 2009, 72, 1181–1195. [Google Scholar] [CrossRef]
- Bezmenova, A.V.; Zvyagina, E.A.; Fedotova, A.V.; Kasianov, A.S.; Neretina, T.V.; Penin, A.A.; Bazykin, G.A.; Kondrashov, A.S. Rapid accumulation of mutations in growing mycelia of a hypervariable fungus Schizophyllum commune. Mol. Biol. Evol. 2020, 37, 2279–2286. [Google Scholar] [CrossRef]
- Masunaga, N.; Kitaoka, T.; Ichinose, H. Biocatalyst collection and heterologous expression of sesquiterpene synthases from basidiomycetous fungi: Discovery of a novel. Microb. Biotechnol. 2023, 16, 632–644. [Google Scholar] [CrossRef]
- Abdelshafy, A.M.; Belwal, T.; Liang, Z.; Wang, L.; Li, D.; Luo, Z.S.; Li, L. A comprehensive review on phenolic compounds from edible mushrooms: Occurrence, biological activity, application and future prospective. Crit. Rev. Food Sci. Nutr. 2022, 62, 6204–6224. [Google Scholar] [CrossRef]
- Hu, C.C.; Yu, P.J.; Li, S.J. Regulatory mechanisms of ergosterol biosynthesis in fungi. J. Fungal Res. 2019, 17, 138–146. [Google Scholar]
- Tartar, A.; Shapiro, A.M.; Scharf, D.W.; Boucias, D.G. Differential expression of chitin synthase (CHS) and glucan synthase (FKS) genes correlates with the formation of a modified, thinner cell wall in in vivo-produced beauveria bassiana cells. Mycopathologia 2005, 160, 303–314. [Google Scholar] [CrossRef]
- Janusz, G.; Kucharzyk, K.H.; Pawlik, A.; Staszczak, M.; Paszczynski, A.J. Fungal laccase, manganese peroxidase and lignin peroxidase: Gene expression and regulation. Enzym. Microb. Technol. 2013, 52, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Li, W.P.; Zhang, Z.; Wu, R.Y.; Mao, M.Y.; Ji, Y.K.; Wang, X.N.; Dou, S.G.; Yan, M.; Chen, W.T. Fusobacterium nucleatum-derived outer membrane vesicles promote immunotherapy resistance via changes in tryptophan metabolism in tumour-associated Macrophages. J. Extracell. Vesicles 2025, 14, e70070. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Schooten, F.J.V.; Jin, H.; Jonkers, D.; Godschalk, R. The involvement of intestinal tryptophan metabolism in inflammatory bowel disease identified by a meta-analysis of the transcriptome and a systematic review of the metabolome. Nutrients 2023, 15, 19. [Google Scholar] [CrossRef]
- Nutaratat, P.; Srisuk, N.; Arunrattiyakorn, P.; Limtong, S. Indole-3-acetic acid biosynthetic pathways in the basidiomycetous yeast Rhodosporidium paludigenum. Arch. Microbiol. 2016, 198, 429–437. [Google Scholar] [CrossRef]
- Sun, S.L.; Yang, W.L.; Fang, W.W.; Zhao, Y.X.; Guo, L.; Dai, Y.J. The plant growth-promoting rhizobacterium variovorax boronicumulans CGMCC 4969 regulates the level of Indole-3-acetic acid synthesized from Indole-3-acetonitrile. Appl. Environ. Microbiol. 2018, 84, e00298-18. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Gao, Q.; Rong, C.B.; Liu, Y.; Song, S.; Yu, Q.Y.; Zhou, K.X.; Liao, Y.L. Comparative transcriptome analysis of abnormal cap and healthy fruiting bodies of the edible mushroom Lentinula edodes. Fungal Genet. Biol. 2021, 156, 103614. [Google Scholar] [CrossRef]
- Duan, M.Z.; Long, S.F.; Wu, X.J.; Feng, B.; Qin, S.Q.; Li, Y.J.; Li, X.; Li, C.N.; Zhao, C.G.; Wang, L.Q.; et al. Genome, transcriptome, and metabolome analyses provide new insights into the resource development in an edible fungus Dictyophora indusiate. Front. Microbiol. 2023, 14, 1137159. [Google Scholar] [CrossRef]
- Skibbe, D.S.; Liu, F.; Wen, T.J.; Yandeau, M.D.; Cui, X.Q.; Cao, J.; Simmons, C.R.; Schnable, P.S. Characterization of the aldehyde dehydrogenase gene families of Zea mays and Arabidopsis. Plant Mol. Biol. 2002, 48, 751–764. [Google Scholar] [CrossRef]
- Singh, S.; Brocker, C.; Koppaka, V.; Chen, Y.; Jackson, B.C.; Matsumoto, A.; Thompson, D.C.; Vasiliou, V. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free. Radic. Biol. Med. 2012, 56, 89–101. [Google Scholar] [CrossRef]
- Jozefczuk, S.; Klie, S.; Catchpole, G.; Szymanski, J.; CuadrosInostroza, A.; Steinhauser, D.; Selbig, J.; Willmitzer, L. Metabolomic and transcriptomic stress response of Escherichia coli. Mol. Syst. Biol. 2010, 6, 364. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Wang, H.; He, Y.H.; Chen, Y.F.; Deng, Q.B.; Guo, X.W.; Xiao, D.G. Effect of Saccharomyces cerevisiae overexpressing acetaldehyde dehydrogenase genes on reducing higher alcohols in Huangjiu. China Brew. 2020, 39, 153–159. [Google Scholar]
- Asiimwe, T.; Krause, K.; Schlunk, I.; Kothe, E. Modulation of ethanol stress tolerance by aldehyde dehydrogenase in the mycorrhizal fungus Tricholoma vaccinum. Mycorrhiza 2012, 22, 471–484. [Google Scholar] [CrossRef]
- Qi, Y.C.; Liu, Y.D.; Sun, X.K.; Zhang, M.L.; Zhang, Q.; Wen, Q.; Qiu, L.Y.; Shen, J.W. Cloning and expression analysis of Pleurotus ostreatus aldehyde dehydrogenase gene PoALDH1 under abiotic stresses. Mycosystema 2017, 36, 1121–1131. [Google Scholar]
- Song, X.L. Characterizations of Mycelium Polysaccharides from Pleurotus geesteranus and the Mechanisms on Improving the Alcoholic Liver Disease in Mice. Ph.D. Thesis, Shandong Agricultural University, Tai’an, China, 2022. [Google Scholar]
Annotation Database | Annotated Number | 300 ≤ Length < 1000 | Length ≥ 1000 |
---|---|---|---|
COG annotation | 7457 | 2791 | 3156 |
GO annotation | 15,203 | 5495 | 6029 |
KEGG annotation | 10,853 | 3595 | 4831 |
KOG annotation | 7728 | 2435 | 3854 |
Pfam annotation | 12,045 | 4091 | 5879 |
Swissprot annotation | 7717 | 2327 | 4167 |
TrEMBL annotation | 18,204 | 6402 | 7696 |
eggNOG annotation | 12,883 | 4622 | 5472 |
NR annotation | 18,261 | 6421 | 7712 |
All annotated Unigenes | 21,206 | 7960 | 7837 |
Gene ID | Swissprot Annotation | Nr Annotation |
---|---|---|
TRINITY_DN327_c0_g1 | 6,7–dimethyl–8–ribityllumazine synthase | hypothetical protein |
TRINITY_DN1035_c0_g1 | Nitronate monooxygenase | 2–nitropropane dioxygenase |
TRINITY_DN3926_c0_g1 | - | hypothetical protein |
TRINITY_DN5751_c0_g1 | Trimethyllysine dioxygenase | hypothetical protein |
TRINITY_DN579_c0_g1 | 3,4–dihydroxy–2–butanone 4–phosphate synthase | 3,4–dihydroxy–2–butanone 4–phosphate synthase–domain–containing protein |
TRINITY_DN1480_c1_g1 | Aldehyde dehydrogenase | aldehyde dehydrogenase |
ko ID | Pathway | SE8–P vs. SE8–F | SE8–F vs. SE8–M | SE8–P vs. SE8–M | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Total | Up | Down | Total | Up | Down | Total | Up | Down | ||
ko00010 | Glycolysis/Gluconeogenesis | 3 | 0 | 3 | 6 | 3 | 3 | 7 | 3 | 4 |
ko00053 | Ascorbate and aldarate metabolism | 3 | 0 | 3 | 4 | 1 | 3 | 4 | 1 | 3 |
ko00061 | Fatty acid biosynthesis | 1 | 0 | 1 | 4 | 2 | 2 | 2 | 0 | 2 |
ko00071 | Fatty acid degradation | 5 | 0 | 5 | 5 | 2 | 3 | 7 | 1 | 6 |
ko00280 | Valine, leucine, and isoleucine degradation | 3 | 0 | 3 | 5 | 1 | 4 | 5 | 1 | 4 |
ko00310 | Lysine degradation | 4 | 1 | 3 | 7 | 3 | 4 | 7 | 3 | 4 |
ko00330 | Arginine and proline metabolism | 3 | 0 | 3 | 5 | 1 | 4 | 4 | 0 | 4 |
ko00340 | Histidine metabolism | 4 | 0 | 4 | 4 | 1 | 3 | 3 | 0 | 3 |
ko00380 | Tryptophan metabolism | 7 | 2 | 5 | 16 | 6 | 10 | 12 | 5 | 7 |
ko00410 | beta–Alanine metabolism | 4 | 0 | 4 | 5 | 1 | 4 | 6 | 1 | 5 |
ko00500 | Starch and sucrose metabolism | 1 | 1 | 0 | 11 | 10 | 1 | 13 | 13 | 0 |
ko00511 | Other glycan degradation | 1 | 1 | 0 | 2 | 0 | 2 | 1 | 1 | 0 |
ko00561 | Glycerolipid metabolism | 3 | 0 | 3 | 8 | 5 | 3 | 7 | 3 | 4 |
ko00592 | alpha–Linolenic acid metabolism | 1 | 0 | 1 | 1 | 1 | 0 | 2 | 1 | 1 |
ko00620 | Pyruvate metabolism | 4 | 1 | 3 | 11 | 5 | 6 | 8 | 3 | 5 |
ko00640 | Propanoate metabolism | 1 | 0 | 1 | 5 | 4 | 1 | 5 | 2 | 3 |
ko00730 | Thiamine metabolism | 1 | 1 | 0 | 3 | 2 | 1 | 1 | 0 | 1 |
ko00740 | Riboflavin metabolism | 4 | 1 | 3 | 7 | 0 | 7 | 10 | 1 | 9 |
ko00770 | Pantothenate and CoA biosynthesis | 3 | 0 | 3 | 3 | 0 | 3 | 4 | 0 | 4 |
ko00780 | Biotin metabolism | 2 | 1 | 1 | 4 | 2 | 2 | 1 | 0 | 1 |
ko00791 | Atrazine degradation | 1 | 1 | 0 | 1 | 1 | 0 | 2 | 2 | 0 |
ko00910 | Nitrogen metabolism | 1 | 0 | 1 | 3 | 1 | 2 | 2 | 1 | 1 |
ko01040 | Biosynthesis of unsaturated fatty acids | 1 | 0 | 1 | 1 | 1 | 0 | 2 | 0 | 2 |
ko01200 | Carbon metabolism | 2 | 1 | 1 | 10 | 6 | 4 | 9 | 3 | 6 |
ko01212 | Fatty acid metabolism | 2 | 0 | 2 | 5 | 3 | 2 | 4 | 0 | 4 |
ko02010 | ABC transporters | 1 | 0 | 1 | 2 | 1 | 1 | 1 | 0 | 1 |
ko03440 | Homologous recombination | 1 | 0 | 1 | 9 | 6 | 3 | 5 | 3 | 2 |
ko04146 | Peroxisome | 1 | 0 | 1 | 3 | 2 | 1 | 4 | 2 | 2 |
Gene ID | FDR | log2 FC | Regulated | Pfam Annotation | Swiss–Prot Annotation |
---|---|---|---|---|---|
SE8–P vs. SE8–F | |||||
TRINITY_DN281_c2_g1 | 0.0091 | 1.1308 | up | alpha/beta hydrolase fold | AB hydrolase superfamily protein |
TRINITY_DN5420_c0_g1 | 0.0043 | 1.0802 | up | alpha/beta hydrolase fold | AB hydrolase superfamily protein |
TRINITY_DN1480_c1_g1 | 0.0009 | −1.2947 | down | Aldehyde dehydrogenase family | Aldehyde dehydrogenase |
TRINITY_DN17839_c0_g1 | 0.0000 | −2.1396 | down | Aldehyde dehydrogenase family | Aldehyde dehydrogenase |
TRINITY_DN32179_c0_g1 | 0.0001 | −2.1490 | down | Aldehyde dehydrogenase family | Aldehyde dehydrogenase |
TRINITY_DN327_c0_g1 | 0.0000 | −1.1550 | down | 6,7–dimethyl–8–ribityllumazine synthase | 6,7–dimethyl–8–ribityllumazine synthase |
SE8–F vs. SE8–M | |||||
TRINITY_DN281_c2_g1 | 0.0000 | −1.4898 | down | alpha/beta hydrolase fold | AB hydrolase superfamily protein |
TRINITY_DN1890_c0_g1 | 0.0004 | −1.0374 | down | alpha/beta hydrolase fold | - |
TRINITY_DN4014_c0_g1 | 0.0001 | −1.0902 | down | Aldehyde dehydrogenase family | Aldehyde dehydrogenase 5, mitochondrial |
TRINITY_DN679_c0_g1 | 0.0010 | −1.2214 | down | Aldehyde dehydrogenase family | Beta–apo–4′–carotenal oxygenase |
TRINITY_DN1480_c1_g1 | 0.0059 | −1.0289 | down | Aldehyde dehydrogenase family | Aldehyde dehydrogenase |
TRINITY_DN3228_c0_g1 | 0.0000 | 1.1984 | up | Glycosyl hydrolases family 16 | Short–chain dehydrogenase/reductase VdtF |
TRINITY_DN2724_c0_g1 | 0.0001 | 1.1198 | up | Glycosyl hydrolases family 5 | Glucan endo–1,6–beta–glucosidase B |
TRINITY_DN6981_c0_g1 | 0.0053 | 1.5132 | up | Glycosyl hydrolase family 71 | Glucan endo–1,3–alpha–glucosidase agn1 |
TRINITY_DN5133_c0_g1 | 0.0000 | 1.7507 | up | Glycosyl Hydrolase Family 88 | - |
TRINITY_DN6759_c0_g1 | 0.0004 | 1.5236 | up | Glycosyl hydrolase family 76 | - |
TRINITY_DN9190_c0_g1 | 0.0000 | −1.0044 | down | Thaumatin family | - |
TRINITY_DN1190_c2_g1 | 0.0000 | −1.1813 | down | Thaumatin family | - |
TRINITY_DN711_c10_g1 | 0.0007 | 1.0551 | up | Eukaryotic aspartyl protease | Aspartic protease |
TRINITY_DN1448_c0_g1 | 0.0059 | 2.2227 | up | Eukaryotic aspartyl protease | Aspartic protease |
TRINITY_DN1508_c1_g1 | 0.0017 | 1.2047 | up | Aldo/keto reductase family | Alcohol oxidase |
TRINITY_DN8842_c0_g1 | 0.0044 | 1.3520 | up | Aldo/keto reductase family | NADPH–dependent conjugated polyketone reductase |
SE8–P vs. SE8–M | |||||
TRINITY_DN2724_c0_g1 | 0.0000 | 1.2785 | up | Glycosyl hydrolases family 5 | Glucan endo–1,6–beta–glucosidase B |
TRINITY_DN6759_c0_g1 | 0.0009 | 1.4974 | up | Glycosyl hydrolases family 76 | - |
TRINITY_DN49_c2_g1 | 0.0000 | −2.2034 | down | Fungal hydrophobin | Hydrophobin–B |
TRINITY_DN270_c0_g1 | 0.0014 | −1.3033 | down | Fungal hydrophobin | Lipase 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Huang, X.; Wang, P.; Ahmad, B.; Yang, T.; Wang, Z.; Ren, T.; Xu, J. Transcriptome Analysis and Its Application in Screening Genes Related to the Growth and Development of Sarcomyxa edulis. J. Fungi 2025, 11, 750. https://doi.org/10.3390/jof11100750
Jiang W, Huang X, Wang P, Ahmad B, Yang T, Wang Z, Ren T, Xu J. Transcriptome Analysis and Its Application in Screening Genes Related to the Growth and Development of Sarcomyxa edulis. Journal of Fungi. 2025; 11(10):750. https://doi.org/10.3390/jof11100750
Chicago/Turabian StyleJiang, Wanzhu, Xiao Huang, Peng Wang, Bilal Ahmad, Ting Yang, Ziyuan Wang, Tianyu Ren, and Jize Xu. 2025. "Transcriptome Analysis and Its Application in Screening Genes Related to the Growth and Development of Sarcomyxa edulis" Journal of Fungi 11, no. 10: 750. https://doi.org/10.3390/jof11100750
APA StyleJiang, W., Huang, X., Wang, P., Ahmad, B., Yang, T., Wang, Z., Ren, T., & Xu, J. (2025). Transcriptome Analysis and Its Application in Screening Genes Related to the Growth and Development of Sarcomyxa edulis. Journal of Fungi, 11(10), 750. https://doi.org/10.3390/jof11100750