Development and Optimization of Multi-Well Colorimetric Assays for Growth of Coccidioides posadasii Spherules and Their Application in Large-Scale Screening
Abstract
1. Introduction
2. Materials and Methods
2.1. Fungal Cultures
2.2. Compounds
2.3. Growth of C. posadasii in 96-Well Plates for Assay Optimization and Adaptation for Drug Screening
2.4. Simulated Primary Screening Experiment Using the 96-Well Plate Assay
2.5. Dose–Response Experiments for Confirmation of Screening Results Using the 96-Well Plate Assay
2.6. Growth of C. posadasii in 384-Well Plates for Assay Miniaturization, Optimization and Adaptation for Drug Screening
2.7. Simulated Primary Screening Using the 384-Well Plate Assay
2.8. Dose–Response Experiments for Confirmation of Screening Results Using the 384-Well Plate Assay
3. Results
3.1. Optimization of an XTT-Based 96-Well Plate Protocol for the Growth of C. posadasii Spherules and to Identify Potential Active Antifungal Compounds
3.2. Active Inhibitory Compounds on Spherules Were Correctly Identified in the 96-Well Plate Assay
3.3. Dose–Response Experiments Further Confirmed the Inhibitory Activity of Compounds on Spherules Using the 96-Well Plate Assay
3.4. Optimization of a Miniaturized 384-Well Plate Assay for High-Throughput Screening
3.5. The Newly Developed and Optimized Miniaturized 384-Well Plate Assay Accurately Identified Tested Inhibitory Compounds
3.6. Dose–Response Experiments Using the 384-Well Plate Assay
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crum, N.F. Coccidioidomycosis: A contemporary review. Infect. Dis. Ther. 2022, 11, 713–742. [Google Scholar] [CrossRef]
- Thompson, G.R., III; Chiller, T.M. Endemic Mycoses: Underdiagnosed and Underreported; American College of Physicians: Philadelphia, PA, USA, 2022; pp. 1759–1760. [Google Scholar]
- Kirkland, T.N.; Stevens, D.A.; Hung, C.Y.; Beyhan, S.; Taylor, J.W.; Shubitz, L.F.; Duttke, S.H.; Heidari, A.; Johnson, R.H.; Deresinski, S.C.; et al. Coccidioides Species: A Review of Basic Research: 2022. J. Fungi 2022, 8, 859. [Google Scholar] [CrossRef]
- Donovan, F.M.; Fernández, O.M.; Bains, G.; DiPompo, L. Coccidioidomycosis: A growing global concern. J. Antimicrob. Chemother. 2025, 80 (Suppl. 1), i40–i49. [Google Scholar] [CrossRef]
- Koutserimpas, C.; Naoum, S.; Melissinos, E.P.; Raptis, K.; Alpantaki, K.; Dretakis, K.; Piagkou, M.; Samonis, G. Spinal Infections Caused by Coccidioides Species. Maedica 2023, 18, 209. [Google Scholar] [CrossRef]
- Koutserimpas, C.; Naoum, S.; Raptis, K.; Vrioni, G.; Samonis, G.; Alpantaki, K. Skeletal infections caused by Coccidioides species. Diagnostics 2022, 12, 714. [Google Scholar] [CrossRef]
- Moni, B.M.; Wise, B.L.; Loots, G.G.; Weilhammer, D.R. Coccidioidomycosis osteoarticular dissemination. J. Fungi 2023, 9, 1002. [Google Scholar] [CrossRef] [PubMed]
- Benedict, K. Surveillance for coccidioidomycosis—United States, 2011–2017. MMWR Surveill. Summ. 2019, 68, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Valley Fever (Coccidioidomycosis) Statistics. 2024. Available online: https://www.cdc.gov/valley-fever/php/statistics/index.html (accessed on 1 August 2025).
- World Health Organization. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action; Organización Mundial de la Salud (OMS): Geneva, Switzerland, 2022. [Google Scholar]
- Tverdek, F.P.; Kofteridis, D.; Kontoyiannis, D.P. Antifungal agents and liver toxicity: A complex interaction. Expert Rev. Anti-Infect. Ther. 2016, 14, 765–776. [Google Scholar] [CrossRef] [PubMed]
- Allen, U.D.; Canadian Paediatric Society and Infectious Diseases and Immunization Committee. Antifungal agents for the treatment of systemic fungal infections in children. Paediatr. Child Health 2010, 15, 603–608. [Google Scholar] [CrossRef]
- Souza, A.C.; Amaral, A.C. Antifungal therapy for systemic mycosis and the nanobiotechnology era: Improving efficacy, biodistribution and toxicity. Front. Microbiol. 2017, 8, 336. [Google Scholar] [CrossRef]
- Broach, J.R.; Thorner, J. High-throughput screening for drug discovery. Nature 1996, 384, 14–16. [Google Scholar]
- Martis, E.; Radhakrishnan, R.; Badve, R. High-throughput screening: The hits and leads of drug discovery-an overview. J. Appl. Pharm. Sci. 2011, 1, 2–10. [Google Scholar]
- Ayon, N.J. High-throughput screening of natural product and synthetic molecule libraries for antibacterial drug discovery. Metabolites 2023, 13, 625. [Google Scholar] [CrossRef] [PubMed]
- Farha, M.A.; Brown, E.D. Drug repurposing for antimicrobial discovery. Nat. Microbiol. 2019, 4, 565–577. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, M.; Patra, A.; Awasthi, I.; George, A.; Gagneja, S.; Gupta, V.; Capalash, N.; Sharma, P. Drug repurposing against antibiotic resistant bacterial pathogens. Eur. J. Med. Chem. 2024, 279, 116833. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-S.; Williamson, P.R.; Zheng, W. Improving therapy of severe infections through drug repurposing of synergistic combinations. Curr. Opin. Pharmacol. 2019, 48, 92–98. [Google Scholar] [CrossRef]
- Vazquez-Rodriguez, A.; Rodrigues, C.F.; Ramage, G.; Lopez-Ribot, J.L. Large-Scale Phenotypic Screenings of Repurposing Libraries to Identify Drugs with Novel Antifungal Activity Against Candida Biofilms. In Fungal Biofilms; Ramage, G., Andes, D., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 281–298. [Google Scholar]
- Garcia, J.A.; Vu, K.; Thompson, G.R., III; Gelli, A. Characterization of the growth and morphology of a BSL-2 Coccidioides posadasii strain that persists in the parasitic life cycle at ambient CO2. J. Fungi 2022, 8, 455. [Google Scholar] [CrossRef]
- Mead, H.L.; Blackmon, A.V.; Vogler, A.J.; Barker, B.M. Heat Inactivation of Coccidioides posadasii and Coccidioides immitis for use in lower biosafety containment. Appl. Biosaf. 2019, 24, 123–128. [Google Scholar] [CrossRef]
- Xue, J.; Chen, X.; Selby, D.; Hung, C.Y.; Yu, J.J.; Cole, G.T. A genetically engineered live attenuated vaccine of Coccidioides posadasii protects BALB/c mice against coccidioidomycosis. Infect. Immun. 2009, 77, 3196–3208. [Google Scholar] [CrossRef]
- Converse, J.L.; Besemer, A.R. Nutrition of the parasitic phase of Coccidioides immitis in a chemically defined liquid medium. J. Bacteriol. 1959, 78, 231–239. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Chung, T.D.; Oldenburg, K.R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 1999, 4, 67–73. [Google Scholar] [CrossRef]
- Pierce, C.G.; Uppuluri, P.; Tristan, A.R.; Wormley, F.L., Jr.; Mowat, E.; Ramage, G.; Lopez-Ribot, J.L. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat. Protoc. 2008, 3, 1494–1500. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Oldenburg, K.R. Z-Factor. In Encyclopedia of Cancer; Schwab, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 4885–4887. [Google Scholar]
- Sun, S.H.; Cole, G.T.; Drutz, D.J.; Harrison, J.L. Electron-microscopic observations of the Coccidioides immitis parasitic cycle in vivo. J. Med. Vet. Mycol. 1986, 24, 183–192. [Google Scholar] [CrossRef]
- Saeger, S.; West-Jeppson, K.; Liao, Y.R.; Campuzano, A.; Yu, J.J.; Lopez-Ribot, J.; Hung, C.Y. Discovery of novel antifungal drugs via screening repurposing libraries against Coccidioides posadasii spherule initials. mBio 2025, 16, e00205-25. [Google Scholar] [CrossRef]
- Coma, I.; Herranz, J.; Martin, J. Statistics and Decision Making in High-Throughput Screening. In High Throughput Screening: Methods and Protocols, 2nd ed.; Humana Press: Totowa, NJ, USA, 2009; pp. 69–106. [Google Scholar]
- Ajetunmobi, O.H.; Chaturvedi, A.K.; Badali, H.; Vaccaro, A.; Najvar, L.; Wormley, F.L., Jr.; Wiederhold, N.P.; Patterson, T.F.; Lopez-Ribot, J.L. Screening the medicine for malaria venture’s Pandemic Response Box to identify novel inhibitors of Candida albicans and Candida auris biofilm formation. APMIS 2023, 131, 613–625. [Google Scholar] [CrossRef] [PubMed]
- Ajetunmobi, O.H.; Wall, G.; Vidal Bonifacio, B.; Martinez Delgado, L.A.; Chaturvedi, A.K.; Najvar, L.K.; Wormley, F.L., Jr.; Patterson, H.P.; Wiederhold, N.P.; Patterson, T.F.; et al. High-throughput screening of the repurposing hub library to identify drugs with novel inhibitory activity against Candida albicans and Candida auris biofilms. J. Fungi 2023, 9, 879. [Google Scholar] [CrossRef]
- Goughenour, K.D.; Rappleye, C.A. Antifungal therapeutics for dimorphic fungal pathogens. Virulence 2017, 8, 211–221. [Google Scholar] [CrossRef]
- Thompson, G.R., III; Barker, B.M.; Wiederhold, N.P. Large-scale evaluation of in vitro amphotericin B, triazole, and echinocandin activity against Coccidioides species from US institutions. Antimicrob. Agents Chemother. 2017, 61, e02634-16. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.X.; Yin, X.D.; Zhang, Y.; Shao, Q.H.; Mao, X.Y.; Hu, W.J.; Shen, Y.L.; Zhao, B.; Li, Z.L. Antifungal Drugs and Drug-Induced Liver Injury: A Real-World Study Leveraging the FDA Adverse Event Reporting System Database. Front. Pharmacol. 2022, 13, 891336. [Google Scholar] [CrossRef]
- Yang, Y.L.; Xiang, Z.J.; Yang, J.H.; Wang, W.J.; Xu, Z.C.; Xiang, R.L. Adverse Effects Associated With Currently Commonly Used Antifungal Agents: A Network Meta-Analysis and Systematic Review. Front. Pharmacol. 2021, 12, 697330. [Google Scholar] [CrossRef] [PubMed]
- Patel, C.N.; Shakeel, A.; Mall, R.; Alawi, K.M.; Ozerov, I.V.; Zhavoronkov, A.; Castiglione, F. Strategies for Redesigning Withdrawn Drugs to Enhance Therapeutic Efficacy and Safety: A Review. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2025, 15, e70004. [Google Scholar] [CrossRef]
- Wall, G.; Lopez-Ribot, J.L. Screening repurposing libraries for identification of drugs with novel antifungal activity. Antimicrob. Agents Chemother. 2020, 64, e00924-20. [Google Scholar] [CrossRef]
- Olmedo, D.A.; Durant-Archibold, A.A.; López-Pérez, J.L.; Medina-Franco, J.L. Design and Diversity analysis of chemical libraries in drug discovery. Comb. Chem. High Throughput Screen. 2024, 27, 502–515. [Google Scholar] [CrossRef] [PubMed]
- Mead, H.L.; Valentine, M.; Yin, H.; Thompson, G.R., III; Keim, P.; Engelthaler, D.M.; Barker, B.M. In vitro small molecule screening to inform novel candidates for use in fluconazole combination therapy in vivo against Coccidioides. Microbiol. Spectr. 2024, 12, e01008-24. [Google Scholar] [CrossRef] [PubMed]
- Mead, H.L.; Teixeira, M.D.M.; Galgiani, J.N.; Barker, B.M. Characterizing in vitro spherule morphogenesis of multiple strains of both species of Coccidioides. Med. Mycol. 2018, 57, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Macarrón, R.; Hertzberg, R.P. Design and implementation of high throughput screening assays. Mol. Biotechnol. 2011, 47, 270–285. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vazquez-Rodriguez, A.; Yu, J.-J.; Hung, C.-Y.; Lopez-Ribot, J.L. Development and Optimization of Multi-Well Colorimetric Assays for Growth of Coccidioides posadasii Spherules and Their Application in Large-Scale Screening. J. Fungi 2025, 11, 733. https://doi.org/10.3390/jof11100733
Vazquez-Rodriguez A, Yu J-J, Hung C-Y, Lopez-Ribot JL. Development and Optimization of Multi-Well Colorimetric Assays for Growth of Coccidioides posadasii Spherules and Their Application in Large-Scale Screening. Journal of Fungi. 2025; 11(10):733. https://doi.org/10.3390/jof11100733
Chicago/Turabian StyleVazquez-Rodriguez, Augusto, Jieh-Juen Yu, Chiung-Yu Hung, and Jose L. Lopez-Ribot. 2025. "Development and Optimization of Multi-Well Colorimetric Assays for Growth of Coccidioides posadasii Spherules and Their Application in Large-Scale Screening" Journal of Fungi 11, no. 10: 733. https://doi.org/10.3390/jof11100733
APA StyleVazquez-Rodriguez, A., Yu, J.-J., Hung, C.-Y., & Lopez-Ribot, J. L. (2025). Development and Optimization of Multi-Well Colorimetric Assays for Growth of Coccidioides posadasii Spherules and Their Application in Large-Scale Screening. Journal of Fungi, 11(10), 733. https://doi.org/10.3390/jof11100733