Previous Issue
Volume 9, June
 
 

ChemEngineering, Volume 9, Issue 4 (August 2025) – 12 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
14 pages, 4624 KiB  
Article
Vanillin Quantum–Classical Photodynamics and Photostatic Optical Spectra
by Vladimir Pomogaev and Olga Tchaikovskaya
ChemEngineering 2025, 9(4), 76; https://doi.org/10.3390/chemengineering9040076 - 23 Jul 2025
Abstract
Vanillin photoinduced deprotonation was evaluated and analyzed. Vibronic states and transitions were computationally investigated. Optimizations and vertical electron transitions in the gas phase and with the continuum solvation model were computed using the time-dependent density functional theory. Static absorption and emission (photostatic optical) [...] Read more.
Vanillin photoinduced deprotonation was evaluated and analyzed. Vibronic states and transitions were computationally investigated. Optimizations and vertical electron transitions in the gas phase and with the continuum solvation model were computed using the time-dependent density functional theory. Static absorption and emission (photostatic optical) spectra were statistically averaged over the excited instantaneous molecular conformers fluctuating on quantum–classical molecular dynamic trajectories. Photostatic optical spectra were generated using the hybrid quantum–classical molecular dynamics for explicit solvent models. Conical intersection searching and nonadiabatic molecular dynamics simulations defined potential energy surface propagations, intersections, dissipations, and dissociations. The procedure included mixed-reference spin–flip excitations for both procedures and trajectory surface hopping for photodynamics. Insignificant structural deformations vs. hydroxyl bond cleavage followed by deprotonation were demonstrated starting from different initial structural conditions, which included optimized, transition state, and several other important fluctuating configurations in various environments. Vanillin electronic structure changes were illustrated and analyzed at the key points on conical intersection and nonadiabatic molecular dynamics trajectories by investigating molecular orbital symmetry and electron density difference. The hydroxyl group decomposed on transition to a s-molecular orbital localized on the elongated O–H bond. Full article
20 pages, 1857 KiB  
Article
Application of Risk Management in Applied Engineering Projects in a Petrochemical Plant Producing Polyvinyl Chloride in Cartagena, Colombia
by Juan Pablo Bustamante Visbal, Rodrigo Ortega-Toro and Joaquín Alejandro Hernández Fernández
ChemEngineering 2025, 9(4), 75; https://doi.org/10.3390/chemengineering9040075 - 21 Jul 2025
Abstract
Risk management is crucial in engineering projects, especially in highly complex environments like petrochemical plants producing polyvinyl chloride (PVC). This study proposes a tailored risk management model, using analytic hierarchy process (AHP) and linear regression analysis, alongside MS Excel and IBM SPSS® [...] Read more.
Risk management is crucial in engineering projects, especially in highly complex environments like petrochemical plants producing polyvinyl chloride (PVC). This study proposes a tailored risk management model, using analytic hierarchy process (AHP) and linear regression analysis, alongside MS Excel and IBM SPSS® version 23, to identify, assess, and prioritize key risks. Surveys and interviews revealed seven management factors (budget, schedule, safety, productivity, contracting, quality, and environment) and 18 critical risks, including design errors and procurement delays. The model quantifies risk impacts, provides a regression equation for risk classification, and supports effective mitigation strategies. Based on this model, decision-making can be facilitated for the implementation of effective mitigation strategies. It also promotes continuous improvement, optimizing economic resources and minimizing environmental impacts, addressing a research gap in Colombia’s petrochemical sector and paving the way for broader industrial applications. Full article
Show Figures

Figure 1

29 pages, 3084 KiB  
Article
The Cascade Transformation of Furfural to Cyclopentanone: A Critical Evaluation Concerning Feasible Process Development
by Christian A. M. R. van Slagmaat
ChemEngineering 2025, 9(4), 74; https://doi.org/10.3390/chemengineering9040074 - 19 Jul 2025
Viewed by 104
Abstract
Furfural is a fascinating bio-based platform molecule that can be converted into useful cyclic compounds, among others. In this work, the hydrogenative rearrangement-dehydration of furfural towards cyclopentanone using a commercially available Pt/C catalyst was investigated in terms of its reaction performance to assess [...] Read more.
Furfural is a fascinating bio-based platform molecule that can be converted into useful cyclic compounds, among others. In this work, the hydrogenative rearrangement-dehydration of furfural towards cyclopentanone using a commercially available Pt/C catalyst was investigated in terms of its reaction performance to assess its feasibility as an industrial process. However, acquiring an acceptable cyclopentanone yield proved very difficult, and the reaction was constrained by unforeseen parameters, such as the relative liquid volume in the reactor and the substrate concentration. Most strikingly, the sacrificial formation of furanoic oligomers that precipitated onto the catalyst’s surface was a troublesome key factor that mediated the product’s selectivity versus the carbon mass balance. By applying a biphasic water–toluene solvent system, the yield of cyclopentanone was somewhat improved to a middling 59%, while tentatively positive distributions of reaction components over these solvent phases were observed, which could be advantageous for anticipated down-stream processing. Overall, the sheer difficulty of controlling this one-pot cascade transformation towards a satisfactory product output under rather unfavorable reaction parameters renders it unsuitable for industrial process development, and a multi-step procedure for this chemical transformation might be considered instead. Full article
Show Figures

Figure 1

18 pages, 5293 KiB  
Article
Fluorescent Moieties Through Alkaline Treatment of Graphene Oxide: A Potential Substitute to Replace CRM in wLEDS
by Maria Lucia Protopapa, Emiliano Burresi, Martino Palmisano and Emanuela Pesce
ChemEngineering 2025, 9(4), 73; https://doi.org/10.3390/chemengineering9040073 - 18 Jul 2025
Viewed by 110
Abstract
White-light-emitting diodes (wLEDs) are central to next-generation lighting technologies, yet their reliance on critical raw materials (CRMs), such as rare-earth elements, raises concerns regarding sustainability and supply security. In this work, we present a simple, low-cost method to produce photoluminescent carbon-based nanostructures—known as [...] Read more.
White-light-emitting diodes (wLEDs) are central to next-generation lighting technologies, yet their reliance on critical raw materials (CRMs), such as rare-earth elements, raises concerns regarding sustainability and supply security. In this work, we present a simple, low-cost method to produce photoluminescent carbon-based nanostructures—known as oxidative debris (OD)—via alkaline treatment of graphene oxide (GO) using KOH solutions ranging from 0.04 M to 1.78 M. The resulting OD, isolated from the supernatant after acid precipitation, exhibits strong and tunable photoluminescence (PL) across the visible spectrum. Emission peaks shift from blue (~440 nm) to green (~500 nm) and yellow (~565 nm) as a function of treatment conditions, with excitation wavelengths between 300 and 390 nm. Optical, morphological. and compositional analyses were performed using UV-Vis, AFM, FTIR, and Raman spectroscopy, confirming the presence of highly oxidized aromatic domains. The blue-emitting (S2) and green/yellow-emitting (R2) fractions were successfully separated and characterized, demonstrating potential color tuning by adjusting KOH concentration and treatment time. This study highlights the feasibility of reusing GO-derived byproducts as sustainable phosphor alternatives in wLEDs, reducing reliance on CRMs and aligning with green chemistry principles. Full article
Show Figures

Graphical abstract

12 pages, 1130 KiB  
Article
Production of 2,2,3,3,4,4,4-Heptafluorobutyl Acetate from Acetic Acid and 2,2,3,3,4,4,4-Heptafluorobutan-1-ol by Batch Reactive Distillation
by Andrei V. Polkovnichenko, Egor V. Lupachev, Evgenia I. Kovaleva, Sergey Ya. Kvashnin, Tatiana V. Chelyuskina and Andrey A. Voshkin
ChemEngineering 2025, 9(4), 72; https://doi.org/10.3390/chemengineering9040072 - 11 Jul 2025
Viewed by 197
Abstract
In the present study, a process for the production of 2,2,3,3,4,4,4-heptafluorobutyl acetate (HFBAc) is proposed for the first time. The production process of HFBAc from acetic acid (AAc) and 2,2,3,3,4,4,4-heptafluorobutan-1-ol (HFBol) was carried out at laboratory scale using batch reactive distillation (BRD). The [...] Read more.
In the present study, a process for the production of 2,2,3,3,4,4,4-heptafluorobutyl acetate (HFBAc) is proposed for the first time. The production process of HFBAc from acetic acid (AAc) and 2,2,3,3,4,4,4-heptafluorobutan-1-ol (HFBol) was carried out at laboratory scale using batch reactive distillation (BRD). The process was conducted at atmospheric pressure in the presence of an acid catalyst, with an excess of AAc relative to HFBol (initial molar ratio of reagents HFBol/AAc is 45/55). During the BRD, the aqueous phase of the distillate was withdrawn from the system, while the organic phase of the distillate was returned as reflux. Since part of AAc is lost along with the aqueous phase of the distillate, a minor excess of AAc is reasonable for maximizing the conversion of the most expensive reagent—HFBol. The losses of AAc and HFBol with the aqueous phase of the distillate were less than 2 mole % and less than 0.5 mole % of the feed, respectively. The purity of HFBAc after BRD was 97.9 wt. %, and the conversion of HFBol exceeded 99 mole % of the feed. The purity of certain product fractions of HFBAc was greater than 99.6 wt. %. The obtained data can be used for industrial technology development to obtain HFBAc. Full article
Show Figures

Figure 1

15 pages, 3671 KiB  
Article
Improving the Water–Gas Shift Performance of a Co/CeO2 Catalyst for Hydrogen Production
by Nipatta Chumanee and Pannipa Nachai
ChemEngineering 2025, 9(4), 71; https://doi.org/10.3390/chemengineering9040071 - 10 Jul 2025
Viewed by 228
Abstract
The aim of this study was to improve the water–gas shift efficiency of Co/CeO2 catalyst by incorporating praseodymium and rhenium. The catalysts were synthesized via combustion method and characterized using X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area analysis, Scanning Electron Microscope (SEM), [...] Read more.
The aim of this study was to improve the water–gas shift efficiency of Co/CeO2 catalyst by incorporating praseodymium and rhenium. The catalysts were synthesized via combustion method and characterized using X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area analysis, Scanning Electron Microscope (SEM), H2-temperature programmed reduction (H2-TPR), NH3-temperature programmed desorption (NH3-TPD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). These characterization techniques evaluate the increase of the surface acidity and oxygen vacancies in Co-based catalysts, which leads to an increase in water–gas shift performance because CO molecules prefer to react with surface oxygen, then followed by the production of CO2 and oxygen vacancies which act as active sites for H2O dissociation. The 1%Re4%Co/Ce-5%Pr-O catalyst exhibited a maximum CO conversion of 86% at 450 °C, substantially outperforming the 5%Co/Ce-5%Pr-O catalyst, which showed only 62% CO conversion at 600 °C. In addition, 1%Re4%Co/Ce-5%Pr-O catalyst is more resistant towards deactivation than 5%Co/Ce-5%Pr-O. The result presented that the catalytic activity of 1%Re4%Co/Ce-5%Pr-O catalyst was kept constant for the whole period of 50 h, while a 6% decrease in water–gas shift activity was found for the 5%Co/Ce-5%Pr-O catalyst. Moreover, the addition of rhenium into the Co/Ce-Pr-O catalyst reveals that the enhancement of oxygen vacancy concentration, oxygen mobility, and surface acidity, thereby enhances CO conversion efficiency. Full article
Show Figures

Figure 1

19 pages, 1240 KiB  
Article
Extending the Recovery Ratio of Brackish Water Desalination to Zero Liquid Discharge (>95%) Through Combination of Nanofiltration, 2-Stage Reverse-Osmosis, Silica Precipitation, and Mechanical Vapor Recompression
by Paz Nativ, Raz Ben-Asher, Yaron Aviezer and Ori Lahav
ChemEngineering 2025, 9(4), 70; https://doi.org/10.3390/chemengineering9040070 - 3 Jul 2025
Viewed by 348
Abstract
Extending the recovery ratio (RR) of brackish water reverse osmosis (RO) plants to zero liquid discharge (ZLD, i.e., ≥95%) is vital, particularly inland, where the cost of safe retentate disposal is substantial. Various suggestions appear in the literature; however, many of these are [...] Read more.
Extending the recovery ratio (RR) of brackish water reverse osmosis (RO) plants to zero liquid discharge (ZLD, i.e., ≥95%) is vital, particularly inland, where the cost of safe retentate disposal is substantial. Various suggestions appear in the literature; however, many of these are impractical in the real world. Often, the limiting parameter that determines the maximal recovery is the SiO2 concentration that develops in the RO retentate and the need to further desalinate the high osmotic pressure retentates produced in the process. This work combines well-proven treatment schemes to attain RR ≥ 95% at a realistic cost. The raw brackish water undergoes first a 94% recovery nanofiltration (NF) step, whose permeate undergoes a further 88-RR RO step. To increase the overall RR, the retentate of the 1st RO step undergoes SiO2 removal performed via iron electro-dissolution and then a 2nd, 43% recovery, RO pass. The retentate of this step is combined with the NF retentate, and the mix is treated with mechanical vapor recompression (MVR) (RR = 62.7%). The results show that >95% recovery can be attained by the suggested process at an overall cost of ~USD 0.70/m3. This is ~60% higher than the USD 0.44/m3 calculated for the baseline operation (RR = 82.7%), making the concept feasible when either the increase in the plant’s capacity is regulatorily requested, or when the available retentate discharge method is very costly. The cost assessment accuracy was approximated at >80%. Full article
Show Figures

Figure 1

12 pages, 3309 KiB  
Article
A Study on the Effects of Solvent and Temperature on 2-Amino-7-Nitro-Fluorene (ANF) Using Synchronous Fluorescence
by Suresh Sunuwar, Miguel Rodriguez-Escalante, Priscila Blanco-Cortés and Carlos E. Manzanares
ChemEngineering 2025, 9(4), 69; https://doi.org/10.3390/chemengineering9040069 - 27 Jun 2025
Viewed by 263
Abstract
Synchronous fluorescence spectra are presented to investigate solute–solvent interactions in liquids. To this end, the spectra of 2-amino-7-nitro-fluorene (ANF) in six different solvents—acetic anhydride, acetone, acetonitrile, benzene, chlorobenzene, and ethyl acetate—are presented. The study also examines ANF’s synchronous fluorescence signals at five temperatures [...] Read more.
Synchronous fluorescence spectra are presented to investigate solute–solvent interactions in liquids. To this end, the spectra of 2-amino-7-nitro-fluorene (ANF) in six different solvents—acetic anhydride, acetone, acetonitrile, benzene, chlorobenzene, and ethyl acetate—are presented. The study also examines ANF’s synchronous fluorescence signals at five temperatures from 25 °C to 5 °C, providing a comprehensive analysis of its fluorescence characteristics in different environments and temperatures. An ANF sample dissolved in benzene at 5 °C produced a synchronous band with the largest intensity and smallest frequency shift. The results show that higher-intensity peaks are obtained at lower temperatures with solvents with a small dipole moment and dielectric constant. This suggest that the best conditions to detect ANF and similar molecules at very low concentrations are with non-polar solvents at low temperatures. Full article
Show Figures

Graphical abstract

17 pages, 3372 KiB  
Article
Combustion Air Humidifier for a Biomass Boiler with Flue Gas Condensation
by Jan Havlík and Tomáš Dlouhý
ChemEngineering 2025, 9(4), 68; https://doi.org/10.3390/chemengineering9040068 - 25 Jun 2025
Viewed by 237
Abstract
This paper deals with combustion air humidification for application with a biomass boiler and a spray flue gas condenser. The use of a combustion air humidifier increases the dew point temperature of the flue gas, thereby increasing the potential for heat recovery in [...] Read more.
This paper deals with combustion air humidification for application with a biomass boiler and a spray flue gas condenser. The use of a combustion air humidifier increases the dew point temperature of the flue gas, thereby increasing the potential for heat recovery in the flue gas condenser and increasing the amount of heat supplied to the thermal system. The air humidification process in a counter current spray humidifier was experimentally analysed under conditions corresponding to the use before a biomass boiler with a flue gas condenser. For air heating and humidification, temperature factor values of up to 0.90 can be obtained; this value is mainly influenced by the ratio of the spray water and humidified air flow rates. The volumetric heat transfer coefficient is significantly affected by the humidified air velocity, although this velocity is negligible compared to the counter current spray water velocity. The volumetric heat transfer coefficient reaches higher values at higher spray water temperatures and therefore higher air heating. The whole process is also affected by the saturation of the incoming air, where the dew point temperature of the air drawn in from the surroundings is lower than its temperature. These results can be used as basic information for the design of combustion air humidifiers, for the selection of their operating parameters, and for a basic balancing of the energy contribution of the combustion air humidifier before a more detailed design of the whole system. Full article
Show Figures

Figure 1

11 pages, 1639 KiB  
Article
New Approach to the Combined Removal of NOx and SO2 for Circulating Fluidized Beds
by Chao Wang and Qinggang Lyu
ChemEngineering 2025, 9(4), 67; https://doi.org/10.3390/chemengineering9040067 - 25 Jun 2025
Viewed by 246
Abstract
Post-combustion technology is a new kind of low-nitrogen combustion technology. To achieve the combined removal of nitrogen oxides (NOx) and sulfur dioxide (SO2) emissions, the post-combustion technology combined with the sorbent injection in the furnace and post-combustion chamber is [...] Read more.
Post-combustion technology is a new kind of low-nitrogen combustion technology. To achieve the combined removal of nitrogen oxides (NOx) and sulfur dioxide (SO2) emissions, the post-combustion technology combined with the sorbent injection in the furnace and post-combustion chamber is proposed. Experiments investigating the effects of the sorbent addition in a post-combustion chamber and post-combustion air arrangement on NOx and SO2 emissions were conducted in a 0.1 MWth circulating fluidized bed test platform. In addition, a comparative analysis of the NOx and SO2 emissions under both combined removal methods was also performed. The results indicated that adding sorbent to the post-combustion chamber can reduce SO2 emissions, but further increasing the amount of sorbent will not significantly improve the desulfurization effect. The injection position of the post-combustion air will affect the emissions of NOx and SO2 in the flue gas. When the three-stage distribution of post-combustion air is adopted, the further back the third nozzle is distributed, the lower the temperature in the post-combustion chamber, which is beneficial to the control of NOx and SO2 emissions. Compared with the conventional combined removal method, the NOx emissions were significantly reduced under the new combined removal method. Through secondary desulfurization in the furnace and post-combustion chamber, oxygen-deficient combustion in the furnace can achieve the combined removal of NOx and SO2. Full article
(This article belongs to the Special Issue Fuel Engineering and Technologies)
Show Figures

Figure 1

17 pages, 5119 KiB  
Article
Anode-Supported SOFCs with a Bi2O3-Doped NiO–ScSZ Anode and ScSZ Electrolyte: Low-Temperature Co-Sintering and High Performance
by Shang Peng, Zhao Liu, Pairuzha Xiaokaiti, Tiancheng Fang, Jiwei Wang, Guoqing Guan and Abuliti Abudula
ChemEngineering 2025, 9(4), 66; https://doi.org/10.3390/chemengineering9040066 - 24 Jun 2025
Viewed by 289
Abstract
In this study, a novel anode-supported solid oxide fuel cell (SOFC) comprising a Bi2O3-doped NiO-ScSZ anode and an ScSZ electrolyte was successfully fabricated via a low-temperature co-sintering process at 1300 °C. The incorporation of 3 wt% Bi2O [...] Read more.
In this study, a novel anode-supported solid oxide fuel cell (SOFC) comprising a Bi2O3-doped NiO-ScSZ anode and an ScSZ electrolyte was successfully fabricated via a low-temperature co-sintering process at 1300 °C. The incorporation of 3 wt% Bi2O3 effectively promoted the sintering of both the anode support and electrolyte layer, resulting in a dense, gas-tight electrolyte and a mechanically robust porous anode support. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses confirmed the formation of phase-pure, highly crystalline ScSZ with an optimized microstructure. Electrochemical performance measurements demonstrated that the fabricated cells achieved excellent power density, reaching a peak value of 0.861 W cm−2 at 800 °C under humidified hydrogen fuel conditions. The cells maintained stable performance under dry methane operation, with a maximum power density of 0.624 W cm−2 at 800 °C, indicating resistance to carbon deposition. Gas chromatographic analyses further revealed that the Bi2O3-doped NiO-ScSZ anode facilitated earlier and more stable electrochemical oxidation of methane-derived species compared with the conventional NiO-YSZ system, even under conditions of an elevated methane partial pressure. These findings demonstrate that Bi2O3 co-doping, combined with low-temperature co-sintering, provides an effective approach for fabricating high-performance intermediate-temperature SOFCs with enhanced structural integrity and electrochemical stability. The developed methodology presents a promising pathway toward achieving cost-effective and durable SOFC technologies. Full article
Show Figures

Figure 1

18 pages, 6497 KiB  
Article
Characterization of HFE 7500 Refrigerant Suspensions Containing Oxide and Nitride Nanoparticles: Thermal, Rheological, and Electrokinetic Insights
by Serdar Ozturk and Keagan Schmidt
ChemEngineering 2025, 9(4), 65; https://doi.org/10.3390/chemengineering9040065 - 24 Jun 2025
Viewed by 253
Abstract
Nanofluids—engineered suspensions of nanometer-sized particles—have attracted significant attention due to their reportedly enhanced thermal properties, making them promising candidates for advanced heat transfer applications. However, despite extensive studies, uncertainties remain regarding the magnitude and origin of these effects, limiting their practical implementation. To [...] Read more.
Nanofluids—engineered suspensions of nanometer-sized particles—have attracted significant attention due to their reportedly enhanced thermal properties, making them promising candidates for advanced heat transfer applications. However, despite extensive studies, uncertainties remain regarding the magnitude and origin of these effects, limiting their practical implementation. To address this, we present a comprehensive study on nanofluid formulations based on the commercial refrigerant HFE-7500, incorporating surfactant-stabilized dispersions of several metal oxide and nitride nanoparticles. We measured key physicochemical properties, including zeta potential, particle size, viscosity, and thermal conductivity. Our results show that while the nanofluids exhibited high stability, their particle sizes in suspension were significantly larger than the primary nanoparticle sizes measured by TEM. Notably, alumina-based suspensions demonstrated the greatest enhancement, exhibiting approximately 10–15% increases in thermal conductivity as a function of volume percentage. These surpassed the 5–10% improvements observed with other metal oxides, an effect that may be linked to their comparatively larger particle sizes. However, the observed enhancements were lower than some previously reported values that claimed anomalously high thermal conductivity increases. Furthermore, steady shear viscosity increased with particle concentration, showing enhancements of 10–20%, which suggests a potential trade-off for practical implementation. Our findings refine the understanding of nanofluid behavior in refrigerants and establish a foundation for optimizing their performance in thermal management applications. However, viscosity increases must be carefully considered when designing next-generation nanofluids for real-world use. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop