The aim of this study was to improve the water–gas shift efficiency of Co/CeO
2 catalyst by incorporating praseodymium and rhenium. The catalysts were synthesized via combustion method and characterized using X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area analysis, Scanning Electron Microscope (SEM),
[...] Read more.
The aim of this study was to improve the water–gas shift efficiency of Co/CeO
2 catalyst by incorporating praseodymium and rhenium. The catalysts were synthesized via combustion method and characterized using X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area analysis, Scanning Electron Microscope (SEM), H
2-temperature programmed reduction (H
2-TPR), NH
3-temperature programmed desorption (NH
3-TPD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). These characterization techniques evaluate the increase of the surface acidity and oxygen vacancies in Co-based catalysts, which leads to an increase in water–gas shift performance because CO molecules prefer to react with surface oxygen, then followed by the production of CO
2 and oxygen vacancies which act as active sites for H
2O dissociation. The 1%Re4%Co/Ce-5%Pr-O catalyst exhibited a maximum CO conversion of 86% at 450 °C, substantially outperforming the 5%Co/Ce-5%Pr-O catalyst, which showed only 62% CO conversion at 600 °C. In addition, 1%Re4%Co/Ce-5%Pr-O catalyst is more resistant towards deactivation than 5%Co/Ce-5%Pr-O. The result presented that the catalytic activity of 1%Re4%Co/Ce-5%Pr-O catalyst was kept constant for the whole period of 50 h, while a 6% decrease in water–gas shift activity was found for the 5%Co/Ce-5%Pr-O catalyst. Moreover, the addition of rhenium into the Co/Ce-Pr-O catalyst reveals that the enhancement of oxygen vacancy concentration, oxygen mobility, and surface acidity, thereby enhances CO conversion efficiency.
Full article