Characterization of HFE 7500 Refrigerant Suspensions Containing Oxide and Nitride Nanoparticles: Thermal, Rheological, and Electrokinetic Insights
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Nanorefrigerants
2.2. Dynamic Light Scattering (DLS) Measurements
2.3. Zeta Potential Measurements
2.4. Transmission Electron Microscopy (TEM)
2.5. Thermal Conductivity Measurements
2.6. Viscosity Measurements
3. Results and Discussion
3.1. Surfactant-Mediated Particle Dispersion Approach
3.2. Particle Characterization by Transmission Electron Microscopy (TEM)
Material | Vendor | Density (g/cm3) @ 25 °C | Thermal Conductivity (W/m·K) @ 25 °C | Particle Size (nm) and Purity [from Vendor] | Particle Size (nm) [Measured] | Morphology | Crystal Structure |
---|---|---|---|---|---|---|---|
HFE-7500 | Novec, 3M Corp. Saint Paul, MN | 1.614 | 0.065 [13] | – | – | – | – |
Krytox 157-FSL | Krytox Performance Lubricants (CAS #60164-51-4), DuPont Chemicals, Deepwater, NJ, USA | 1.9 | – | – | – | – | – |
Al2O3 | Sigma-Aldrich (Cat. No. 544833), St. Louis, MO, USA | 4 | ~33 [25] | <50 | 5–50 | Disk | γ (Gamma) |
AlN | Sigma-Aldrich (Cat. No. 593044), St. Louis, MO, USA | 3.26 | ~319 [26] | <100 | 50–100 | Spherical and irregular | Wurtizite |
ZnO | Sigma-Aldrich (Cat. No. 544906), St. Louis, MO, USA | 5.61 | 54 [27] | <100 (~80% Zn basis) | 50–200 | Rod-like | Wurtizite |
CuO | NanoArc, Alfa Aesar (Cat. No. 44928), Ward Hill, MA, USA | ~6.4 | 76.5 [28] | 23–37 | 25–50 | Spherical and irregular | Monoclinic |
TiO2 | Sigma-Aldrich (Cat. No.637254), St. Louis, MO, USA | 3.9 | 8.37 [29] | <25 (99.7% trace metals basis) | <25 | Spherical | Anatase |
3.3. Particle Size Measurements by Dynamic Light Scattering (DLS)
3.4. Stability Assessment via Zeta Potential
3.5. Thermal Conductivity Measurements by Transient Hot Wire
3.6. Rheological Behavior of Refrigerant-Based Nanoparticle Suspensions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eastman, J.A.; Choi, S.U.S.; Li, S.; Yu, W.; Thompson, L.J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 2001, 78, 718–720. [Google Scholar] [CrossRef]
- Jang, S.P.; Choi, S.U.S. Cooling performance of a microchannel heat sink with nanofluids. Appl. Therm. Eng. 2006, 26, 2457–2463. [Google Scholar] [CrossRef]
- Das, S.K.; Putra, N.; Roetzel, W. Pool boiling characteristics of nano-fluids. Int. J. Heat Mass Transf. 2003, 46, 851–862. [Google Scholar] [CrossRef]
- Ozturk, S.; Hassan, Y.A.; Ugaz, V.M. Graphene-enhanced nanorefrigerants. Nanoscale 2013, 5, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, S.; Hassan, Y.A.; Ugaz, V.M. A simple microfluidic probe of nanoparticle suspension stability. Lab A Chip 2012, 12, 3467–3473. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, S.; Hassan, Y.A.; Ugaz, V.M. Interfacial Complexation Explains Anomalous Diffusion in Nanofluids. Nano Lett. 2010, 10, 665–671. [Google Scholar] [CrossRef]
- Murshed, S.M.S.; Leong, K.C.; Yang, C. Thermal conductivity of nanoparticle suspensions (nanofluids). In Proceedings of the 2006 IEEE Conference on Emerging Technologies—Nanoelectronics, Singapore, 10–13 January 2006; pp. 155–158. [Google Scholar]
- Yu, W.; Xie, H.Q.; Chen, L.F.; Li, Y. Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid. Thermochim. Acta 2009, 491, 92–96. [Google Scholar] [CrossRef]
- Jiang, W.; Ding, G.; Peng, H. Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants. Int. J. Therm. Sci. 2009, 48, 1108–1115. [Google Scholar] [CrossRef]
- Jwo, C.S.; Jeng, L.Y.; Chang, H.; Teng, T.P. Experimental Study on Thermal Conductivity of Lubricant Containing Nanoparticles. Rev. Adv. Mater. Sci 2008, 18, 660–666. [Google Scholar]
- Mahbubul, I.M.; Saidur, R.; Amalina, M.A. Influence of particle concentration and temperature on thermal conductivity and viscosity of Al2O3/R141b nanorefrigerant. Int. Commun. Heat Mass Transf. 2013, 43, 100–104. [Google Scholar] [CrossRef]
- Jaffri, A.J.; Dondapati, R.S.; Bhat, M.W.; Vyas, G. Investigation on Thermo-Physical Properties of Mixed Nano-Refrigerant with CuO based nanoparticles. Mater. Today Proc. 2018, 5 Pt 2, 27795–27800. [Google Scholar] [CrossRef]
- Division, E.M.M. (Ed.) 3M Novec 7500 Engineered Fluid; 3M: St Paul, MN, USA, 2010. [Google Scholar]
- Tantra, R.; Schulze, P.; Quincey, P. Effect of nanoparticle concentration on zeta-potential measurement results and reproducibility. Particuology 2010, 8, 279–285. [Google Scholar] [CrossRef]
- Buongiorno, J.; Venerus, D.C.; Prabhat, N.; McKrell, T.; Townsend, J.; Christianson, R.; Tolmachev, Y.V.; Keblinski, P.; Hu, L.-w.; Alvarado, J.L.; et al. A benchmark study on the thermal conductivity of nanofluids. J. Appl. Phys. 2009, 106, 094312. [Google Scholar] [CrossRef]
- Ding, Y.; Alias, H.; Wen, D.; Williams, R.A. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int. J. Heat Mass Transf. 2006, 49, 240–250. [Google Scholar] [CrossRef]
- Tang, A.-M.; Cui, Y.-J.; Le, T.-T. A study on the thermal conductivity of compacted bentonites. Appl. Clay Sci. 2008, 41, 181–189. [Google Scholar] [CrossRef]
- Ge, R.; Hardacre, C.; Nancarrow, P.; Rooney, D.W. Thermal Conductivities of Ionic Liquids over the Temperature Range from 293 K to 353 K. J. Chem. Eng. Data 2007, 52, 1819–1823. [Google Scholar] [CrossRef]
- Taha-Tijerina, J.; Narayanan, T.N.; Gao, G.; Rohde, M.; Tsentalovich, D.A.; Pasquali, M.; Ajayan, P.M. Electrically Insulating Thermal Nano-Oils Using 2D Fillers. ACS Nano 2012, 6, 1214–1220. [Google Scholar] [CrossRef]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids, 2nd ed.; Clarendon Press, Oxford: London, UK, 1959. [Google Scholar]
- Vargaftik, N.B.; Filippov, L.P.; Tarzimanov, A.A.; Totskii, E.E. Handbook of Thermal Conductivity of Liquids and Gases; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Tuma, P.E. Using segregated HFEs as heat transfer fluids. Chem. Process. 2001, 64, 47–50. [Google Scholar]
- Doan, V.; Köppe, R.; Kasai, P.H. Dimerization of Carboxylic Acids and Salts: An IR Study in Perfluoropolyether Media. J. Am. Chem. Soc. 1997, 119, 9810–9815. [Google Scholar] [CrossRef]
- Yang, Y. Fluorous Membrane-Based Separations and Reactions; University of Pittsburgh: Pittsburgh, PA, USA, 2011. [Google Scholar]
- Munro, M. Evaluated Material Properties for a Sintered alpha Alumina. J. Am. Ceram. Soc. 1997, 80, 1919–1928. [Google Scholar] [CrossRef]
- Slack, R.; Glen, A.; Vandersande, J. The intrinsic thermal conductivity of AIN* 1. J. Phys. Chem. Solids 1987, 48, 641–647. [Google Scholar] [CrossRef]
- Slack, G. Thermal Conductivity of II-VI Compounds and Phonon Scattering by Fe^{2+} Impurities. Phys. Rev. B 1972, 6, 3791–3800. [Google Scholar] [CrossRef]
- Hwang, Y.; Lee, J.K.; Lee, C.H.; Jung, Y.M.; Cheong, S.I.; Lee, C.G.; Ku, B.C.; Jang, S.P. Stability and thermal conductivity characteristics of nanofluids. Thermochim. Acta 2007, 455, 70–74. [Google Scholar] [CrossRef]
- Kim, S.H.; Choi, S.R.; Kim, D. Thermal Conductivity of Metal-Oxide Nanofluids: Particle Size Dependence and Effect of Laser Irradiation. J. Heat Transf. 2007, 129, 298–307. [Google Scholar] [CrossRef]
- Xie, H.Q.; Wang, J.C.; Xi, T.G.; Liu, Y.; Ai, F.; Wu, Q.R. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J. Appl. Phys. 2002, 91, 4568–4572. [Google Scholar] [CrossRef]
- Maheshwary, P.B.; Handa, C.C.; Nemade, K.R.; Chaudhary, S.R. Role of nanoparticle shape in enhancing the thermal conductivity of nanofluids. Mater. Today Proc. 2020, 28, 873–878. [Google Scholar] [CrossRef]
- Murshed, S.M.S.; Leong, K.C.; Yang, C. Enhanced thermal conductivity of TiO2--water based nanofluids. Int. J. Therm. Sci. 2005, 44, 367–373. [Google Scholar] [CrossRef]
- Timofeeva, E.V.; Routbort, J.L.; Singh, D. Particle shape effects on thermophysical properties of alumina nanofluids. J. Appl. Phys. 2009, 106, 014304. [Google Scholar] [CrossRef]
- Vallejo, J.P.; Febrero-Garrido, L.; Cacabelos, A.; González-Gil, A.; Lugo, L. Influence of crystal structure on the thermophysical properties and figures-of-merit of propylene glycol: Water-based SiC nanofluids. Powder Technol. 2024, 433, 119299. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Bhattacharya, P.; Phelan, P.E.; Prasher, R.S. Enhanced Mass Transport in Nanofluids. Nano Lett. 2006, 6, 419–423. [Google Scholar] [CrossRef]
- Hu, P.; Shan, W.L.; Yu, F.; Chen, Z.S. Thermal Conductivity of AlN-Ethanol Nanofluids. Int. J. Thermophys. 2008, 29, 1968–1973. [Google Scholar] [CrossRef]
- Kwak, K.; Kim, C. Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Aust. Rheol. J. 2005, 17, 35–40. [Google Scholar]
- Das, S.K.; Putra, N.; Thiesen, P.; Roetzel, W. Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids. J. Heat Transf. 2003, 125, 567–574. [Google Scholar] [CrossRef]
- Duangthongsuk, W.; Wongwises, S. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp. Therm. Fluid Sci. 2009, 33, 706–714. [Google Scholar] [CrossRef]
- Turgut, A.; Tavman, I.; Chirtoc, M.; Schuchmann, H.P.; Sauter, C.; Tavman, S. Thermal Conductivity and Viscosity Measurements of Water-Based TiO2 Nanofluids. Int. J. Thermophys. 2009, 30, 1213–1226. [Google Scholar] [CrossRef]
- Wang, X.; Xu, X.; Choi, S. Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat Transf. 1999, 13, 474–480. [Google Scholar] [CrossRef]
- Maxwell, J.C. A Treatise on Electricity and Magnetism, 2nd ed.; Clarendon Press: Oxford, UK, 1881. [Google Scholar]
- Hamilton, R.; Crosser, O. Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fundam. 1962, 1, 187–191. [Google Scholar] [CrossRef]
- Koo, J.; Kleinstreuer, C. A new thermal conductivity model for nanofluids. J. Nanoparticle Res. 2004, 6, 577–588. [Google Scholar] [CrossRef]
- Koo, J.; Kleinstreuer, C. Laminar nanofluid flow in microheat-sinks. Int. J. Heat Mass Transf. 2005, 48, 2652–2661. [Google Scholar] [CrossRef]
- Li, C.; Peterson, G. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J. Appl. Phys. 2006, 99, 084314. [Google Scholar] [CrossRef]
- Nair, V.; Parekh, A.D.; Tailor, P.R. Water-based Al2O3, CuO and TiO2 nanofluids as secondary fluids for refrigeration systems: A thermal conductivity study. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 262. [Google Scholar] [CrossRef]
- Kundan, L.; Mallick, S.S.; Pal, B. An investigation into the effect of nanoclusters growth on perikinetic heat conduction mechanism in an oxide based nanofluid. Powder Technol. 2017, 311, 273–286. [Google Scholar] [CrossRef]
- Zhi, C.Y.; Xu, Y.B.; Bando, Y.; Golberg, D. Highly Thermo-conductive Fluid with Boron Nitride Nanofillers. Acs Nano 2011, 5, 6571–6577. [Google Scholar] [CrossRef]
- Chen, H.; Yang, W.; He, Y.; Ding, Y.; Zhang, L.; Tan, C.; Lapkin, A.; Bavykin, D. Heat transfer and flow behaviour of aqueous suspensions of titanate nanotubes (nanofluids). Powder Technol. 2008, 183, 63–72. [Google Scholar] [CrossRef]
- Chen, H.S.; Ding, Y.L.; Tan, C.Q. Rheological behaviour of nanofluids. New J. Phys. 2007, 9, 367. [Google Scholar] [CrossRef]
- Kole, M.; Dey, T. Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant. J. Phys. D Appl. Phys. 2010, 43, 315501. [Google Scholar] [CrossRef]
- Yu, W.; Xie, H.Q.; Li, Y.; Chen, L.F. Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid. Particuology 2011, 9, 187–191. [Google Scholar] [CrossRef]
- He, Y.; Jin, Y.; Chen, H.; Ding, Y.; Cang, D.; Lu, H. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int. J. Heat Mass Transf. 2007, 50, 2272–2281. [Google Scholar] [CrossRef]
- Schmidt, A.J.; Chiesa, M.; Torchinsky, D.H.; Johnson, J.A.; Boustani, A.; McKinley, G.H.; Nelson, K.A.; Chen, G. Experimental investigation of nanofluid shear and longitudinal viscosities. Appl. Phys. Lett. 2008, 92, 244107. [Google Scholar] [CrossRef]
- Moosavi, M.; Goharshadi, E.K.; Youssefi, A. Fabrication, characterization, and measurement of some physicochemical properties of ZnO nanofluids. Int. J. Heat Fluid Flow 2010, 31, 599–605. [Google Scholar] [CrossRef]
- Namburu, P.K.; Kulkarni, D.P.; Misra, D.; Das, D.K. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Exp. Therm. Fluid Sci. 2007, 32, 397–402. [Google Scholar] [CrossRef]
- Einstein, A. A new determination of the molecular dimensions. Ann. Phys. 1906, 19, 289–306. [Google Scholar] [CrossRef]
- Brinkman, H. The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 1952, 20, 571. [Google Scholar] [CrossRef]
- Batchelor, G. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech. 1977, 83, 97–117. [Google Scholar] [CrossRef]
- Rea, U.; McKrell, T.; Hu, L.-w.; Buongiorno, J. Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids. Int. J. Heat Mass Transf. 2009, 52, 2042–2048. [Google Scholar] [CrossRef]
- Lundgren, T.S. Slow flow through stationary random beds and suspensions of spheres. J. Fluid Mech. 1972, 51, 273–299. [Google Scholar] [CrossRef]
- Maiga, S.; Nguyen, C.; Galanis, N.; Roy, G. Heat transfer behaviours of nanofluids in a uniformly heated tube. Superlattices Microstruct. 2004, 35, 543–557. [Google Scholar] [CrossRef]
- Ozturk, S. Microfluidic Investigation of Tracer Dye Diffusion in Alumina Nanofluids. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2012. [Google Scholar]
Material | Viscosity (cP) | Dielectric Constant | Refractive Index |
---|---|---|---|
HFE-7500 | 1.31 * | 5.8 ** | 1.298 *** |
Suspension Composition * | Zeta Potential ** (mV) | Particle Size *** (nm) |
---|---|---|
Al2O3 | −35.69 ± 1.78 | 390.45 ± 28.04 |
AlN | −42.72 ± 1.43 | 281.27 ± 18.99 |
ZnO | −54.37 ± 2.04 | 212.30 ± 11.77 |
CuO | −43.22 ± 4.51 | 143.47 ± 8.33 |
TiO2 | −36.63 ± 3.44 | 77.75 ± 15.16 |
Material | Loading | Host Fluid | Temperature (°C) | Dispersant | Measurement Method | Observations | Reference |
---|---|---|---|---|---|---|---|
Al2O3, AlN, ZnO, CuO, TiO2, | 0.25–1 vol% | HFE-7500 | 2, 12, 22 | Krytox 157-FSL | Transient hot wire (KD2) | Up to ~10–15% increase at 22 °C, ~10% increase at 2 °C, ~5–10% increase at 22 °C, ~5% increase at 2 °C, ~5% increases at 2 °C and 22 °C in thermal conductivity, respectively. | This work |
Al2O3 | 1 vol% | Water | 27 | Tween 80 | – | Up to ~7% increase at 27 °C in thermal conductivity. | [35] |
Al2O3 | 1 vol% | Water | 25 | CTAB | Transient hot wire | Up to ~12% increase at 25 °C in thermal conductivity. | [7] |
AlN | 1 vol% | Ethanol | 0, 24 | Castor oil | Transient plane source | Up to ~3% increase at 0 °C, ~8% increase at 24 °C in thermal conductivity. | [36] |
ZnO | 1 vol% | Ethylene glycol | 20, 30, 40, 50, 60 | – | Transient hot wire | Up to ~8–9% increase at 20 °C in thermal conductivity. | [8] |
ZnO, TiO2 | 1 vol% | Ethylene glycol | 20 | SDS | Transient hot wire | Up to ~6% increase at 20 °C, ~4–5% increase at 20 °C in thermal conductivity. | [29] |
CuO | 1 vol% | Ethylene glycol | 25 | – | Transient hot wire | Up to ~5% increase at 25 °C in thermal conductivity. | [37] |
CuO | 1 vol% | Water | 21, 36, 51 | – | Temperature oscillation | Up to ~6% increase at 21 °C in thermal conductivity. | [38] |
TiO2 | 1 vol% | Water | 15, 25, 35 | – | Transient hot wire | Up to ~4–5% increase at 15 °C and 25 °C in thermal conductivity. | [39] |
TiO2 | 1 vol% | Water | 13, 23, 40, 55 | – | 3w wire | Up to ~3% increase at 13 °C and 23 °C in thermal conductivity. | [40] |
Model | Suggested Formula | Description |
---|---|---|
Maxwell * [42] | For large, spherical, and non-interacting particles in dilute systems | |
Hamilton and Crosser ** [43] | Applicable to cylindrical particles with empirical shape factor | |
Koo and Kleinstreuer *** [44,45] | Inclusion of physical properties | |
Li and Peterson [46] | Empirical equation with temperature variable | |
Nair et al. [47] | Equation formulated through experimental trial | |
Kundan et al. [48] | Assumes volume fraction is responsible for thermal conductivity increases |
Material | Loading | Host Fluid | Temperature (°C) | Dispersant | Measurement Method | Observations | Reference |
---|---|---|---|---|---|---|---|
Al2O3, AlN, ZnO, CuO, TiO2, | 0.25–1 vol% | HFE-7500 | 2, 12, 22 | Krytox 157-FSL | Parallel plate CP 50-1 | Up to ~10–15% increase, ~10–18% increase, ~10–16% increase, ~15–18% increase, ~15–20% increase in viscosity, respectively. (Enhancement as a function of concentration, shear thinning behavior at elevated temperatures and high loadings) | This work |
Al2O3 | 1 vol% | Decane polyalphaolefin | 22 | Sorbitan monolaurate | – | Up to ~10% increase in viscosity. | [55] |
Al2O3 | 1 vol% | Engine coolant (HP KOOLGARD) | 10, 20, 30 | Oleic acid | Rotational type Spindle | Up to ~65–70% increase in viscosity. (Shear thinning behavior) | [52] |
AlN | 5 vol% | Ethylene glycol and propylene lycol | 20 | – | Rotational type Spindle SC-18 | Up to ~65–70% increase in viscosity. (Shear thinning behavior) | [53] |
ZnO | 0.6 vol% | Ethylene glycol | 25 | Ammonium citrate | Ostwald Viscometer | Up to ~26% increase in viscosity. | [56] |
ZnO | 2 vol% | Ethylene glycol | 20, 30, 40, 50, 60 | – | Rotational type Spindle SC-18 | Up to ~22% increase in viscosity. (Shear thinning behavior when ) | [8] |
CuO | 1 vol% | Ethylene glycol | 25 | – | Rotational type Couette fixture | Up to ~90% increase in viscosity. (Shear thinning behavior) | [37] |
CuO | 1 vol% | Ethylene glycol and water | −35, −30, −20, −10, 0, 10, 20, 30, 40, 50 | – | Rotational type Spindle SC-18 | Up to ~20–25% increase in viscosity. (Newtonian behavior) | [57] |
TiO2 | 1 vol% | Water | 15, 25, 35 | – | Parallel plate | Up to ~17% increase in viscosity. | [39] |
TiO2 | 1 vol% | Water | 13 | – | Vibration Viscometer SV-10 | Up to ~19% increase in viscosity. | [40] |
TiO2 | 1.2 vol% | Water | 22 | – | Rotational type Couette fixture (Mooney cell) | Up to ~11% increase in viscosity. (Shear thinning behavior) | [54] |
Model | Suggested Formulas * | Description |
---|---|---|
Einstein [58] | Spherical and non-interacting particles for | |
Brinkman [59] | Extension of Einstein equation for | |
Batchelor [60] | Spherical particles with interaction of pair particles considering Brownian motion for | |
Modified Krieger and Dougherty [51] | Aggregation of particles, full range of | |
Maiga et al. [48] | Found through experimental trial | |
Rea et al. [61] | Developed through regression analysis | |
Lundgren [62] | Applied Taylor series expansion to Einstein model |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozturk, S.; Schmidt, K. Characterization of HFE 7500 Refrigerant Suspensions Containing Oxide and Nitride Nanoparticles: Thermal, Rheological, and Electrokinetic Insights. ChemEngineering 2025, 9, 65. https://doi.org/10.3390/chemengineering9040065
Ozturk S, Schmidt K. Characterization of HFE 7500 Refrigerant Suspensions Containing Oxide and Nitride Nanoparticles: Thermal, Rheological, and Electrokinetic Insights. ChemEngineering. 2025; 9(4):65. https://doi.org/10.3390/chemengineering9040065
Chicago/Turabian StyleOzturk, Serdar, and Keagan Schmidt. 2025. "Characterization of HFE 7500 Refrigerant Suspensions Containing Oxide and Nitride Nanoparticles: Thermal, Rheological, and Electrokinetic Insights" ChemEngineering 9, no. 4: 65. https://doi.org/10.3390/chemengineering9040065
APA StyleOzturk, S., & Schmidt, K. (2025). Characterization of HFE 7500 Refrigerant Suspensions Containing Oxide and Nitride Nanoparticles: Thermal, Rheological, and Electrokinetic Insights. ChemEngineering, 9(4), 65. https://doi.org/10.3390/chemengineering9040065