Bio-Based Nanocellulose Piezocatalysts: PH-Neutral Mechanochemical Degradation of Multipollutant Dyes via Ambient Vibration Energy Conversion
Abstract
1. Introduction
2. Experimental Section
2.1. FC Preparation
2.2. Characterization
2.3. Piezocatalysis Experiment
2.4. Active Species Detection
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, Z.; Zheng, Y.; Zhang, S.; Fu, J.; Li, Y.; Zhang, Y.; Ye, W. (1−x)Bi0.5Na0.5TiO3–xBiFeO3 solid solutions with enhanced piezocatalytic dye degradation. Sep. Purif. Technol. 2022, 290, 120831. [Google Scholar] [CrossRef]
- Sharma, M.; Singh, G.; Vaish, R. Ag-nanoparticles-loaded Ba0.85Ca0.15Ti0.9Zr0.1O3 for multicatalytic dye degradation. Nanotechnology 2021, 32, 145716. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Yu, X.; Huang, D.; Wang, H.; Wu, Y. Piezocatalytic performance of Fe2O3-Bi2MoO6 catalyst for dye degradation. Front. Chem. Sci. Eng. 2023, 17, 716–725. [Google Scholar] [CrossRef]
- Rao, G.B.; Rajesh, P.; Ramasamy, P. Enhanced optical, thermal and piezoelectric behavior in dye doped potassium acid phthalate (KAP) single crystal. J. Cryst. Growth 2017, 468, 411–415. [Google Scholar] [CrossRef]
- Yein, W.T.; Wang, Q.; Li, Y.; Wu, X. Piezoelectric potential induced the improved micro-pollutant dye degradation of Co doped MoS2 ultrathin nanosheets in dark. Catal. Commun. 2019, 125, 61–65. [Google Scholar] [CrossRef]
- Masimukku, S.; Hu, Y.C.; Lin, Z.H.; Chan, S.W.; Chou, T.M.; Wu, J.M. High efficient degradation of dye molecules by PDMS embedded abundant single-layer tungsten disulfide and their antibacterial performance. Nano Energy 2018, 46, 338–346. [Google Scholar] [CrossRef]
- Lei, H.; He, Q.; Wu, M.; Xu, Y.; Sun, P.; Dong, X. Piezoelectric polarization promoted spatial separation of photoexcited electrons and holes in two-dimensional g-C3N4 nanosheets for efficient elimination of chlorophenols. J. Hazard. Mater. 2022, 421, 126696. [Google Scholar] [CrossRef]
- Ma, K.; Sun, C.; He, Y.; Zhao, X.; Wang, S.; Zhang, G.; Wang, C.; Zhou, F.; Liu, Z.; Lü, Z.; et al. Piezoelectricity-driven structural stabilization and electrochemical enhancement in silicon anodes: A novel force-electric coupling framework. J. Energy Chem. 2025, 109, 65–75. [Google Scholar] [CrossRef]
- Yao, Z.; Sun, H.; Xiao, S.; Hu, Y.; Liu, X.; Zhang, Y. Synergetic piezo-photocatalytic effect in a Bi2MoO6/BiOBr composite for decomposing organic pollutants. Appl. Surf. Sci. 2021, 560, 150037. [Google Scholar] [CrossRef]
- Liu, Y.L.; Wu, J.M. Synergistically catalytic activities of BiFeO3/TiO2 core-shell nanocomposites for degradation of organic dye molecule through piezophototronic effect. Nano Energy 2019, 56, 74–81. [Google Scholar] [CrossRef]
- Wu, J.M.; Sun, Y.G.; Chang, W.E.; Lee, J.T. Piezoelectricity induced water splitting and formation of hydroxyl radical from active edge sites of MoS2 nanoflowers. Nano Energy 2018, 46, 372–382. [Google Scholar] [CrossRef]
- Guo, S.L.; Lai, S.N.; Wu, J.M. Strain-induced ferroelectric heterostructure catalysts of hydrogen production through piezophototronic and piezoelectrocatalytic system. ACS Nano 2021, 15, 16106–16117. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Qin, N.; Lin, E.; Yuan, B.; Kang, Z.; Bao, D. Synthesis of Bi4Ti3O12 decussated nanoplates with enhanced piezocatalytic activity. Nanoscale 2019, 11, 21128–21136. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Huang, X.; Zhang, L.; Gao, F.; Lei, R.; Jiang, C.; Feng, W.; Liu, P. Tuning piezoelectric field for optimizing the coupling effect of piezo-photocatalysis. Appl. Catal. B Environ. 2020, 278, 119291. [Google Scholar] [CrossRef]
- Sharma, A.; Bhardwaj, U.; Kushwaha, H.S. ZnO hollow pitchfork: Coupled photo-piezocatalytic mechanism for antibiotic and pesticide elimination. Catal. Sci. Technol. 2022, 12, 812–822. [Google Scholar] [CrossRef]
- Ning, X.; Hao, A.; Cao, Y.; Jia, D. Boosting piezocatalytic performance of Ag decorated ZnO by piezo-electrochemical synergistic coupling strategy. Appl. Surf. Sci. 2021, 566, 150730. [Google Scholar] [CrossRef]
- Yu, C.; Tan, M.; Li, Y.; Liu, C.; Yin, R.; Meng, H.; Su, Y.; Qiao, L.; Bai, Y. Ultrahigh piezocatalytic capability in eco-friendly BaTiO3 nanosheets promoted by 2D morphology engineering. J. Colloid Interf. Sci. 2021, 596, 288–296. [Google Scholar] [CrossRef]
- Lin, E.; Kang, Z.; Wu, J.; Huang, R.; Qin, N.; Bao, D. BaTiO3 nanocubes/cuboids with selectively deposited Ag nanoparticles: Efficient piezocatalytic degradation and mechanism. Appl. Catal. B Environ. 2021, 285, 119823. [Google Scholar] [CrossRef]
- Ai, J.D.; Jin, C.C.; Liu, D.M.; Zhang, J.T.; Zhang, L.X. Strain engineering to boost piezocatalytic activity of BaTiO3. ChemCatChem. 2023, 15, e202201316. [Google Scholar] [CrossRef]
- Gaur, A.; Chauhan, V.S.; Vaish, R. Porous BaTiO3 ceramic with enhanced piezocatalytic activity for water cleaning application. Surf. Interf. 2023, 36, 102497. [Google Scholar] [CrossRef]
- Jin, C.; Liu, D.; Hu, J.; Wang, Y.; Zhang, Q.; Lv, L.; Zhuge, F. The role of microstructure in piezocatalytic degradation of organic dye pollutants in wastewater. Nano Energy 2019, 59, 372–379. [Google Scholar] [CrossRef]
- Feng, Y.; Ling, L.; Wang, Y.; Xu, Z.; Cao, F.; Li, H.; Bian, Z. Engineering spherical lead zirconate titanate to explore the essence of piezo-catalysis. Nano Energy 2017, 40, 481–486. [Google Scholar] [CrossRef]
- Verma, S.; Sharma, M.; Halder, A.; Vaish, R. Effect of poling on piezocatalytic and electrochemical properties of Pb(Zr0.52Ti0.48)O3 ceramics. Surf. Interf. 2022, 30, 101827. [Google Scholar] [CrossRef]
- Zheng, Y.; Cheng, M.; Wu, X.; Zhang, S.; Liu, Z.; Li, Y.; Shao, W.; Lin, Q.; Tan, J.; Gao, S.; et al. Sm-Doped (1–x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 Nanostructures for Piezocatalytic Dye Degradation. ACS Appl. Nano Mater. 2021, 5, 277–287. [Google Scholar] [CrossRef]
- Dai, M.; Zhao, F.; Fan, J.; Li, Q.; Yang, Y.; Fan, Z.; Ling, S.; Yu, H.; Liu, S.; Li, J.; et al. A Nanostructured Moisture-Absorbing Gel for Fast and Large-Scale Passive Dehumidification. Adv. Mater. 2022, 34, 2200865. [Google Scholar] [CrossRef]
- Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev. 2010, 110, 3479–3500. [Google Scholar] [CrossRef]
- Isogai, A. Emerging nanocellulose technologies: Recent developments. Adv. Mater. 2021, 33, 2000630. [Google Scholar] [CrossRef]
- Khalil, H.A.; Davoudpour, Y.; Islam, M.N.; Mustapha, A.; Sudesh, K.; Dungani, R.; Jawaid, M. Production and modification of nanofibrillated cellulose using various mechanical processes: A. review. Carbohyd. Polym. 2014, 99, 649–665. [Google Scholar] [CrossRef]
- Duan, C.; Cheng, Z.; Wang, B.; Zeng, J.; Xu, J.; Li, J.; Gao, W.; Chen, K. Chiral Photonic Liquid Crystal Films Derived from Cellulose Nanocrystals. Small 2021, 17, 2007306. [Google Scholar] [CrossRef]
- Solhi, L.; Guccini, V.; Heise, K.; Solala, I.; Niinivaara, E.; Xu, W.; Mihhels, K.; Kröger, M.; Meng, Z.; Wohlert, J.; et al. Understanding nanocellulose–water interactions: Turning a detriment into an asset. Chem. Rev. 2023, 123, 1925–2015. [Google Scholar] [CrossRef]
- Csoka, L.; Hoeger, I.C.; Rojas, O.J.; Peszlen, I.; Pawlak, J.J.; Peralta, P.N. Piezoelectric effect of cellulose nanocrystals thin films. ACS Macro Lett. 2012, 1, 867–870. [Google Scholar] [CrossRef]
- Ram, F.; Biswas, B.; Torris, A.; Kumaraswamy, G.; Shanmuganathan, K. Elastic piezoelectric aerogels from isotropic and directionally ice-templated cellulose nanocrystals: Comparison of structure and energy harvesting. Cellulose 2021, 28, 6323–6337. [Google Scholar] [CrossRef]
- Rajala, S.; Siponkoski, T.; Sarlin, E.; Mettanen, M.; Vuoriluoto, M.; Pammo, A.; Juuti, J.; Rojas, O.J.; Franssila, S.; Tuukkanen, S. Cellulose nanofibril film as a piezoelectric sensor material. ACS Appl. Mater. Interfaces 2016, 8, 15607–15614. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Jia, Y.; Chang, T.; Ruan, L.; Xu, T.; Zhang, Z.; Yuan, G.; Wu, Z.; Zhu, G. Highly efficient piezo-catalysis of the heat-treated cellulose nanocrystal for dye decomposition driven by ultrasonic vibration. Sep. Purif. Technol. 2022, 286, 120450. [Google Scholar] [CrossRef]
- Ren, J.T.; Chen, L.; Wang, H.Y.; Yuan, Z.Y. High-entropy alloys in electrocatalysis: From fundamentals to applications. Chem. Soc. Rev. 2023, 52, 8319–8373. [Google Scholar] [CrossRef]
- Fan, B.Y.; Liu, H.B.; Wang, Z.H.; Zhao, Y.W.; Yang, S.; Lyu, S.Y.; Xing, A.; Zhang, J.; Li, H.; Liu, X.Y. Ferroelectric polarization-enhanced photocatalytic performance of heterostructured BaTiO3@TiO2 via interface engineering. J. Cent. South Univ. 2021, 28, 3778–3789. [Google Scholar] [CrossRef]
- Hu, X.; Mohamood, T.; Ma, W.; Chen, C.; Zhao, J. Oxidative decomposition of rhodamine B dye in the presence of VO2+ and/or Pt(IV) under visible light irradiation: N-deethylation, chromophore cleavage, and mineralization. J. Phys. Chem. B 2006, 110, 26012–26018. [Google Scholar] [CrossRef]
- Xie, P.; Yang, F.; Li, R.; Ai, C.; Lin, C.; Lin, S. Improving hydrogen evolution activity of perovskite BaTiO3 with Mo doping: Experiments and first-principles analysis. Int. J. Hydrogen Energy 2019, 44, 11695–11704. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Wang, Z.; Wu, S.; Ma, J. Cellulose controlled zinc oxide nanoparticles with adjustable morphology and their photocatalytic performances. Carbohyd. Polym. 2021, 259, 117752. [Google Scholar] [CrossRef]
- Dai, Q.; Yuan, B.; Guo, M.; Zhang, K.; Chen, X.; Song, Z.; Nguyen, T.T.; Wang, X.; Lin, S.; Fan, J.; et al. A novel nano-fibriform C-modified niobium pentoxide by using cellulose templates with highly visible-light photocatalytic performance. Ceram. Int. 2020, 46, 13210–13218. [Google Scholar] [CrossRef]
- Wu, Z.; Zhu, Z.; Ma, J.; Zhou, M.; Wu, Z.; You, H.; Zhang, H.; Li, N.; Wang, F. High piezo-photocatalysis of BaTiO3 nanofibers for organic dye decomposition. Surf. Interfaces 2024, 48, 104308. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Yang, Z.; Shu, X.; Chen, W.; Liu, J.; Chen, K.; Jia, Y. Bio-Based Nanocellulose Piezocatalysts: PH-Neutral Mechanochemical Degradation of Multipollutant Dyes via Ambient Vibration Energy Conversion. ChemEngineering 2025, 9, 90. https://doi.org/10.3390/chemengineering9040090
Yang Z, Yang Z, Shu X, Chen W, Liu J, Chen K, Jia Y. Bio-Based Nanocellulose Piezocatalysts: PH-Neutral Mechanochemical Degradation of Multipollutant Dyes via Ambient Vibration Energy Conversion. ChemEngineering. 2025; 9(4):90. https://doi.org/10.3390/chemengineering9040090
Chicago/Turabian StyleYang, Zhaoning, Zihao Yang, Xiaoxin Shu, Wenshuai Chen, Jiaolong Liu, Keqing Chen, and Yanmin Jia. 2025. "Bio-Based Nanocellulose Piezocatalysts: PH-Neutral Mechanochemical Degradation of Multipollutant Dyes via Ambient Vibration Energy Conversion" ChemEngineering 9, no. 4: 90. https://doi.org/10.3390/chemengineering9040090
APA StyleYang, Z., Yang, Z., Shu, X., Chen, W., Liu, J., Chen, K., & Jia, Y. (2025). Bio-Based Nanocellulose Piezocatalysts: PH-Neutral Mechanochemical Degradation of Multipollutant Dyes via Ambient Vibration Energy Conversion. ChemEngineering, 9(4), 90. https://doi.org/10.3390/chemengineering9040090