Ternary Choline Chloride-Based Deep Eutectic Solvents: A Review
Abstract
1. Introduction
1.1. Hydrogen Bond Acceptors and Donors
1.2. Classification of Deep Eutectic Solvents
1.3. Choline Chloride-Based Deep Eutectic Solvents
Advantages |
Availability: The majority of DESs are readily available in large quantities, as they are primarily composed of easily accessible raw materials such as urea and common halide salt. |
Synthesis: The synthesis of DESs is a straightforward and energy-efficient process, with the synthetic reaction demonstrating high atom efficiency. |
Economic and Environmentally Friendly: DESs can be composed of inexpensive and biodegradable components (mixture of ChCl and U), making them more cost-effective and environmentally friendly compared to some ionic liquids. |
Recyclability: DES solvents can be fully recycled in the extraction process without any contamination or loss. |
Performance: In terms of their application, such as extraction capacity, most DESs demonstrate comparable or even superior performance when compared to conventional solvents and ILs. |
Toxicity: The majority of DESs exhibit minimal toxicity, thereby reducing potential harm to both individuals and wildlife. |
Disadvantages |
Limited Stability: Some DESs may have lower thermal and chemical stability compared to ionic liquids, limiting their use in certain high-temperature or harsh chemical environments. |
Viscosity: DESs may have higher viscosity compared to ionic liquids, which limit their mass transfer and diffusion properties, as well as their applicability in some processes that require low-viscosity solvents. |
Limited Solubility: The solubility of certain compounds in DESs may be lower than in ionic liquids, limiting their effectiveness in certain applications. |
1.4. Binary Choline Chloride-Based Deep Eutectic Solvents
2. Ternary Choline Chloride-Based Deep Eutectic Solvents
3. The Role of DESs and TDESs in Modern Eco-Friendly Technologies
4. Physicochemical Properties of Binary and Ternary Choline Chloride-Based DESs
4.1. Phase Behaviour
4.2. Density
4.3. Viscosity
4.4. Potential of Hydrogen (pH)
4.5. Conductivity
4.6. Effect of Water on the Physicochemical Properties of TDESs
4.7. Tunability and Design Flexibility of TDESs
5. Application of Ternary Choline Chloride-Based Deep Eutectic Solvents
5.1. Biomass
5.2. CO2 Capture
5.3. Heavy Oil Upgrade
5.4. Refrigeration Gas Separation
5.5. Solvent/Catalyst in Organic Reactions
6. Limitation and Practical Challenges of TDESs
7. Conclusions and Future Prospects
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DES | Deep eutectic solvent |
TDES | Ternary choline chloride-based deep eutectic solvents |
ILs | Ionic liquids |
ChCl | Choline chloride |
HBAs | Hydrogen bond acceptors |
HBDs | Hydrogen bond donors |
NRTL | Non-random two liquid |
CCS | Carbon capture and storage |
HCl | Hydrochloric acid |
U | Urea |
W | Water |
GL | Glycerol |
EG | Ethylene glycol |
LA | Lactic acid |
OA | Oxalic acid |
CA | Citric acid |
PG | Propylene glycol |
RES | Resorcinol |
MA | Malic acid |
MAL | Malonic acid |
BTD | Butanediol |
FRU | Fructose |
VFT | Vogel–Fulcher–Tammann model |
SUPRADES | Supramolecular deep eutectic solvents |
THEDES | Therapeutic DES |
ACE | Acetamide |
BA | Boric acid |
WLF | Williams–Landel–Ferry model |
NADES | Natural DES |
Cat+ | Ammonium, phosphonium, or sulfonium cation |
PEI | Polyethyleneimine |
PEG | Polyethylene |
PRP | Propanediol |
NI | NiCl2∙6H2O |
GC | Guaiacol |
PTSA | p-toluenesulfonic acid |
References
- Afonso, J.; Mezzetta, A.; Marrucho, I.M.; Guazzelli, L. History Repeats Itself Again: Will the Mistakes of the Past for ILs Be Repeated for DESs? From Being Considered Ionic Liquids to Becoming Their Alternative: The Unbalanced Turn of Deep Eutectic Solvents. Green Chem. 2023, 25, 59–105. [Google Scholar] [CrossRef]
- Lau, R.M.; van Rantwijk, F.; Seddon, K.R.; Sheldon, R.A. Lipase-Catalyzed Reactions in Ionic Liquids. Org. Lett. 2000, 2, 4189–4191. [Google Scholar] [CrossRef]
- Hayyan, M.; Mjalli, F.S.; Hashim, M.A.; AlNashef, I.M. A Novel Technique for Separating Glycerine from Palm Oil-Based Biodiesel Using Ionic Liquids. Fuel Process. Technol. 2010, 91, 116–120. [Google Scholar] [CrossRef]
- Mohammad Fauzi, A.H.; Amin, N.A.S. An Overview of Ionic Liquids as Solvents in Biodiesel Synthesis. Renew. Sustain. Energy Rev. 2012, 16, 5770–5786. [Google Scholar] [CrossRef]
- Taysun, M.B.; Sert, E.; Atalay, F.S. Synthesis, Characterization and Acid-Catalyzed Application of Ternary Deep Eutectic Solvent: Effect of Glycerol Addition. Braz. J. Chem. Eng. 2022, 39, 113–121. [Google Scholar] [CrossRef]
- Nam, N.N.; Do, H.D.; Trinh, K.T.; Lee, N.Y. Design Strategy and Application of Deep Eutectic Solvents for Green Synthesis of Nanomaterials. Nanomaterials 2023, 13, 1164. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, S.; Tailor, Y.K.; Kumar, M. Deep Eutectic Solvents (DESs) as Eco-Friendly and Sustainable Solvent/Catalyst Systems in Organic Transformations. J. Mol. Liq. 2016, 215, 345–386. [Google Scholar] [CrossRef]
- Leila, M.; Tarek, M.; Michel, F.; Hervé, B.; Sébastien, T.; Eric, M.; Margarida, F.C.G.; David, L.; Sophie, F. Deep Eutectic Solvents as Green Absorbents of Volatile Organic Pollutants. Environ. Chem. Lett. 2017, 15, 747–753. [Google Scholar] [CrossRef]
- Martins, M.A.R.; Pinho, S.P.; Coutinho, J.A.P. Insights into the Nature of Eutectic and Deep Eutectic Mixtures. J. Solut. Chem. 2019, 48, 962–982. [Google Scholar] [CrossRef]
- Prausnitz, J.M.; Lichtenthaler, R.N.; de Azevedo, E.G. Molecular Thermodynamics of Fluid-Phase Equilibria; Pearson Education: Upper Saddle River, NJ, USA, 1998; ISBN 978-0-13-244050-9. [Google Scholar]
- Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep Eutectic Solvents: Syntheses, Properties and Applications. Chem. Soc. Rev. 2012, 41, 7108. [Google Scholar] [CrossRef] [PubMed]
- Gabrielly, M. Modeling Solvent Selection for Biorefinery Application. Ph.D. Thesis, Mines Paris—PSL, Paris, France, 2023. [Google Scholar]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [PubMed]
- Florindo, C.; Lima, F.; Ribeiro, B.D.; Marrucho, I.M. Deep Eutectic Solvents: Overcoming 21st Century Challenges. Curr. Opin. Green Sustain. Chem. 2019, 18, 31–36. [Google Scholar] [CrossRef]
- Alkhatib, I.I.I.; Bahamon, D.; Llovell, F.; Abu-Zahra, M.R.M.; Vega, L.F. Perspectives and Guidelines on Thermodynamic Modelling of Deep Eutectic Solvents. J. Mol. Liq. 2020, 298, 112183. [Google Scholar] [CrossRef]
- Francisco, M.; van den Bruinhorst, A.; Kroon, M.C. Low-Transition-Temperature Mixtures (LTTMs): A New Generation of Designer Solvents. Angew. Chem. Int. Ed. 2013, 52, 3074–3085. [Google Scholar] [CrossRef]
- Aljadri, M.A.K. Novel Deep Eutectic Solvents and Their Application in the Liquid-Liquid Extraction of Aromatic Compounds. Ph.D. Thesis, University of Malaya, Kuala Lumpur, Malaysia, 2013. [Google Scholar]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea Mixtures. Chem. Commun. 2003, 39, 70–71. [Google Scholar] [CrossRef]
- Kareem, M.A.; Mjalli, F.S.; Hashim, M.A.; AlNashef, I.M. Phosphonium-Based Ionic Liquids Analogues and Their Physical Properties. J. Chem. Eng. Data 2010, 55, 4632–4637. [Google Scholar] [CrossRef]
- Kareem, M.A.; Mjalli, F.S.; Hashim, M.A.; Hadj-Kali, M.K.O.; Bagh, F.S.G.; Alnashef, I.M. Phase Equilibria of Toluene/Heptane with Tetrabutylphosphonium Bromide Based Deep Eutectic Solvents for the Potential Use in the Separation of Aromatics from Naphtha. Fluid Phase Equilibria 2012, 333, 47–54. [Google Scholar] [CrossRef]
- Shahbaz, K.; Mjalli, F.S.; Hashim, M.A.; AlNashef, I.M. Using Deep Eutectic Solvents Based on Methyl Triphenyl Phosphunium Bromide for the Removal of Glycerol from Palm-Oil-Based Biodiesel. Energy Fuels 2011, 25, 2671–2678. [Google Scholar] [CrossRef]
- Hayyan, A.; Mjalli, F.S.; AlNashef, I.M.; Al-Wahaibi, T.; Al-Wahaibi, Y.M.; Hashim, M.A. Fruit Sugar-Based Deep Eutectic Solvents and Their Physical Properties. Thermochim. Acta 2012, 541, 70–75. [Google Scholar] [CrossRef]
- Rees, W.A.; Yager, T.D.; Korte, J.; Von Hippel, P.H. Betaine Can Eliminate the Base Pair Composition Dependence of DNA Melting. Biochemistry 1993, 32, 137–144. [Google Scholar] [CrossRef]
- Barnicki, S.D. Synthetic Organic Chemicals. In Handbook of Industrial Chemistry and Biotechnology; Kent, J.A., Ed.; Springer: Boston, MA, USA, 2012; pp. 307–389. ISBN 978-1-4614-4259-2. [Google Scholar]
- Chary, M.V.; Keerthysri, N.C.; Vupallapati, S.V.N.; Lingaiah, N.; Kantevari, S. Tetrabutylammonium Bromide (TBAB) in Isopropanol: An Efficient, Novel, Neutral and Recyclable Catalytic System for the Synthesis of 2,4,5-Trisubstituted Imidazoles. Catal. Commun. 2008, 9, 2013–2017. [Google Scholar] [CrossRef]
- Fahlbusch, K.; Hammerschmidt, F.; Panten, J.; Pickenhagen, W.; Schatkowski, D.; Bauer, K.; Garbe, D.; Surburg, H. Flavors and Fragrances. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Vichy, France, 2003; ISBN 978-3-527-30385-4. [Google Scholar]
- Eccles, R. Menthol and Related Cooling Compounds. J. Pharm. Pharmacol. 1994, 46, 618–630. [Google Scholar] [CrossRef] [PubMed]
- West, A.C.; Schmidt, M.W.; Gordon, M.S.; Ruedenberg, K. A Comprehensive Analysis in Terms of Molecule-Intrinsic, Quasi-Atomic Orbitals. III. The Covalent Bonding Structure of Urea. J. Phys. Chem. A 2015, 119, 10368–10375. [Google Scholar] [CrossRef] [PubMed]
- El Achkar, T.; Greige-Gerges, H.; Fourmentin, S. Basics and Properties of Deep Eutectic Solvents: A Review. Environ. Chem. Lett. 2021, 19, 3397–3408. [Google Scholar] [CrossRef]
- Díaz, S.; Gutiérrez, S.; Pérez, E.; Olmos-Greco, R.J.; Cabañas, A. Thermodynamic and Spectroscopic Study of Solutions of Therapeutic Deep Eutectic Solvents (THEDES) in Supercritical CO2. J. Mol. Liq. 2025, 423, 127027. [Google Scholar] [CrossRef]
- Dwamena, A.K. Recent Advances in Hydrophobic Deep Eutectic Solvents for Extraction. Separations 2019, 6, 9. [Google Scholar] [CrossRef]
- Ioannou, K.A.; Ioannou, G.D.; Christou, A.; Schmid, M.G.; Stavrou, I.J.; Kapnissi-Christodoulou, C.P. Novel Supramolecular Deep Eutectic Solvent (SUPRADES) as a Sole Chiral Selector in Capillary Electrophoresis for the Enantiomeric Separation of Fluorine-Substituted Amphetamine Analogs. J. Chromatogr. A 2024, 1715, 464628. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; McKenzie, K.J.; Obi, S.U. Solubility of Metal Oxides in Deep Eutectic Solvents Based on Choline Chloride. J. Chem. Eng. Data 2006, 51, 1280–1282. [Google Scholar] [CrossRef]
- Abbott, A.P.; Barron, J.C.; Ryder, K.S.; Wilson, D. Eutectic-Based Ionic Liquids with Metal-Containing Anions and Cations. Chem. Eur. J. 2007, 13, 6495–6501. [Google Scholar] [CrossRef]
- Abranches, D.O.; Coutinho, J.A.P. Type V Deep Eutectic Solvents: Design and Applications. Curr. Opin. Green Sustain. Chem. 2022, 35, 100612. [Google Scholar] [CrossRef]
- Abranches, D.O.; Martins, M.A.R.; Silva, L.P.; Schaeffer, N.; Pinho, S.P.; Coutinho, J.A.P. Phenolic Hydrogen Bond Donors in the Formation of Non-Ionic Deep Eutectic Solvents: The Quest for Type V DES. Chem. Commun. 2019, 55, 10253–10256. [Google Scholar] [CrossRef]
- Fajar, A.T.N.; Hanada, T.; Hartono, A.D.; Goto, M. Estimating the Phase Diagrams of Deep Eutectic Solvents within an Extensive Chemical Space. Commun. Chem. 2024, 7, 27. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, G.; Abranches, D.O.; Ferreira, O.; Coutinho, J.A.P. Estimating the Melting Temperatures of Type V Deep Eutectic Solvents. Ind. Eng. Chem. Res. 2023, 62, 14638–14647. [Google Scholar] [CrossRef]
- Vaz, I.C.M.; Lobo Ferreira, A.I.M.C.; Silva, G.M.C.; Morgado, P.; Abranches, D.O.; Bastos, M.; Santos, L.M.N.B.F.; Filipe, E.J.M.; Coutinho, J.A.P. The Path towards Type V Deep Eutectic Solvents: Inductive Effects and Steric Hindrance in the System Tert-Butanol + Perfluoro Tert-Butanol. Phys. Chem. Chem. Phys. 2023, 25, 11227–11236. [Google Scholar] [CrossRef]
- van Osch, D.J.G.P.; Zubeir, L.F.; van den Bruinhorst, A.; Rocha, M.A.A.; Kroon, M.C. Hydrophobic Deep Eutectic Solvents as Water-Immiscible Extractants. Green Chem. 2015, 17, 4518–4521. [Google Scholar] [CrossRef]
- Alhadid, A.; Mokrushina, L.; Minceva, M. Influence of the Molecular Structure of Constituents and Liquid Phase Non-Ideality on the Viscosity of Deep Eutectic Solvents. Molecules 2021, 26, 4208. [Google Scholar] [CrossRef]
- Duarte, A.R.C.; Ferreira, A.S.D.; Barreiros, S.; Cabrita, E.; Reis, R.L.; Paiva, A. A Comparison between Pure Active Pharmaceutical Ingredients and Therapeutic Deep Eutectic Solvents: Solubility and Permeability Studies. Eur. J. Pharm. Biopharm. 2017, 114, 296–304. [Google Scholar] [CrossRef]
- Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural Deep Eutectic Solvents—Solvents for the 21st Century. ACS Sustain. Chem. Eng. 2014, 2, 1063–1071. [Google Scholar] [CrossRef]
- Dai, Y.; van Jaap, S.; Geert-Jan, W.; Robert, V.; Young, H.C. Natural Deep Eutectic Solvents as New Potential Media for Green Technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef]
- Liu, Y.; Friesen, J.B.; McAlpine, J.B.; Lankin, D.C.; Chen, S.-N.; Pauli, G.F. Natural Deep Eutectic Solvents: Properties, Applications, and Perspectives. J. Nat. Prod. 2018, 81, 679–690. [Google Scholar] [CrossRef]
- Makoś-Chełstowska, P.; Słupek, E.; Fourmentin, S.; Gębicki, J. Supramolecular Deep Eutectic Solvents in Extraction Processes: A Review. Environ. Chem. Lett. 2024, 23, 41–65. [Google Scholar] [CrossRef]
- El Achkar, T.; Moufawad, T.; Ruellan, S.; Landy, D.; Greige-Gerges, H.; Fourmentin, S. Cyclodextrins: From Solute to Solvent. Chem Commun Camb 2020, 56, 3385–3388. [Google Scholar] [CrossRef]
- Morrison, H.G.; Sun, C.C.; Neervannan, S. Characterization of Thermal Behavior of Deep Eutectic Solvents and Their Potential as Drug Solubilization Vehicles. Int. J. Pharm. 2009, 378, 136–139. [Google Scholar] [CrossRef]
- Singh, B.S.; Lobo, H.R.; Shankarling, G.S. Choline Chloride Based Eutectic Solvents: Magical Catalytic System for Carbon–Carbon Bond Formation in the Rapid Synthesis of β-Hydroxy Functionalized Derivatives. Catal. Commun. 2012, 24, 70–74. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, L.; Ren, J.; He, B. Effect of Ternary Deep Eutectic Solvents on Bagasse Cellulose and Lignin Structure in Low-Temperature Pretreatment. Processes 2022, 10, 778. [Google Scholar] [CrossRef]
- Hsu, Y.-H.; Leron, R.B.; Li, M.-H. Solubility of Carbon Dioxide in Aqueous Mixtures of (Reline + Monoethanolamine) at T = (3132 to 3532) K. J. Chem. Thermodyn. 2014, 72, 94–99. [Google Scholar] [CrossRef]
- Shuwa, S.M.; Jibril, B.Y.; Al-Wahaibi, Y.M.; Al-Hajri, R.S. Heavy-Oil-Recovery Enhancement With Choline Chloride/Ethylene Glycol-Based Deep Eutectic Solvent. SPE J. 2015, 20, 79–87. [Google Scholar] [CrossRef]
- Jafari, K.; Fatemi, M.H.; Estellé, P. Deep Eutectic Solvents (DESs): A Short Overview of the Thermophysical Properties and Current Use as Base Fluid for Heat Transfer Nanofluids. J. Mol. Liq. 2021, 321, 114752. [Google Scholar] [CrossRef]
- Singh, B.; Lobo, H.; Shankarling, G. Selective N-Alkylation of Aromatic Primary Amines Catalyzed by Bio-Catalyst or Deep Eutectic Solvent. Catal. Lett. 2011, 141, 178–182. [Google Scholar] [CrossRef]
- García, G.; Aparicio, S.; Ullah, R.; Atilhan, M. Deep Eutectic Solvents: Physicochemical Properties and Gas Separation Applications. Energy Fuels 2015, 29, 2616–2644. [Google Scholar] [CrossRef]
- Fatemeh Saadat, G.B. Ionic Liquids and Deep Eutectic Solvents and Their Potential Use in Production of Sodium. Ph.D. Thesis, University of Malaya, Kuala Lumpur, Malaysia, 2014. [Google Scholar]
- Wagle, D.V.; Zhao, H.; Baker, G.A. Deep Eutectic Solvents: Sustainable Media for Nanoscale and Functional Materials. Acc. Chem. Res. 2014, 47, 2299–2308. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Row, K.H. Recent Developments in Deep Eutectic Solvents in Chemical Sciences. Monatshefte Für Chem.—Chem. Mon. 2013, 144, 1427–1454. [Google Scholar] [CrossRef]
- Choi, Y.H.; van Spronsen, J.; Dai, Y.; Verberne, M.; Hollmann, F.; Arends, I.W.C.E.; Witkamp, G.-J.; Verpoorte, R. Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology? Plant Physiol. 2011, 156, 1701–1705. [Google Scholar] [CrossRef]
- Zhao, H.; Baker, G.A. Ionic Liquids and Deep Eutectic Solvents for Biodiesel Synthesis: A Review. J. Chem. Technol. Biotechnol. 2013, 88, 3–12. [Google Scholar] [CrossRef]
- Pätzold, M.; Siebenhaller, S.; Kara, S.; Liese, A.; Syldatk, C.; Holtmann, D. Deep Eutectic Solvents as Efficient Solvents in Biocatalysis. Trends Biotechnol. 2019, 37, 943–959. [Google Scholar] [CrossRef]
- Abo-Hamad, A.; Hayyan, M.; AlSaadi, M.A.; Hashim, M.A. Potential Applications of Deep Eutectic Solvents in Nanotechnology. Chem. Eng. J. 2015, 273, 551–567. [Google Scholar] [CrossRef]
- Shanab, K.; Neudorfer, C.; Schirmer, E.; Spreitzer, H. Green Solvents in Organic Synthesis: An Overview. Curr. Org. Chem. 2013, 17, 1179–1187. [Google Scholar] [CrossRef]
- Tahere, K.; Mehrorang, G.; Sonia, B.; Ali, D.; Mustafa, S. Deep Eutectic Solvent in Separation and Preconcentration of Organic and Inorganic Species. In New Generation Green Solvents for Separation and Preconcentration of Organic and Inorganic Species; Elsevier: Amsterdam, The Netherlands, 2020; pp. 381–423. ISBN 978-0-12-818570-4. [Google Scholar]
- Mohsenzadeh, A.; Al-Wahaibi, Y.; Jibril, A.; Al-Hajri, R.; Shuwa, S. The Novel Use of Deep Eutectic Solvents for Enhancing Heavy Oil Recovery. J. Pet. Sci. Eng. 2015, 130, 6–15. [Google Scholar] [CrossRef]
- Chen, Y.; Han, X.; Liu, Z.; Yu, D.; Guo, W.; Mu, T. Capture of Toxic Gases by Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2020, 8, 5410–5430. [Google Scholar] [CrossRef]
- Loow, Y.-L.; New, E.K.; Yang, G.H.; Ang, L.Y.; Foo, L.Y.W.; Wu, T.Y. Potential Use of Deep Eutectic Solvents to Facilitate Lignocellulosic Biomass Utilization and Conversion. Cellulose 2017, 24, 3591–3618. [Google Scholar] [CrossRef]
- Alam, M.A.; Muhammad, G.; Khan, M.N.; Mofijur, M.; Lv, Y.; Xiong, W.; Xu, J. Choline Chloride-Based Deep Eutectic Solvents as Green Extractants for the Isolation of Phenolic Compounds from Biomass. J. Clean. Prod. 2021, 309, 127445. [Google Scholar] [CrossRef]
- Kalhor, P.; Ghandi, K. Deep Eutectic Solvents as Catalysts for Upgrading Biomass. Catalysts 2021, 11, 178. [Google Scholar] [CrossRef]
- Naik, P.K.; Kumar, N.; Paul, N.; Banerjee, T. Deep Eutectic Solvents in Liquid–Liquid Extraction: Correlation and Molecular Dynamics Simulation, 1st ed.; CRC Press: Boca Raton, FL, USA, 2022; ISBN 978-1-003-23115-8. [Google Scholar]
- Cichowska-Kopczyńska, I.; Nowosielski, B.; Warmińska, D. Deep Eutectic Solvents: Properties and Applications in CO2 Separation. Molecules 2023, 28, 5293. [Google Scholar] [CrossRef]
- Bajpai, P. Comparison of Deep Eutectic Solvents and Ionic Liquids. In Deep Eutectic Solvents for Pretreatment of Lignocellulosic Biomass; Bajpai, P., Ed.; Springer: Singapore, 2021; pp. 81–87. ISBN 978-981-16-4013-1. [Google Scholar]
- Płotka-Wasylka, J.; de la Guardia, M.; Andruch, V.; Vilková, M. Deep Eutectic Solvents vs. Ionic Liquids: Similarities and Differences. Microchem. J. 2020, 159, 105539. [Google Scholar] [CrossRef]
- Jeong, K.M.; Lee, M.S.; Nam, M.W.; Zhao, J.; Jin, Y.; Lee, D.-K.; Kwon, S.W.; Jeong, J.H.; Lee, J. Tailoring and Recycling of Deep Eutectic Solvents as Sustainable and Efficient Extraction Media. J. Chromatogr. A 2015, 1424, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Juneidi, I.; Hayyan, M.; Hashim, M.A. Evaluation of Toxicity and Biodegradability for Cholinium-Based Deep Eutectic Solvents. RSC Adv. 2015, 5, 83636–83647. [Google Scholar] [CrossRef]
- Delgado-Mellado, N.; Larriba, M.; Navarro, P.; Rigual, V.; Ayuso, M.; García, J.; Rodríguez, F. Thermal Stability of Choline Chloride Deep Eutectic Solvents by TGA/FTIR-ATR Analysis. J. Mol. Liq. 2018, 260, 37–43. [Google Scholar] [CrossRef]
- Elsevier Scopus. Scopus Database. Available online: https://www.scopus.com (accessed on 25 May 2025).
- Biczak, R.; Pawłowska, B.; Bałczewski, P.; Rychter, P. The Role of the Anion in the Toxicity of Imidazolium Ionic Liquids. J. Hazard. Mater. 2014, 274, 181–190. [Google Scholar] [CrossRef]
- Chen, L.; Sharifzadeh, M.; Mac Dowell, N.; Welton, T.; Shah, N.; Hallett, J.P. Inexpensive Ionic Liquids: [HSO4]−-Based Solvent Production at Bulk Scale. Green Chem. 2014, 16, 3098–3106. [Google Scholar] [CrossRef]
- Fox, D.M.; Gilman, J.W.; Morgan, A.B.; Shields, J.R.; Maupin, P.H.; Lyon, R.E.; Long, H.C.D.; Trulove, P.C. Flammability and Thermal Analysis Characterization of Imidazolium-Based Ionic Liquids. Ind. Eng. Chem. Res. 2006, 47, 6327–6332. [Google Scholar] [CrossRef]
- Maton, C.; De Vos, N.; Stevens, C.V. Ionic Liquid Thermal Stabilities: Decomposition Mechanisms and Analysis Tools. Chem. Soc. Rev. 2013, 42, 5963–5977. [Google Scholar] [CrossRef]
- Meine, N.; Benedito, F.; Rinaldi, R. Thermal Stability of Ionic Liquids Assessed by Potentiometric Titration. Green Chem. 2010, 12, 1711–1714. [Google Scholar] [CrossRef]
- Smiglak, M.; Reichert, W.M.; Holbrey, J.D.; Wilkes, J.S.; Sun, L.; Thrasher, J.S.; Kirichenko, K.; Singh, S.; Katritzky, A.R.; Rogers, R.D. Combustible Ionic Liquids by Design: Is Laboratory Safety Another Ionic Liquid Myth? Chem. Commun. 2006, 24, 2554–2556. [Google Scholar] [CrossRef]
- Crespo, E.A.; Silva, L.P.; Martins, M.A.R.; Fernandez, L.; Ortega, J.; Ferreira, O.; Sadowski, G.; Held, C.; Pinho, S.P.; Coutinho, J.A.P. Characterization and Modeling of the Liquid Phase of Deep Eutectic Solvents Based on Fatty Acids/Alcohols and Choline Chloride. Ind. Eng. Chem. Res. 2017, 56, 12192–12202. [Google Scholar] [CrossRef]
- Rodriguez, N.R.; van den Bruinhorst, A.; Kollau, L.J.B.M.; Kroon, M.C.; Binnemans, K. Degradation of Deep-Eutectic Solvents Based on Choline Chloride and Carboxylic Acids. ACS Sustain. Chem. Eng. 2019, 7, 11521–11528. [Google Scholar] [CrossRef]
- Florindo, C.; Oliveira, F.S.; Rebelo, L.P.N.; Fernandes, A.M.C.; Marrucho, I.M. Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids. ACS Sustain. Chem. Eng. 2014, 2, 2416–2425. [Google Scholar] [CrossRef]
- Shah, P.A.; Chavda, V.; Hirpara, D.; Sharma, V.S.; Shrivastav, P.S.; Kumar, S. Exploring the Potential of Deep Eutectic Solvents in Pharmaceuticals: Challenges and Opportunities. J. Mol. Liq. 2023, 390, 123171. [Google Scholar] [CrossRef]
- Sun, J.; Sato, Y.; Sakai, Y.; Kansha, Y. Ternary Deep Eutectic Solvents: Evaluations Based on How Their Physical Properties Affect Energy Consumption during Post-Combustion CO2 Capture. Energy 2023, 270, 126901. [Google Scholar] [CrossRef]
- Alotaibi, M.A.; Malik, T.; Naeem, A.; Khan, A.S.; Din, I.U.; Shaharun, M.S. Exploring the Dynamic World of Ternary Deep Eutectic Solvents: Synthesis, Characterization, and Key Properties Unveiled. Heliyon 2024, 10, e40521. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Sun, P.; Ma, Q.; Su, H.; Leung, P.; Yang, W.; Xu, Q. Rationally Designed Ternary Deep Eutectic Solvent Enabling Higher Performance for Non-Aqueous Redox Flow Batteries. Processes 2022, 10, 649. [Google Scholar] [CrossRef]
- Ci, Y.; Yu, F.; Zhou, C.; Mo, H.; Li, Z.; Ma, Y.; Zang, L. New Ternary Deep Eutectic Solvents for Effective Wheat Straw Deconstruction into Its High-Value Utilization under near-Neutral Conditions. Green Chem. 2020, 22, 8713–8720. [Google Scholar] [CrossRef]
- Liu, Y.-T.; Chen, Y.-A.; Xing, Y.-J. Synthesis and Characterization of Novel Ternary Deep Eutectic Solvents. Chin. Chem. Lett. 2014, 25, 104–106. [Google Scholar] [CrossRef]
- Carriazo, D.; Gutiérrez, M.C.; Ferrer, M.L.; del Monte, F. Resorcinol-Based Deep Eutectic Solvents as Both Carbonaceous Precursors and Templating Agents in the Synthesis of Hierarchical Porous Carbon Monoliths. Chem. Mater. 2010, 22, 6146–6152. [Google Scholar] [CrossRef]
- Kadhom, M.A.; Abdullah, G.H.; Al-Bayati, N. Studying Two Series of Ternary Deep Eutectic Solvents (Choline Chloride–Urea–Glycerol) and (Choline Chloride–Malic Acid–Glycerol), Synthesis and Characterizations. Arab. J. Sci. Eng. 2017, 42, 1579–1589. [Google Scholar] [CrossRef]
- Jablonsky, M.; Majova, V.; Ondrigova, K.; Sima, J. Preparation and Characterization of Physicochemical Properties and Application of Novel Ternary Deep Eutectic Solvents. Cellulose 2019, 26, 3031–3045. [Google Scholar] [CrossRef]
- Liu, P.; Pedersen, C.M.; Zhang, J.; Liu, R.; Zhang, Z.; Hou, X.; Wang, Y. Ternary Deep Eutectic Solvents Catalyzed D-Glucosamine Self-Condensation to Deoxyfructosazine: NMR Study. Green Energy Environ. 2021, 6, 261–270. [Google Scholar] [CrossRef]
- Sze, L.L.; Pandey, S.; Ravula, S.; Pandey, S.; Zhao, H.; Baker, G.A.; Baker, S.N. Ternary Deep Eutectic Solvents Tasked for Carbon Dioxide Capture. ACS Sustain. Chem. Eng. 2014, 2, 2117–2123. [Google Scholar] [CrossRef]
- Rashid, S.N.; Hayyan, A.; Hayyan, M.; Hashim, M.A.; Elgharbawy, A.A.M.; Sani, F.S.; Basirun, W.J.; Lee, V.S.; Alias, Y.; Mohammed, A.K.; et al. Ternary Glycerol-Based Deep Eutectic Solvents: Physicochemical Properties and Enzymatic Activity. Chem. Eng. Res. Des. 2021, 169, 77–85. [Google Scholar] [CrossRef]
- Ghazali, Z.; Suhaili, N.; Tahari, M.N.A.; Yarmo, M.A.; Hassan, N.H.; Othaman, R. Impregnating Deep Eutectic Solvent Choline Chloride:Urea:Polyethyleneimine onto Mesoporous Silica Gel for Carbon Dioxide Capture. J. Mater. Res. Technol. 2020, 9, 3249–3260. [Google Scholar] [CrossRef]
- Ee, L.Y.; Tan, Y.K.; Miao, J.; Chu, H.T.; Li, S.F.Y. High-Purity Lignin from Selective Biomass Fractionation with Ternary Deep Eutectic Solvents. Green Chem. 2023, 25, 3137–3151. [Google Scholar] [CrossRef]
- Narayanan, K.; Venkatachalam, P.; Panakkal, E.J.; Tantayotai, P.; Tandhanskul, A.; Selvasembian, R.; Chuetor, S.; Sriariyanun, M. Exploring Ternary Deep Eutectic Solvent Pretreatment in a One-Pot Process with Napier Grass for Bioethanol Production. BioEnergy Res. 2024, 17, 2213–2225. [Google Scholar] [CrossRef]
- Mohsenzadeh, A.; Al-Wahaibi, Y.; Al-Hajri, R.; Jibril, B.; Mosavat, N. Sequential Deep Eutectic Solvent and Steam Injection for Enhanced Heavy Oil Recovery and In-Situ Upgrading. Fuel 2017, 187, 417–428. [Google Scholar] [CrossRef]
- Huang, J.; Li, Y.; Zhang, R.; Wang, L.; Bao, M.; Yu, X. Ternary Deep Eutectic Solvents for Esterification of 2-Methylpropenoic Acid with Alcohols. Org. Biomol. Chem. 2024, 22, 7951–7955. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhou, H.; He, X.; Shen, F.; Xu, Z.; Yang, B.; Kong, L.; Dai, L. Emerging Applications of Deep Eutectic Solvents in the Preparation and Functionalization of Biomass-Derived Carbonaceous Materials: Challenges and Prospects. Green Chem. 2024, 26, 8123–8144. [Google Scholar] [CrossRef]
- Sun, S.; Sun, H.; Williams, P.T.; Wu, C. Recent Advances in Integrated CO2 Capture and Utilization: A Review. Sustain. Energy Fuels 2021, 5, 4546–4559. [Google Scholar] [CrossRef]
- Tomé, L.I.N.; Baião, V.; da Silva, W.; Brett, C.M.A. Deep Eutectic Solvents for the Production and Application of New Materials. Appl. Mater. Today 2018, 10, 30–50. [Google Scholar] [CrossRef]
- Sugiarto, S.; Aloka Weerasinghe, U.; Kinyanjui Muiruri, J.; Yu Qing Chai, A.; Chee Chuan Yeo, J.; Wang, G.; Zhu, Q.; Jun Loh, X.; Li, Z.; Kai, D. Nanomaterial Synthesis in Deep Eutectic Solvents. Chem. Eng. J. 2024, 499, 156177. [Google Scholar] [CrossRef]
- Omar, K.A.; Sadeghi, R. Physicochemical Properties of Deep Eutectic Solvents: A Review. J. Mol. Liq. 2022, 360, 119524. [Google Scholar] [CrossRef]
- Omar, K.A.; Sadeghi, R. Novel Diglycolic Acid-Based Deep Eutectic Solvents and Their Applications as a Rust Remover. J. Mol. Liq. 2020, 312, 1–27. [Google Scholar] [CrossRef]
- Wei, J.; Hao, J.; Hongping, L.; Linhua, Z.; Runming, T.; Wenshuai, Z.; Huaming, L.; Sheng, D. Boric Acid-Based Ternary Deep Eutectic Solvent for Extraction and Oxidative Desulfurization of Diesel Fuel. Green Chem. 2019, 18, 1839–1854. [Google Scholar] [CrossRef]
- Manurung, R.; Syahputra, A.; Alhamdi, M.A. Purification of Palm Biodiesel Using Deep Eutectic Solvent (DES) Based Choline Chloride (ChCl) and 1,2-Propanediol (C3H8O2). J. Phys. Conf. Ser. 2018, 1028, 012032. [Google Scholar] [CrossRef]
- Larriba, M.; Ayuso, M.; Navarro, P.; Delgado-Mellado, N.; Gonzalez-Miquel, M.; García, J.; Rodríguez, F. Choline Chloride-Based Deep Eutectic Solvents in the Dearomatization of Gasolines. ACS Sustain. Chem. Eng. 2018, 6, 1039–1047. [Google Scholar] [CrossRef]
- Rosoiu, S.P. Electrodeposition of Nickel and Tin Based Alloys from Deep Eutectic Solvents for Electronic Applications. Ph.D. Thesis, University Politehnica of Bucharest, Bucharest, Romania, 2021. [Google Scholar]
- Haq, I.U.; Lal, B.; Zaini, D. Deep Eutectic Solvents Feasibility in Oil and Gas Processing Field for Contaminated CO2 Control. preprints.org 2020. [Google Scholar] [CrossRef]
- Fourmentin, S.; Costa Gomes, M.; Lichtfouse, E. (Eds.) Deep Eutectic Solvents for Medicine, Gas Solubilization and Extraction of Natural Substances; Environmental Chemistry for a Sustainable World; Springer International Publishing: Cham, Switzerland, 2021; Volume 56, ISBN 978-3-030-53068-6. [Google Scholar]
- Elise, E.A.; Coquelet, C. Physicochemical Properties of Gas. In Gases in Agro-Food Processes; Academic Press: Cambridge, MA, USA, 2019; pp. 13–41. ISBN 978-0-12-812465-9. [Google Scholar]
- Zheng, L. Investigation of Deep Eutectic Solvents and Their Derivatives for Pharmaceutical Applications. Master’s Thesis, University of Toronto, Toronto, ON, Canada, 2015. [Google Scholar]
- Abad-Gil, L.; Procopio, J.R.; Brett, C.M.A. Binary and Ternary Deep Eutectic Solvent Mixtures: Influence on Methylene Blue Electropolymerisation. Electrochem. Commun. 2021, 124, 106967. [Google Scholar] [CrossRef]
- Lee, J.-S. Deep Eutectic Solvents as Versatile Media for the Synthesis of Noble Metal Nanomaterials. Nanotechnol. Rev. 2017, 6, 271–278. [Google Scholar] [CrossRef]
- McGaughy, K.; Reza, M.T. Liquid-Liquid Equilibrium of Deep Eutectic Solvent-Aromatic-Aliphatic Ternary Systems: Experimental Study with COSMO Model Predictions. Processes 2021, 9, 1169. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Msahel, A.; Galiano, F.; Serocki, M.; Ryl, J.; Hamouda, S.B.; Hafiane, A.; Boczkaj, G.; Figoli, A. Towards Azeotropic MeOH-MTBE Separation Using Pervaporation Chitosan-Based Deep Eutectic Solvent Membranes. Sep. Purif. Technol. 2022, 281, 119979. [Google Scholar] [CrossRef]
- Li, X.; Row, K.H. Application of Novel Ternary Deep Eutectic Solvents as a Functional Monomer in Molecularly Imprinted Polymers for Purification of Levofloxacin. J. Chromatogr. B 2017, 1068, 56–63. [Google Scholar] [CrossRef]
- Shah, P.A.; Chavda, V.; Hirpara, D.; Pokar, R.; Kumar, S.; Shrivastav, P.S. Advances in Deep Eutectic Solvent-Based Synthesis of Nanomaterials for Environmental Remediation. J. Mol. Liq. 2024, 416, 126482. [Google Scholar] [CrossRef]
- Al-Farsi, R.; Hayyan, M. Paving the Way for Advancement of Renewable Energy Technologies Using Deep Eutectic Solvents: A Review. Renew. Sustain. Energy Rev. 2023, 184, 113505. [Google Scholar] [CrossRef]
- Boldrini, C.L.; Quivelli, A.F.; Manfredi, N.; Capriati, V.; Abbotto, A. Deep Eutectic Solvents in Solar Energy Technologies. Molecules 2022, 27, 709. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, M.R. The Roles of Deep Eutectic Solvents in Batteries for Sustainable Energy Storage. Sustain. Chem. Eng. 2024, 6, 1–10. [Google Scholar] [CrossRef]
- Kityk, A.; Pavlik, V.; Hnatko, M. Breaking Barriers in Electrodeposition: Novel Eco-Friendly Approach Based on Utilization of Deep Eutectic Solvents. Adv. Colloid Interface Sci. 2024, 334, 103310. [Google Scholar] [CrossRef] [PubMed]
- Domingues, L.; Duarte, A.R.C.; Jesus, A.R. How Can Deep Eutectic Systems Promote Greener Processes in Medicinal Chemistry and Drug Discovery? Pharmaceuticals 2024, 17, 221. [Google Scholar] [CrossRef]
- Codera, V.; Clijnk, D.; Pou, J.O.; Fernandez-Garcia, J.; Llovell, F.; Gonzalez-Olmos, R. Process Design for the Recovery of Waste Refrigerants Using Deep Eutectic Solvents. J. Environ. Chem. Eng. 2023, 11, 110255. [Google Scholar] [CrossRef]
- Clijnk, D.; Codera, V.; Pou, J.O.; Fernandez-Garcia, J.; Gonzalez-Olmos, R. Enhancing Circular Economy of Waste Refrigerants Management Using Deep Eutectic Solvents. Sustain. Mater. Technol. 2024, 41, e01062. [Google Scholar] [CrossRef]
- Zuo, Z.; Cao, M.; Mu, W.; Jovein, I.B.; Held, C.; Chen, B.; Yu, G. Selective Absorption of Fluorinated Gases by Deep Eutectic Solvents: Thermodynamics and Molecular Insights. Sep. Purif. Technol. 2025, 364, 132342. [Google Scholar] [CrossRef]
- AlOmar, M.K.; Hayyan, M.; Alsaadi, M.A.; Akib, S.; Hayyan, A.; Hashim, M.A. Glycerol-Based Deep Eutectic Solvents: Physical Properties. J. Mol. Liq. 2016, 215, 98–103. [Google Scholar] [CrossRef]
- Smith, P.J.; Arroyo, C.B.; Lopez Hernandez, F.; Goeltz, J.C. Ternary Deep Eutectic Solvent Behavior of Water and Urea–Choline Chloride Mixtures. J. Phys. Chem. B 2019, 123, 5302–5306. [Google Scholar] [CrossRef]
- Craveiro, R.; Aroso, I.; Flammia, V.; Carvalho, T.; Viciosa, M.T.; Dionísio, M.; Barreiros, S.; Reis, R.L.; Duarte, A.R.C.; Paiva, A. Properties and Thermal Behavior of Natural Deep Eutectic Solvents. J. Mol. Liq. 2016, 215, 534–540. [Google Scholar] [CrossRef]
- Jangir, A.K.; Patel, D.; More, R.; Parmar, A.; Kuperkar, K. New Insight into Experimental and Computational Studies of Choline Chloride-Based ‘Green’ Ternary Deep Eutectic Solvent (TDES). J. Mol. Struct. 2019, 1181, 295–299. [Google Scholar] [CrossRef]
- Usman, M.A.; Fagoroye, O.K.; Ajayi, T.O.; Kehinde, A.J. Ternary Liquid–Liquid Equilibrium Data for n-Hexane-Benzene-DES (Choline Chloride/Ethylene Glycol, Choline Chloride/Glycerol, Choline Chloride/Urea) at 303 K and 101.3 kPa. Appl. Petrochem. Res. 2020, 10, 125–137. [Google Scholar] [CrossRef]
- Abbott, A.P. Application of Hole Theory to the Viscosity of Ionic and Molecular Liquids. ChemPhysChem 2004, 5, 1242–1246. [Google Scholar] [CrossRef]
- Alcalde, R.; Atilhan, M.; Aparicio, S. On the Properties of (Choline Chloride + lactic Acid) Deep Eutectic Solvent with Methanol Mixtures. J. Mol. Liq. 2018, 272, 815–820. [Google Scholar] [CrossRef]
- Omar, K.A.; Sadeghi, R. Database of Deep Eutectic Solvents and Their Physical Properties: A Review. J. Mol. Liq. 2023, 384, 121899. [Google Scholar] [CrossRef]
- Mjalli, F.S.; Ahmed, O.U. Characteristics and Intermolecular Interaction of Eutectic Binary Mixtures: Reline and Glyceline. Korean J. Chem. Eng. 2016, 33, 337–343. [Google Scholar] [CrossRef]
- Skulcova, A.; Russ, A.; Jablonsky, M.; Sima, J. The pH Behavior of Seventeen Deep Eutectic Solvents. BioResources 2018, 13, 5042–5051. [Google Scholar] [CrossRef]
- Al-Wahaibi, I.; Al-Wahaibi, Y.; Al-Hajri, R.; Jibril, B.; Shuwa, S. The Novel Use of Malonic Acid-Based Deep Eutectic Solvents for Enhancing Heavy Oil Recovery. Int. J. Oil Gas Coal Technol. 2019, 20, 31–54. [Google Scholar] [CrossRef]
- Klein, J.M.; Squire, H.; Dean, W.; Gurkan, B.E. From Salt in Solution to Solely Ions: Solvation of Methyl Viologen in Deep Eutectic Solvents and Ionic Liquids. J. Phys. Chem. B 2020, 124, 6348–6357. [Google Scholar] [CrossRef]
- Li, X.; Row, K.H. Development of Deep Eutectic Solvents Applied in Extraction and Separation. J. Sep. Science 2016, 39, 3505–3520. [Google Scholar] [CrossRef]
- Abbott, A.P.; Harris, R.C.; Ryder, K.S.; D’Agostino, C.; Gladden, L.F.; Mantle, M.D. Glycerol Eutectics as Sustainable Solvent Systems. Green Chem. 2011, 13, 82–90. [Google Scholar] [CrossRef]
- Abbott, A.P.; Harris, R.C.; Ryder, K.S. Application of Hole Theory to Define Ionic Liquids by Their Transport Properties. J. Phys. Chem. B 2007, 111, 4910–4913. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Li, C.; Yin, J.; Li, S.; Jia, Y.; Bao, M. Design, Synthesis and Properties of Acidic Deep Eutectic Solvents Based on Choline Chloride. J. Mol. Liq. 2017, 236, 338–343. [Google Scholar] [CrossRef]
- El Achkar, T.; Greige-Gerges, H.; Fourmentin, S. Understanding the Basics and Properties of Deep Eutectic Solvents. In Deep Eutectic Solvents for Medicine, Gas Solubilization and Extraction of Natural Substances; Fourmentin, S., Costa Gomes, M., Lichtfouse, E., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–40. ISBN 978-3-030-53069-3. [Google Scholar]
- Santana, A.P.R.; Mora-Vargas, J.A.; Guimarães, T.G.S.; Amaral, C.D.B.; Oliveira, A.; Gonzalez, M.H. Sustainable Synthesis of Natural Deep Eutectic Solvents (NADES) by Different Methods. J. Mol. Liq. 2019, 293, 111452. [Google Scholar] [CrossRef]
- Yeow, A.T.H.; Hayyan, A.; Hayyan, M.; Usman Mohd Junaidi, M.; Saleh, J.; Jefrey Basirun, W.; Roslan Mohd Nor, M.; Al Abdulmonem, W.; Zulhaziman, M.; Salleh, M.; et al. A Comprehensive Review on the Physicochemical Properties of Deep Eutectic Solvents. Results Chem. 2024, 7, 101378. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, X.; Liu, Y.; Wu, K.; Zhu, Y.; Lu, H.; Liang, B. Insights into the Relationships between Physicochemical Properties, Solvent Performance, and Applications of Deep Eutectic Solvents. Environ. Sci. Pollut. Res. 2021, 28, 35537–35563. [Google Scholar] [CrossRef]
- D’Agostino, C.; Harris, R.C.; Abbott, A.P.; Gladden, L.F.; Mantle, M.D. Molecular Motion and Ion Diffusion in Choline Chloride Based Deep Eutectic Solvents Studied by 1H Pulsed Field Gradient NMR Spectroscopy. Phys. Chem. Chem. Phys. 2011, 13, 21383–21391. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Gray, S. Design of Improved Deep Eutectic Solvents Using Hole Theory. ChemPhysChem 2006, 7, 803–806. [Google Scholar] [CrossRef]
- Yadav, A.; Pandey, S. Densities and Viscosities of (Choline Chloride + Urea) Deep Eutectic Solvent and Its Aqueous Mixtures in the Temperature Range 293.15 K to 363.15 K. J. Chem. Eng. Data 2014, 59, 2221–2229. [Google Scholar] [CrossRef]
- Ibrahim, R.K.; Hayyan, M.; AlSaadi, M.A.; Ibrahim, S.; Hayyan, A.; Hashim, M.A. Physical Properties of Ethylene Glycol-Based Deep Eutectic Solvents. J. Mol. Liq. 2019, 276, 794–800. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, X.; Tang, S.; Wu, K.; Wang, B.; Liu, Y.; Zhu, Y.; Lu, H.; Liang, B. Structure–Properties Relationships of Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Experimental and Computational Study. J. Mol. Struct. 2023, 1273, 134283. [Google Scholar] [CrossRef]
- Al-Dawsari, J.N.; Bessadok-Jemai, A.; Wazeer, I.; Mokraoui, S.; AlMansour, M.A.; Hadj-Kali, M.K. Fitting of Experimental Viscosity to Temperature Data for Deep Eutectic Solvents. J. Mol. Liq. 2020, 310, 113127. [Google Scholar] [CrossRef]
- Bouarab, A.F.; Harvey, J.-P.; Robelin, C. Viscosity Models for Ionic Liquids and Their Mixtures. Phys. Chem. Chem. Phys. 2021, 23, 733–752. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Tailoring Properties of Natural Deep Eutectic Solvents with Water to Facilitate Their Applications. Food Chem. 2015, 187, 14–19. [Google Scholar] [CrossRef]
- Shah, D.; Mjalli, F.S. Effect of Water on the Thermo-Physical Properties of Reline: An Experimental and Molecular Simulation Based Approach. Phys. Chem. Chem. Phys. 2014, 16, 23900–23907. [Google Scholar] [CrossRef]
- Du, C.; Zhao, B.; Chen, X.-B.; Birbilis, N.; Yang, H. Effect of Water Presence on Choline Chloride-2urea Ionic Liquid and Coating Platings from the Hydrated Ionic Liquid. Sci. Rep. 2016, 6, 29225. [Google Scholar] [CrossRef]
- El Achkar, T.; Fourmentin, S.; Greige-Gerges, H. Deep Eutectic Solvents: An Overview on Their Interactions with Water and Biochemical Compounds. J. Mol. Liq. 2019, 288, 111028. [Google Scholar] [CrossRef]
- Meng, X.; Ballerat-Busserolles, K.; Husson, P.; Andanson, J.-M. Impact of Water on the Melting Temperature of Urea + Choline Chloride Deep Eutectic Solvent. New J. Chem. 2016, 40, 4492–4499. [Google Scholar] [CrossRef]
- Barzinjy, A.; Zankana, M. A Novel Application of the Quartz Crystal Microbalance for Determining the Rheological Properties of the Highly Viscous Liquids. Acta Phys. Pol. A 2016, 130, 239–244. [Google Scholar] [CrossRef]
- Calvo-Flores, F.G. Lignin: A Renewable Raw Material. In Encyclopedia of Renewable and Sustainable Materials; Hashmi, S., Choudhury, I.A., Eds.; Elsevier: Oxford, UK, 2020; pp. 102–118. ISBN 978-0-12-813196-1. [Google Scholar]
- Majová, V.; Jablonský, M.; Lelovský, M. Delignification of Unbleached Pulp by Ternary Deep Eutectic Solvents. Green Process. Synth. 2021, 10, 666–676. [Google Scholar] [CrossRef]
- Chourasia, V.R.; Bisht, M.; Pant, K.K.; Henry, R.J. Unveiling the Potential of Water as a Co-Solvent in Microwave-Assisted Delignification of Sugarcane Bagasse Using Ternary Deep Eutectic Solvents. Bioresour. Technol. 2022, 351, 127005. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.-J.; Han, X.; Chang, Y.-H.; Xu, J.; Yue, G.-L.; Zhang, Y.; Fu, Y.-J. A Novel Ternary Deep Eutectic Solvent Pretreatment for the Efficient Separation and Conversion of High-Quality Gutta-Percha, Value-Added Lignin and Monosaccharide from Eucommia Ulmoides Seed Shells. Bioresour. Technol. 2023, 370, 128570. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Zhang, C.; Zhang, C.; Xue, Z.; Zheng, Y.; Guo, L. Green Extraction of Phenolic Acids from Artemisia Argyi Leaves by Tailor-Made Ternary Deep Eutectic Solvents. Molecules 2019, 24, 2842. [Google Scholar] [CrossRef]
- Chemat, F.; Anjum, H.; Shariff, A.M.; Kumar, P.; Murugesan, T. Thermal and Physical Properties of (Choline Chloride + Urea +l-Arginine) Deep Eutectic Solvents. J. Mol. Liq. 2016, 218, 301–308. [Google Scholar] [CrossRef]
- Zhao, J.; Pedersen, C.M.; Chang, H.; Hou, X.; Wang, Y.; Qiao, Y. Switchable Product Selectivity in Dehydration of N-Acetyl-d-Glucosamine Promoted by Choline Chloride-Based Deep Eutectic Solvents. iScience 2023, 26, 106980. [Google Scholar] [CrossRef]
- Li, R.; Shi, G.; Chen, L.; Liu, Y. Polysaccharides Extraction from Ganoderma Lucidum Using a Ternary Deep Eutectic Solvents of Choline Chloride/Guaiacol/Lactic Acid. Int. J. Biol. Macromol. 2024, 263, 130263. [Google Scholar] [CrossRef]
- Hu, H.-C.; Liu, Y.-H.; Li, B.-L.; Cui, Z.-S.; Zhang, Z.-H. Deep Eutectic Solvent Based on Choline Chloride and Malonic Acid as an Efficient and Reusable Catalytic System for One-Pot Synthesis of Functionalized Pyrroles. RSC Adv. 2015, 5, 7720–7728. [Google Scholar] [CrossRef]
- Castro, P.J.; Redondo, A.E.; Sosa, J.E.; Zakrzewska, M.E.; Nunes, A.V.M.; Araújo, J.M.M.; Pereiro, A.B. Absorption of Fluorinated Greenhouse Gases in Deep Eutectic Solvents. Ind. Eng. Chem. Res. 2020, 59, 13246–13259. [Google Scholar] [CrossRef]
- Nowosielski, B.; Warmińska, D.; Cichowska-Kopczyńska, I. CO2 Separation Using Supported Deep Eutectic Liquid Membranes Based on 1,2-Propanediol. ACS Sustain. Chem. Eng. 2023, 11, 4093–4105. [Google Scholar] [CrossRef]
- Chen, Z.; Jacoby, W.A.; Wan, C. Ternary Deep Eutectic Solvents for Effective Biomass Deconstruction at High Solids and Low Enzyme Loadings. Bioresour. Technol. 2019, 279, 281–286. [Google Scholar] [CrossRef]
- Amesho, K.T.T.; Lin, Y.-C.; Mohan, S.V.; Halder, S.; Ponnusamy, V.K.; Jhang, S.-R. Deep Eutectic Solvents in the Transformation of Biomass into Biofuels and Fine Chemicals: A Review. Environ. Chem. Lett. 2023, 21, 183–230. [Google Scholar] [CrossRef]
- Lu, W.; Liu, S. Choline Chloride–Based Deep Eutectic Solvents (Ch-DESs) as Promising Green Solvents for Phenolic Compounds Extraction from Bioresources: State-of-the-Art, Prospects, and Challenges. Biomass Convers. Biorefinery 2022, 12, 2949–2962. [Google Scholar] [CrossRef]
- Sarmad, S.; Mikkola, J.-P.; Ji, X. Carbon Dioxide Capture with Ionic Liquids and Deep Eutectic Solvents: A New Generation of Sorbents. ChemSusChem 2017, 10, 324–352. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Xie, Y.; Zhang, Y.; Lu, X. CO2 Capture/Separation Using Choline Chloride-Based Ionic Liquids. In Proceedings of the International Conference on Properties and Phase Equilibria for Process and Product Design, Vancouver, BC, Canada, 26–30 May 2013; p. 13. [Google Scholar]
- Li, X.; Hou, M.; Han, B.; Wang, X.; Zou, L. Solubility of CO2 in a Choline Chloride + Urea Eutectic Mixture. J. Chem. Eng. Data 2008, 53, 548–550. [Google Scholar] [CrossRef]
- Maugeri, Z.; Pablo, D.d.M. Novel Choline-Chloride-Based Deep-Eutectic-Solvents with Renewable Hydrogen Bond Donors: Levulinic Acid and Sugar-Based Polyols. RSC Adv. 2012, 2, 421–425. [Google Scholar] [CrossRef]
- Ishaq, M.; Gilani, M.A.; Arshad, I.; Bilad, M.R.; Ahmad, F.; Khan, A.L. Synergy of High Permeability and Selectivity of Superbase/Choline Chloride/Urea Solution Impregnated Membranes for CO2 Capture. Carbon Capture Sci. Technol. 2021, 1, 100019. [Google Scholar] [CrossRef]
- Naqvi, S.A.A. Enhanced Oil Recovery of Heavy Oil by Using Thermal and Non-Thermal Methods. Master’s thesis, Dalhousie University Halifax, Halifax, NS, Canada, 2012. [Google Scholar]
- Meyer, R.F.; Attanasi, E.D. Heavy Oil and Natural Bitumen—Strategic Petroleum Resources; U.S. Geological Survey Fact Sheet 70-03; US Geological Survey: Reston, VA, USA, 2003. [Google Scholar]
- Tahir, S.; Qazi, U.Y.; Naseem, Z.; Tahir, N.; Zahid, M.; Javaid, R.; Shahid, I. Deep Eutectic Solvents as Alternative Green Solvents for the Efficient Desulfurization of Liquid Fuel: A Comprehensive Review. Fuel 2021, 305, 121502. [Google Scholar] [CrossRef]
- Fihri, A.; Mahfouz, R.; Shahrani, A.; Taie, I.; Alabedi, G. Pervaporative Desulfurization of Gasoline: A Review. Chem. Eng. Process.—Process Intensif. 2016, 107, 94–105. [Google Scholar] [CrossRef]
- Shang, H.; Du, W.; Liu, Z.; Zhang, H. Development of Microwave Induced Hydrodesulfurization of Petroleum Streams: A Review. J. Ind. Eng. Chem. 2013, 19, 1061–1068. [Google Scholar] [CrossRef]
- Almashjary, K.H.; Khalid, M.; Dharaskar, S.; Jagadish, P.R.; Walvekar, R.; Gupta, T.C.S.M. Optimisation of Extractive Desulfurization Using Choline Chloride-Based Deep Eutectic Solvents. Fuel 2018, 234, 1388–1400. [Google Scholar] [CrossRef]
- Shuwa, S.M.; Al-Hajri, R.S.; Jibril, B.Y.; Al-Waheibi, Y.M. Novel Deep Eutectic Solvent-Dissolved Molybdenum Oxide Catalyst for the Upgrading of Heavy Crude Oil. Ind. Eng. Chem. Res. 2015, 54, 3589–3601. [Google Scholar] [CrossRef]
- Sanati, A.; Rahmani, S.; Nikoo, A.H.; Malayeri, M.R.; Busse, O.; Weigand, J.J. Comparative Study of an Acidic Deep Eutectic Solvent and an Ionic Liquid as Chemical Agents for Enhanced Oil Recovery. J. Mol. Liq. 2021, 329, 115527. [Google Scholar] [CrossRef]
- Demirbek, M.G.; Rodriguez Reartes, S.B.; Llovell, F. Thermodynamic Analysis of the Absorption of Common Refrigerants in Fluorinated Deep Eutectic Solvents. Fluid Phase Equilibria 2024, 581, 114077. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Y.; Sun, X.; Wei, L.; Wei, L.; Zhai, S.; Xiao, Z.; An, Q.; Hao, J. Constructing Ternary Deep Eutectic Solvents with Multiple Sites for Ammonia Storage. Int. J. Hydrog. Energy 2022, 47, 34102–34111. [Google Scholar] [CrossRef]
- Finberg, E.A.; May, T.L.; Shiflett, M.B. Multicomponent Refrigerant Separation Using Extractive Distillation with Ionic Liquids. Ind. Eng. Chem. Res. 2022, 61, 9795–9812. [Google Scholar] [CrossRef]
- Finberg, E.A.; Cordry, M.; May, T.L.; Baca, K.R.; Shiflett, M.B. Ionic Liquid Selection for the Separation of Refrigerant Mixtures Using Extractive Distillation. Ind. Eng. Chem. Res. 2023, 62, 16070–16080. [Google Scholar] [CrossRef]
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; et al. Technologies and Perspectives for Achieving Carbon Neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef]
- Zhu, J.; Shao, H.; Feng, L.; Lu, Y.; Meng, H.; Li, C. Absorptive Separation of HCl Gas by Choline Chloride-Based Deep Eutectic Solvents. J. Mol. Liq. 2021, 341, 116928. [Google Scholar] [CrossRef]
- Li, R.; Chu, S.; Cui, C.; Jia, K.; Li, J. Study on Separation of Methanol and Dimethyl Carbonate Azeotropic System with Deep Eutectic Solvents. J. Mol. Liq. 2024, 399, 124301. [Google Scholar] [CrossRef]
- Yin, L.; Hu, Y.; Li, Y.; Jiang, S.; Gao, N. Extractive Distillation Using Salt-Based Deep Eutectic Solvent as Entrainer for Separating Acetonitrile-Water Mixture. J. Mol. Liq. 2024, 414, 126120. [Google Scholar] [CrossRef]
- Abedin, R.; Shen, Y.; Flake, J.C.; Hung, F.R. Deep Eutectic Solvents Mixed with Fluorinated Refrigerants for Absorption Refrigeration: A Molecular Simulation Study. J. Phys. Chem. B 2020, 124, 4536–4550. [Google Scholar] [CrossRef]
- Nian, B.; Li, X. Can Deep Eutectic Solvents Be the Best Alternatives to Ionic Liquids and Organic Solvents: A Perspective in Enzyme Catalytic Reactions. Int. J. Biol. Macromol. 2022, 217, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Bušić, V.; and Gašo-Sokač, D. Menshutkin Reaction in Choline Chloride-Based Deep Eutectic Solvents. Org. Prep. Proced. Int. 2023, 55, 160–166. [Google Scholar] [CrossRef]
- Bušić, V.; Molnar, M.; Tomičić, V.; Božanović, D.; Jerković, I.; Gašo-Sokač, D. Choline Chloride-Based Deep Eutectic Solvents as Green Effective Medium for Quaternization Reactions. Molecules 2022, 27, 7429. [Google Scholar] [CrossRef] [PubMed]
- Delso, I.; Lafuente, C.; Muñoz-Embid, J.; Artal, M. NMR Study of Choline Chloride-Based Deep Eutectic Solvents. J. Mol. Liq. 2019, 290, 111236. [Google Scholar] [CrossRef]
- Fan, K.; Yang, B.; Yu, S.; Yang, R.; Zhang, L.; Chi, W.; Yin, M.; Wu, H.; Guo, J. Ternary Choline Chloride/Benzene Sulfonic Acid/Ethylene Glycol Deep Eutectic Solvents for Oxidative Desulfurization at Room temperature. RSC Adv. 2023, 13, 25888–25894. [Google Scholar] [CrossRef]
- Wang, C.; Lu, X.; Deng, R.; Guo, M.; Gao, M.; Ru, J.; Xu, C.; Hua, Y.; Zhang, Q. Metal Separation and Recovery Employing Choline Chloride-Based Deep Eutectic Solvents: Diverse Functions of Water. Sep. Purif. Technol. 2025, 364, 132341. [Google Scholar] [CrossRef]
- Połomski, D.; Garbacz, P.; Czerwinski, K.; Chotkowski, M. Synthesis and Physicochemical Properties of the Mixtures Based on Choline Acetate or Choline Chloride. J. Mol. Liq. 2021, 327, 114820. [Google Scholar] [CrossRef]
- Ijardar, S.P.; Singh, V.; Gardas, R.L. Revisiting the Physicochemical Properties and Applications of Deep Eutectic Solvents. Molecules 2022, 27, 1368. [Google Scholar] [CrossRef]
- Sailau, Z.; Almas, N.; Aldongarov, A.; Toshtay, K. Studying the Formation of Choline Chloride- and Glucose-Based Natural Deep Eutectic Solvent at the Molecular Level. J. Mol. Model. 2022, 28, 235. [Google Scholar] [CrossRef]
- Kivelä, H.; Salomäki, M.; Vainikka, P.; Mäkilä, E.; Poletti, F.; Ruggeri, S.; Terzi, F.; Lukkari, J. Effect of Water on a Hydrophobic Deep Eutectic Solvent. J. Phys. Chem. B 2022, 126, 513–527. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Raynie, D.E. Thermal Behavior, Solvatochromic Parameters, and Metal Halide Solvation of the Novel Water-Based Deep Eutectic Solvents. J. Mol. Liq. 2021, 324, 114779. [Google Scholar] [CrossRef]
- Bajkacz, S.; Adamek, J. Development of a Method Based on Natural Deep Eutectic Solvents for Extraction of Flavonoids from Food Samples. Food Anal. Methods 2018, 11, 1330–1344. [Google Scholar] [CrossRef]
- Monroy, A.F.; Caicedo, G.A.; Martínez, J.J.; Romanelli, G.P. Utilization of Deep Eutectic Solvents in the Production of High-Value Compounds from Biomass. Biofuels Bioprod. Biorefin. 2024, 18, 1821–1865. [Google Scholar] [CrossRef]
- Subba, N.; Sahu, P.; Das, N.; Sen, P. Rational Design, Preparation and Characterization of a Ternary Non-Ionic Room-Temperature Deep Eutectic Solvent Derived from Urea, Acetamide, and Sorbitol. J. Chem. Sci. 2021, 133, 25. [Google Scholar] [CrossRef]
- Di Gioia, M.L.; Duarte, A.R.C.; Gawande, M.B. Editorial: Advances in the Development and Application of Deep Eutectic Solvents. Front. Chem. 2023, 11, 1258718. [Google Scholar] [CrossRef]
- Zhou, L.; Meng, X.; Li, W.; Yu, J.; Kemefa, C.O.; Dai, S.Y.; Ragauskas, A.J.; Yuan, J.S. Computational Modeling-Guided Design of Deep Eutectic Solvents for Tailoring Lignin Chemistry during Lignocellulose Pretreatment. Green Chem. 2025, 27, 6260–6271. [Google Scholar] [CrossRef]
- Cabezas, R.; Zurob, E.; Gomez, B.; Merlet, G.; Plaza, A.; Araya-Lopez, C.; Romero, J.; Olea, F.; Quijada-Maldonado, E.; Pino-Soto, L.; et al. Challenges and Possibilities of Deep Eutectic Solvent-Based Membranes. Ind. Eng. Chem. Res. 2022, 61, 17397–17422. [Google Scholar] [CrossRef]
- Gygli, G.; Xu, X.; Pleiss, J. Meta-Analysis of Viscosity of Aqueous Deep Eutectic Solvents and Their Components. Sci. Rep. 2020, 10, 21395. [Google Scholar] [CrossRef]
- Liu, C.; Fang, H.; Qiao, Y.; Zhao, J.; Rao, Z. Properties and Heat Transfer Mechanistic Study of Glycerol/Choline Chloride Deep Eutectic Solvents Based Nanofluids. Int. J. Heat Mass Transf. 2019, 138, 690–698. [Google Scholar] [CrossRef]
- Dehury, P.; Mahanta, U.; Singh, R.; Banerjee, T. Potential of Deep Eutectic Solvent Based Nanofluids as a New Generation Heat Transfer Media. J. Mol. Liq. 2023, 379, 121700. [Google Scholar] [CrossRef]
- Dehury, P.; Singh, J.; Banerjee, T. Thermophysical and Forced Convection Studies on (Alumina + Menthol)-Based Deep Eutectic Solvents for Their Use as a Heat Transfer Fluid. ACS Omega 2018, 3, 18016–18027. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Gao, D.; Song, F. Experimental Study on Thermophysical Property of Deep Eutectic Solvents as Heat Transfer Fluid. Case Stud. Therm. Eng. 2023, 50, 103426. [Google Scholar] [CrossRef]
- Ibrahim, A.; Coquelet, C.; Valtz, A.; Espitalier, F. Thermophysical Properties: Viscosity, Density, and Excess Properties of 2-Propanol and n-Decane Mixtures from 283.15 K to 343.15 K under Atmospheric Conditions. Fluid Phase Equilibria 2025, 589, 114254. [Google Scholar] [CrossRef]
- Marchel, M.; Cieśliński, H.; Boczkaj, G. Thermal Instability of Choline Chloride-Based Deep Eutectic Solvents and Its Influence on Their Toxicity—Important Limitations of DESs as Sustainable Materials. Ind. Eng. Chem. Res. 2022, 61, 11288–11300. [Google Scholar] [CrossRef]
- Manafpour, A.A.; Feyzi, F.; Rezaee, M. An Environmentally Friendly Deep Eutectic Solvent for CO2 Capture. Sci. Rep. 2024, 14, 19744. [Google Scholar] [CrossRef]
- Oyoun, F.; Toncheva, A.; Henríquez, L.C.; Grougnet, R.; Laoutid, F.; Mignet, N.; Alhareth, K.; Corvis, Y. Deep Eutectic Solvents: An Eco-Friendly Design for Drug Engineering. ChemSusChem 2023, 16, e202300669. [Google Scholar] [CrossRef]
Name | Structure | Tm (K) | Ref. |
---|---|---|---|
Hydrogen Bond Acceptors (HBAs) | |||
Choline Chloride | 576 | [19] | |
Betaine | 583 | [24] | |
Trimethylammonium Chloride | 548 | [25] | |
Tetrabutylammonium bromide | 376 | [26] | |
Diphenyl ether | 299 | [27] | |
DL-Menthol | 308 | [28] | |
Hydrogen Bond Donors (HBDs) | |||
Urea | 408 | [29] | |
Ethylene glycol | 260 | [25] | |
Glycerol | 290 | [25] | |
Lactic acid | 291 | [27] | |
Acetamide | 353 | [25] | |
Malonic acid | 409 | [27] |
Type | General Formula | Terms | Example |
---|---|---|---|
Type I | M = Zn, Sn, Fe, Al, Ga, In | Metal salts + organic salts (e.g., ZnCl2 + ChCl). | |
Type II | M = Cr, Co, Cu, Ni, Fe | Metal salt hydrate + organic salt (e.g., CoCl2 * 6H2O + ChCl). | |
Type III | Z = CONH2, COOH, OH | Organic salt + HBD (e.g., ChCl + U). | |
Type IV | M = Al, Zn and Z = CONH2, OH | Metal salt (hydrate) + hydrogen bond donor (HBD) (e.g., ZnCl2 * H2O + U). | |
Type V | Z = COOH, OH | A new class of DES that contain non-ionic and molecular HBAs and HBDs (e.g., C10H14O + C10H20O) |
Property | BDES | TDES | Observed Improvement/Tunability Effect | References |
---|---|---|---|---|
Melting Point (K) | 285–303 (e.g., ChCl:U, ChCl:CA) | 225–250 (e.g., ChCl:U:W, ChCl:CA:GL) | ↓ down to 60–70 K due to hydrogen-bond disruption. | [5,7,99,133,134] |
Density (g/cm3) | 1.17–1.28 (e.g., ChCl:MAL, ChCl:FRU) | 1.11–1.25 (e.g., ChCl:MAL:BTD, ChCl:CA:GL) | Tuned by third-component size and molecular flexibility. | [5,45,95,96,135,136,137] |
Viscosity (cP) | 500–11,000 (e.g., ChCl:U, ChCl:FRU) | 215–730 (e.g., ChCl:MAL:BTD, ChCl:U:GL) | ↓ down to 80%; enhanced mass transfer and fluidity. | [23,51,99,138,139,140] |
pH | 1.6–10.2 (e.g., ChCl:MA, ChCl:U) | 2.2–3.2 (e.g., ChCl:MA:PRP, ChCl:U:LA) | Stabilized mildly acidic pH for catalysis and biomass solubilization. | [51,96,141,142] |
Conductivity (mS/cm) | 0.1–1.8 (e.g., ChCl:MAL, ChCl:EG) | 1.4–2.3 (e.g., ChCl:MAL:BTD, ChCl:EG:LA) | ↑ by up to 2× from reduced viscosity and increased ion mobility. | [5,7,96,136,143,144] |
Category | TDES Composition | Application | Key Outcomes | Observation/Trends | References |
---|---|---|---|---|---|
Biomass Conversion | ChCl:EG:NI (1:2:0.016) | Sugarcane bagasse pretreatment | Achieved 84% delignification and 99% enzyme digestibility within 30 min at 373 K using microwave-assisted heating. | Enhanced delignification and enzyme accessibility compared to BDESs, attributed to reduced viscosity. | [168] |
ChCl:OA:EG (1:1:2) | Lignin and hemicellulose removal | Removed 79.7% hemicellulose and 65.6% lignin, preserving 84% cellulose, with improved gutta-percha yield (85.1 mg/g). | Outperformed BDESs by selectively dissolving lignin while preserving cellulose, enabling efficient recovery. | [169] | |
ChCl:MAL:U (2:1:2) | Phenolic acid extraction | Extracted 22.80 mg/g phenolic acids from Artemisia argyi leaves, outperforming conventional solvents. | Superior solvent capacity due to additional H-bonding interactions in ternary systems. | [170] | |
ChCl:GL:W (1:3.4:3) | Cellulose hydrolysis | Activated lipase enzyme, enhancing enzymatic hydrolysis through better substrate access in binding pockets. | Water addition to TDESs enhanced enzyme activation compared to binary systems. | [99] | |
CO2 Capture | ChCl:GL:DBN (1:2:6) | Carbon dioxide capture | Achieved 10% CO2 capture by weight (2.3–2.4 mmol/g DES) with fast kinetics and reversible sequestration. | Reduced viscosity and improved H-bonding enhanced CO2 capture over binary counterparts. | [98] |
ChCl:U:MEA (1:2:1) | Acid gas removal | Enhanced CO2 absorption in aqueous reline solutions blended with monoethanolamine (MEA). | Blended TDES improved CO2 solubility beyond binary reline systems. | [52] | |
ChCl:U:L-Arginine (1:2:0.2) | CO2 solubility enhancement | Improved CO2 solubility and thermal stability, with higher density, viscosity, and refractive indices observed. | Tailoring with L-Arginine enhanced solubility and thermal stability compared to BDESs. | [171] | |
ChCl:U:PEI (1:2:1) | CO2 capture (solid composite adsorbent) | Achieved 51 mg/g CO2 adsorption using mesoporous silica-gel impregnated with TDES at 298 K and 1 bar. | Greater adsorption capacity due to tailored TDES-impregnated composites compared to binary systems. | [100] | |
Heavy Oil Upgrading | ChCl:PEG:BA (1:1:1.5) | Diesel desulfurization | Achieved 96.4% desulfurization efficiency using boric acid-based TDESs, confirmed via FTIR and NMR analysis. | Improved desulfurization compared to BDESs, attributed to increased hydrogen-bonding sites. | [111] |
ChCl:EG (1:2) | Enhanced oil recovery | Recovered 68% heavy oil through reduced interfacial tension and wettability changes in DES/brine systems. | BDESs lacked the wettability improvement offered by ternary compositions. | [53] | |
Solvent/Catalyst in organic reactions | ChCl:GL:B(OH)3 (1:1:0.5) | Dehydration/Selective synthesis | Switchable product selectivity | promote the selective dehydration of N-acetyl-d-glucosamine | [172] |
ChCl:GC:LA (1:1:1) | Polysaccharide Extraction | High extraction yield, stability | strong hydrogen bonding and high binding energy between the TDES and glucose | [173] | |
ChCl:MAL (1:1) | One-pot Organic Synthesis | Dual catalyst/solvent reusability | This green solvent can be recycled and reused up to three times without any loss in efficiency. | [174] | |
Refrigeration Gases | ChCl:EG:PTSA (1:3:1) | Separation of R-410A (R-32/R-125) | >90% recovery of R-32 with high purity (via Aspen Plus simulation | Strong hydrogen bonding enhances selectivity for R-32 in near-azeotropic blends | [175] |
ChCl:PRP:W (1:4:1) | CO2/N2 separation (analogous to HFC separation from air) | High gas permeability and selectivity in supported liquid membranes | Reduced viscosity improves separation performance; adaptable for HFC-air mixtures | [176] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, A.; Tshibangu, M.M.; Coquelet, C.; Espitalier, F. Ternary Choline Chloride-Based Deep Eutectic Solvents: A Review. ChemEngineering 2025, 9, 84. https://doi.org/10.3390/chemengineering9040084
Ibrahim A, Tshibangu MM, Coquelet C, Espitalier F. Ternary Choline Chloride-Based Deep Eutectic Solvents: A Review. ChemEngineering. 2025; 9(4):84. https://doi.org/10.3390/chemengineering9040084
Chicago/Turabian StyleIbrahim, Abdulalim, Marc Mulamba Tshibangu, Christophe Coquelet, and Fabienne Espitalier. 2025. "Ternary Choline Chloride-Based Deep Eutectic Solvents: A Review" ChemEngineering 9, no. 4: 84. https://doi.org/10.3390/chemengineering9040084
APA StyleIbrahim, A., Tshibangu, M. M., Coquelet, C., & Espitalier, F. (2025). Ternary Choline Chloride-Based Deep Eutectic Solvents: A Review. ChemEngineering, 9(4), 84. https://doi.org/10.3390/chemengineering9040084