Fluorescent Moieties Through Alkaline Treatment of Graphene Oxide: A Potential Substitute to Replace CRM in wLEDS
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of the Graphene Oxide and OD
2.2. Materials Characterization
3. Results
3.1. FTIR Analysis
3.2. Optical Absorption Analysis
3.3. AFM Analysis of Carbon Structures in the Supernatants
3.4. Photoluminescence Analysis
4. Discussion
5. Conclusions
- Alkaline treatment of GO not only alters its structural order but also promotes the formation of nanostructured carbon-based OD with strong luminescent properties.
- The OD obtained exhibits tunable PL emissions across the visible spectrum, which can be adjusted by KOH concentration and post-treatment acidification.
- The emission features of the separated fractions—particularly R2—suggest that these materials could serve as low-cost, eco-friendly alternatives to rare-earth-based phosphors in white LEDs (wLEDs).
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CQDs | Carbon Quantum Dots |
wLEDs | White-Light-Emitting Diodes |
CRMs | Critical Raw Materials |
REEs | Rare-Earth Elements |
OD | Oxidative Debris |
PL | Photoluminescence |
PLE | Photoluminescence Excitation |
References
- European Commission: Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs; Grohol, M.; Veeh, C. Study on the Critical Raw Materials for the EU 2023: Final Report; Publications Office of the European Union: Luxembourg, 2023; Available online: https://data.europa.eu/doi/10.2873/725585 (accessed on 2 July 2025).
- Pavel, C.C.; Marmier, A.; Tzimas, E.; Schleicher, T.; Schüler, D.; Buchert, M.; Blagoeva, D. Critical raw materials in lighting applications: Substitution opportunities and implication on their demand. Phys. Status Solidi A 2016, 213, 2937–2946. [Google Scholar] [CrossRef]
- Bucka, K.; Socha, R.P.; Wojnicki, M. Carbon Quantum Dots as Phosphors in LEDs: Perspectives and Limitations—A Critical Review of the Literature. Electronics 2024, 13, 4481. [Google Scholar] [CrossRef]
- Ding, H.; Li, X.-H.; Chen, X.-B.; Wei, J.-S.; Li, X.-B.; Xiong, H.-M. Surface states of carbon dots and their influences on Luminescence. J. Appl. Phys. 2020, 127, 231101. [Google Scholar] [CrossRef]
- Tepliakov, N.V.; Kundelev, E.V.; Khavlyuk, P.D.; Xiong, Y.; Leonov, M.Y.; Zhu, W.; Baranov, A.V.; Fedorov, A.V.; Rogach, A.L. sp2–sp3-Hybridized Atomic Domains Determine Optical Features of Carbon Dots. ACS Nano 2019, 13, 10737–10744. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Ehrat, F.; Wang, Y.; Milowska, K.Z.; Reckmeier, C.; Rogach, A.L.; Stolarczyk, J.K.; Urban, A.S.; Feldmann, J. Carbon Dots: A Unique Fluorescent Cocktail of Polycyclic Aromatic Hydrocarbons. Nano Lett. 2015, 15, 6030–6035. [Google Scholar] [CrossRef]
- Reckmeier, C.J.; Wang, Y.; Zboril, R.; Rogach, A.L. Influence of Doping and Temperature on Solvatochromic Shifts in Optical Spectra of Carbon Dots. J. Phys. Chem. C 2016, 120, 10591–10604. [Google Scholar] [CrossRef]
- Mehata, M.S.; Biswas, S. Synthesis of fluorescent graphene quantum dots from graphene oxide and their application in fabrication of GQDs@AgNPs nanohybrids and sensing of H2O2. Ceram. Int. 2021, 47, 19063–19072. [Google Scholar] [CrossRef]
- Zhuo, S.J.; Shao, M.W.; Lee, S.T. Upconversion and downconversion fluorescent graphene quantum dots: Ultrasonic preparation and photocatalysis. ACS Nano 2012, 6, 1059–1064. [Google Scholar] [CrossRef]
- Wang, W.; Wang, B.; Embrechts, H.; Damm, C.; Cadranel, A.; Strauss, V.; Distaso, M.; Hinterberger, V.; Guldi, D.M.; Peukert, W. Shedding light on the effective fluorophore structure of high fluorescence quantum yield carbon nanodots. RSC Adv. 2017, 7, 24771–24780. [Google Scholar] [CrossRef]
- Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.T.; Goodwin, A.S. Zaric & H. Dai Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. Vol. 2008, 1, 203–212. [Google Scholar] [CrossRef]
- Stepanidenko, E.A.; Arefina, I.A.; Khavlyuk, P.D.; Dubavik, A.; Bogdanov, K.V.; Bondarenko, D.P.; Cherevkov, S.A.; Kundelev, E.V.; Fedorov, A.V.; Baranov, A.V.; et al. Influence of the solvent environment on luminescent centers within carbon dots. Nanoscale 2020, 12, 602. [Google Scholar] [CrossRef] [PubMed]
- Rourke, J.P.; Pandey, P.A.; Moore, J.J.; Bates, M.; Kinloch, I.A.; Young, R.J.; Wilson, N.R. The real graphene oxide revealed: Stripping the oxidative debris from the graphene-like sheets. Angew. Chem. Int. Ed. 2011, 50, 3173–3177. [Google Scholar] [CrossRef] [PubMed]
- Dimiev, M.; Polson, T.A. Contesting the two-component structural model of graphene oxide and reexamining the chemistry of graphene oxide in basic media. Carbon 2015, 93, 544–554. [Google Scholar] [CrossRef]
- Tararan, A.; Zobelli, A.; Benito, A.; Maser, W.; Stephan, O. A New Structural Model for Graphene Oxide and Reduced Graphene Oxide as Revealed by Core EELS and DFT. Microsc. Microanal. 2014, 20, 1774–1775. [Google Scholar] [CrossRef]
- De Lima, H.; Scarpa, I.; Azevedo, N.C.L.; Lelis, G.C.; Strauss, M.; Martinez, D.S.T.; De Oliveira, R.F.; Chem, J.M. Oxidative debris in graphene oxide: A decade of research. J. Mater. Chem. C 2023, 11, 12429–12452. [Google Scholar] [CrossRef]
- Burresi, E.; Protopapa, M.L. Optical investigation of degradation of graphene oxide in alkaline environment: Evidence of two distinct photon-emitting phases in visible region. Carbon Trends 2024, 17, 100412. [Google Scholar] [CrossRef]
- Burresi, E.; Taurisano, N.; Protopapa, M.L.; Latterini, L.; Palmisano, M.; Mirenghi, L.; Schioppa, M.; Morandi, V.; Mazzaro, R.; Penza, M. Influence of the synthesis conditions on the microstructural, compositional and morphological properties of graphene oxide sheets. Ceram. Int. 2020, 46, 22067. [Google Scholar] [CrossRef]
- Protopapa, M.L.; Burresi, E.; Palmisano, M.; Pesce, E.; Latterini, L.; Taurisano, N.; Quaglia, G.; Mazzaro, R.; Morandi, V. Changing the Microstructural and Chemical Properties of Graphene Oxide Through a Chemical Route. Appl. Spectrosc. 2022, 76, 1452–1464. [Google Scholar] [CrossRef]
- Galande, C.; Mohite, A.D.; Naumov, A.V.; Gao, W.; Ci, L.; Ajayan, A.; Gao, H.; Srivastava, A.; Weisman, R.B.; Ajayan, P.M. Quasi-molecular fluorescence from graphene oxide. Sci. Rep. 2011, 1, 85. [Google Scholar] [CrossRef]
- Ojhaa; Tharejab, P. Electrolyte Induced Rheological Modulation of Graphene Oxide Suspensions and its Applications in Adsorption. Appl. Surf. Sci. 2017, 435, 786–798. [Google Scholar] [CrossRef]
- Hasan, M.T.; Senger, B.J.; Ryan, C.; Culp, M.; Gonzalez-Rodriguez, R.; Coffer, J.L.; Naumov, A.V. Optical Band Gap Alteration of Graphene Oxide via Ozone Treatment. Sci. Rep. 2017, 7, 6411. [Google Scholar] [CrossRef] [PubMed]
- Sandford, S.A.; Bernstein, M.P.; Materese, C.K. The infrared spectra of polycyclic aromatic hydrocarbons with excess peripheral h atoms (hn-pahs) and their relation to the 3.4 and 6.9 μm pah emission features. Astrophys. J. Suppl. 2013, 205, 8. [Google Scholar] [CrossRef] [PubMed]
- Ricca, A.; Bauschlicher, C.W., Jr.; Allamandola, L.J. The infrared spectroscopy of polycyclic aromatic hydrocarbons with five- and seven-membered fused ring defects. Astr. J. 2011, 729, 94. [Google Scholar] [CrossRef]
- Guennoun, Z.; Aupetit, C.; Mascetti, J. Photochemistry of coronene with water at 10 K: First tentative identification by infrared spectroscopy of oxygen containing coronene products. Phys. Chem. Chem. Phys. 2011, 13, 7340–7347. [Google Scholar] [CrossRef]
- De Barros, L.F.; Mattioda, A.L.; Ricca, A.; Cruz-Diaz, G.A.; Allamandola, L.J. Photochemistry of Coronene in Cosmic Water Ice Analogs at Different Concentrations. Astr. J. 2017, 848, 112. [Google Scholar] [CrossRef]
- Galué, H.A.; Rice, C.A.; Steill, J.D.; Oomens, J. Infrared spectroscopy of ionized corannulene in the gas phase. J. Chem. Phys. 2011, 134, 054310. [Google Scholar] [CrossRef]
- Cancado, L.G.; Takai, K.; Enoki, T. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 2006, 88, 163106. [Google Scholar] [CrossRef]
- Bokobza, L.; Bruneel, J.L.; Couzi, M. Raman Spectra of Carbon-Based Materials (from Graphite to Carbon Black) and of Some Silicone Composites. J. Carbon Res. 2015, 1, 77–94. [Google Scholar] [CrossRef]
- Jawhar, T.; Roid, A.; Casado, J. Carbon, Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 1995, 33, 1561–1565. [Google Scholar] [CrossRef]
- Liang, H.F.; Smith, C.T.G.; Mills, C.A.; Silva, S.R.P. The Band Structure of Graphene Oxide Examined Using Photoluminescence Spectroscopy. J. Mater. Chem. C 2015, 3, 12484–12491. [Google Scholar] [CrossRef]
- Chen, X.; Chen, B. Direct Observation, Molecular Structure, and Location of Oxidation Debris on Graphene Oxide Nanosheets. Environ. Sci. Technol. 2016, 50, 8568–8577. [Google Scholar] [CrossRef]
KMnO4 (g) | HCl Washing Cycles | KOH Washing Cycles/ KOH Concentration (M) | Physical State | Sonication Time | |
---|---|---|---|---|---|
GO | 3 | 3 | water sol. | 30 min | |
GO_0.04_KOH | 3 | 3 | 1/0.04 | water sol. | 30 min |
GO_0.1_KOH | 3 | 3 | 1/0.1 | water sol. | 30 min |
GO_0.2_KOH | 3 | 3 | 1/0.2 | water sol. | 30 min |
GO_1.5_KOH | 3 | 3 | 1/1.78(hot) | water sol. | 30 min |
Chemical Groups | νO-H (cm−1) | νC-H (cm−1) | C=O (cm−1) | C=C (cm−1) | δC-H (cm−1) | δO-H (cm−1) | νC-O (cm−1) | νC-OH (cm−1) | δC-H (cm−1) | δC-C-C (cm−1) |
---|---|---|---|---|---|---|---|---|---|---|
GO | 3209 | 2919/2848 | 1738 | 1620/1593 | - | 1417 | - | 1188/1083 | 884 | 595 |
GO_0.04_KOH | 3378 | 2919/2849 | - | 1593 | 1352 | 1409 | 1216 | 1083 | - | - |
GO_0.04_KOH_SURN | 3378 | 2919/2849 | - | 1623/1593 (lower int. shoulder) | 1352 | 1392 | 1250 | 1112/1015 | 885–690 | 610 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Protopapa, M.L.; Burresi, E.; Palmisano, M.; Pesce, E. Fluorescent Moieties Through Alkaline Treatment of Graphene Oxide: A Potential Substitute to Replace CRM in wLEDS. ChemEngineering 2025, 9, 73. https://doi.org/10.3390/chemengineering9040073
Protopapa ML, Burresi E, Palmisano M, Pesce E. Fluorescent Moieties Through Alkaline Treatment of Graphene Oxide: A Potential Substitute to Replace CRM in wLEDS. ChemEngineering. 2025; 9(4):73. https://doi.org/10.3390/chemengineering9040073
Chicago/Turabian StyleProtopapa, Maria Lucia, Emiliano Burresi, Martino Palmisano, and Emanuela Pesce. 2025. "Fluorescent Moieties Through Alkaline Treatment of Graphene Oxide: A Potential Substitute to Replace CRM in wLEDS" ChemEngineering 9, no. 4: 73. https://doi.org/10.3390/chemengineering9040073
APA StyleProtopapa, M. L., Burresi, E., Palmisano, M., & Pesce, E. (2025). Fluorescent Moieties Through Alkaline Treatment of Graphene Oxide: A Potential Substitute to Replace CRM in wLEDS. ChemEngineering, 9(4), 73. https://doi.org/10.3390/chemengineering9040073