Journal Description
Cosmetics
Cosmetics
is an international, scientific, peer-reviewed, open access journal on the science and technology of cosmetics published bimonthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), CAPlus / SciFinder, and other databases.
- Journal Rank: JCR - Q1 (Dermatology) / CiteScore - Q1 (Surgery)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 22.5 days after submission; acceptance to publication is undertaken in 3.9 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
3.2 (2024);
5-Year Impact Factor:
3.9 (2024)
Latest Articles
Effects of Oral Fish Collagen and l-Cystine on Skin Ageing in Mature Women and Skin Imperfections in Young Women: Findings from Two Randomised, Three-Arm, Double-Blind, Placebo-Controlled Studies
Cosmetics 2025, 12(5), 188; https://doi.org/10.3390/cosmetics12050188 (registering DOI) - 28 Aug 2025
Abstract
Collagen is an essential ingredient in dietary supplements for its anti-ageing benefits, and l-cystine-based supplementation has garnered interest for its ability to improve skin condition. Our study aimed to evaluate the effects of oral supplementation combining l-cystine and fish collagen peptides at two
[...] Read more.
Collagen is an essential ingredient in dietary supplements for its anti-ageing benefits, and l-cystine-based supplementation has garnered interest for its ability to improve skin condition. Our study aimed to evaluate the effects of oral supplementation combining l-cystine and fish collagen peptides at two different dosages on mature (55–65 years) and young (18–30 years) skin types. Two randomised, three-arm, double-blind, placebo-controlled trials were conducted. A total of 198 Asian women were allocated into equal groups (5.5 or 11 g of active supplement or placebo daily for 12 weeks). In the Young panel, global aesthetic improvement, cutaneous pigmentation homogeneity, texture, redness, acne scars, and UV sensitivity were investigated. In the Mature panel, complexion radiance, crow’s feet, cutaneous thickness, moisturising, pigmentation homogeneity, texture, and skin colour were investigated. In mature women, the most notable improvements after 12 weeks were hydration, cutaneous thickness, and wrinkles. In younger women, improvements in cutaneous texture, reduced skin redness, and increased UV photoprotection were the most notable effects. Oral administration of the dietary supplement containing l-cystine and collagen peptides was perfectly well tolerated. In addition to the already known benefits for mature skin, this supplementation could also benefit younger people with skin imperfections.
Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Open AccessReview
Cydonia oblonga: A Comprehensive Overview of Applications in Dermatology and Cosmetics
by
Ana Adamovic, Marina Tomovic, Marijana Andjic, Jovana Dimitrijevic, Miona Glisic and Miljan Adamovic
Cosmetics 2025, 12(5), 187; https://doi.org/10.3390/cosmetics12050187 - 28 Aug 2025
Abstract
This review aims to provide a comprehensive overview of the botany, phytochemical composition, and dermatological effects of Cydonia oblonga (CO), with a particular focus on its therapeutic mechanisms across various skin conditions. Among the different parts of the plant, the fruit and peel
[...] Read more.
This review aims to provide a comprehensive overview of the botany, phytochemical composition, and dermatological effects of Cydonia oblonga (CO), with a particular focus on its therapeutic mechanisms across various skin conditions. Among the different parts of the plant, the fruit and peel are especially rich in bioactive compounds, primarily polyphenols such as phenolic acids, anthocyanins, and flavonoids, which are known for their potent antioxidant activity. These constituents contribute significantly to the fruit and peel’s health-promoting properties. To date, multiple extracts derived from various CO parts have been studied in both in vitro and in vivo models. Reported dermatological effects include antioxidant, antimicrobial, anti-inflammatory, anti-allergic, UV-protective, moisturizing, and anti-aging effects, as well as beneficial outcomes in conditions such as wound healing, erythema, and hyperpigmentation. As a result, formulations containing CO-derived compounds have been developed for use in both diseased and healthy skin care. However, only a limited number of these effects have been validated in human clinical studies. Given the promising results from preclinical research, future directions should prioritize in vivo investigations in human subjects to determine optimal concentrations and delivery systems for targeting specific skin disorders.
Full article
(This article belongs to the Section Cosmetic Dermatology)
►▼
Show Figures

Figure 1
Open AccessArticle
A 28-Day Pilot Study of the Effects on Facial Skin Hydration, Elasticity, and Texture of a Centella asiatica Extracellular Vesicle-Based Skin Care Formulation
by
Tsong-Min Chang, Chung-Chin Wu, Huey-Chun Huang, Ji-Ying Lu, Ching-Hua Chuang, Pei-Lun Kao, Wei-Hsuan Tang, Luke Tzu-Chi Liu, Wei-Yin Qiu, Ivona Percec, Charles Chen and Tsun-Yung Kuo
Cosmetics 2025, 12(5), 186; https://doi.org/10.3390/cosmetics12050186 - 28 Aug 2025
Abstract
Extracellular vesicles (EVs) from the traditional medicinal herb Centella asiatica (Cica) represent a novel category of botanical actives with potential dermatological benefits, yet their clinical effects in cosmetic applications remain unexplored. This pilot study assessed the effects of a skincare serum formulation with
[...] Read more.
Extracellular vesicles (EVs) from the traditional medicinal herb Centella asiatica (Cica) represent a novel category of botanical actives with potential dermatological benefits, yet their clinical effects in cosmetic applications remain unexplored. This pilot study assessed the effects of a skincare serum formulation with Cica EVs as the main active ingredient on facial skin quality in healthy participants. Twenty healthy participants (4 males and 16 females; average age 36.5) were enrolled and asked to apply the formulation twice daily for 28 days. Parameters, including skin hydration, elasticity, melanin content, wrinkles, redness, and pore size, were evaluated using instrumental probes and an imaging system. Facial skin quality assessments were conducted before use and at 7, 14, 21, and 28 days of product application. After 28 days of test product treatment, significant improvements were observed in measured parameters. A post-hoc placebo group of 10 participants received an identical serum without the EVs and underwent the same assessments. The EV-treated group showed statistically significant improvements in all skin parameters (p < 0.001), whereas the placebo group showed no significant changes. These findings have shown the use of a Cica EV-based skincare product in improving skin quality.
Full article
(This article belongs to the Section Cosmetic Dermatology)
►▼
Show Figures

Figure 1
Open AccessArticle
Characterization of Commercial Eye Shadows with Emphasis on Heavy Metal Exposure Risks to Human Health
by
Rosa L. Alvarez-Gonzales, Elizabeth E. Yufra-Illanes, José A. Villanueva-Salas, Celia Choquenaira-Quispe, Angélica Corzo-Salas-De-Valdivia, Federico M. Malpartida-Quispe and Elvis G. Gonzales-Condori
Cosmetics 2025, 12(5), 185; https://doi.org/10.3390/cosmetics12050185 - 27 Aug 2025
Abstract
►▼
Show Figures
Eye shadows are cosmetic products widely used to enhance appearance. However, the use of raw materials contaminated with heavy metals poses potential health hazards. This study characterized 12 commercial eye shadow samples and quantified concentrations of Al, Ba, B, Cu, Cr, Fe, Mn,
[...] Read more.
Eye shadows are cosmetic products widely used to enhance appearance. However, the use of raw materials contaminated with heavy metals poses potential health hazards. This study characterized 12 commercial eye shadow samples and quantified concentrations of Al, Ba, B, Cu, Cr, Fe, Mn, Ni, Pb, V, and Zn using inductively coupled plasma mass spectrometry (ICP-MS). Additional characterization using UV-vis, ATR-FTIR, and SEM-EDS techniques provided insights into the composition and potential sources of contamination. Multivariate analysis revealed differences in metal concentrations across brands. Health risk assessments, including margin of safety (MoS), hazard quotient (HQ), hazard index (HI), lifetime cancer risk (LCR), and lifetime cancer risk based on the long-term relevant daily systemic exposure dose (LCR′), indicated that one product may pose significant health risks. Specifically, sample M4 showed an HI of 2.67 × 101, exceeding acceptable limits. These findings highlight the need for stricter regulation and continuous monitoring of heavy metals in cosmetics to safeguard consumer health.
Full article

Figure 1
Open AccessArticle
Improved Tactile Receptivity and Skin Beauty Benefits Through Topical Treatment with a Hyacinthus orientalis Bulb Extract Shown to Activate Oxytocin Receptor Signaling
by
Fabien Havas, Shlomo Krispin, Moshe Cohen and Joan Attia-Vigneau
Cosmetics 2025, 12(5), 184; https://doi.org/10.3390/cosmetics12050184 - 26 Aug 2025
Abstract
The neuropeptide oxytocin (OXT) is involved in social bonding, reproduction, and childbirth. Its activity is mediated by the oxytocin receptor (OXTR), also expressed in the skin. OXT alleviates dermal fibroblast senescence, and OXT levels correlate with visible skin aging. OXT inhibits nociceptive signaling
[...] Read more.
The neuropeptide oxytocin (OXT) is involved in social bonding, reproduction, and childbirth. Its activity is mediated by the oxytocin receptor (OXTR), also expressed in the skin. OXT alleviates dermal fibroblast senescence, and OXT levels correlate with visible skin aging. OXT inhibits nociceptive signaling and promotes neuronal plasticity. Here, we demonstrate OXT-like benefits of OXTR activation for skin touch sensoriality and nociception, as well as visible skin health and beauty indicators, using an aqueous extract of Hyacinthus orientalis bulbs. OXTR activation was evaluated in a Chinese hamster ovary (CHO) cell model. Nociception and innervation benefits were investigated in keratinocyte/sensory neuron coculture models. A placebo-controlled clinical study evaluated gentle touch receptivity, nociception, skin tone, elasticity, and wrinkling. The extract activated OXTR and enhanced dermal fibroblast proliferation in vitro. In the keratinocyte-neuron coculture, the HO extract lowered nociceptive CGRP release below that of the unstimulated and OXT controls and promoted neuronal survival and dendricity. An organ-on-a-chip coculture showed decreased electrical activity and increased neuronal peripherin. Clinically, we observed selective left-side frontal alpha-wave activation, indicating pleasant sensation, reduced nociception, enhanced skin glow, improved elasticity, and reduced wrinkling. This extract thus shows high value for holistic wellbeing solutions, enhancing the skin’s receptivity to pleasant sensations and promoting well-aging.
Full article
(This article belongs to the Section Cosmetic Technology)
►▼
Show Figures

Figure 1
Open AccessReview
Optical Coherence Elastography—A Novel Non-Invasive Optical Method for Real-Time Determination of Substances Penetration and Associated Skin Dehydration
by
Vladimir Y. Zaitsev, Yulia M. Alexandrovskaya, Alexander A. Sovetsky, Ekaterina M. Kasianenko, Alexander L. Matveyev, Dmitry V. Shabanov and Maxim E. Darvin
Cosmetics 2025, 12(5), 183; https://doi.org/10.3390/cosmetics12050183 - 26 Aug 2025
Abstract
Non-invasive, in vivo assessment of target substances penetration into the skin remains a significant challenge in dermatology and cosmetology. While various optical methods have been employed for this purpose, each has inherent limitations. Here, we present a novel non-invasive imaging approach using optical
[...] Read more.
Non-invasive, in vivo assessment of target substances penetration into the skin remains a significant challenge in dermatology and cosmetology. While various optical methods have been employed for this purpose, each has inherent limitations. Here, we present a novel non-invasive imaging approach using optical coherence elastography (OCE) to simultaneously determine the penetration depth of topically applied osmotically active substances in biological objects and associated water content changes with high sensitivity. Most substances are osmotically active and generate osmotic pressure proportional to their concentration, inducing deformations in biological objects. These osmotic strains can be visualized similarly to mechanical or thermal strains. Using OCE, we evaluated penetration and dehydration depth profiles in polyacrylamide gel phantoms, ex vivo cartilage, and porcine ear skin samples treated with aqueous glycerol solutions of varying concentrations. Additionally, the penetration and effect of jojoba oil were assessed in treated skin samples. The results are consistent with those obtained by other established methods, confirming the reliability and applicability of OCE. This technique offers unique capabilities not achievable with other optical methods, making it a valuable complementary tool for non-invasive studies. It holds significant promise for advancing both research and clinical applications in dermatology and cosmetology, including its potential translation to in vivo assessments.
Full article
(This article belongs to the Section Cosmetic Technology)
►▼
Show Figures

Figure 1
Open AccessReview
Jaboticaba (Myrciaria cauliflora) Peel Extracts in Dermocosmetics: A Systematic Review Highlighting Antioxidant and Photoprotective Research Gaps
by
Jovane Santana Silva, Clayton Pereira de Sá, Márcio Gonçalves dos Santos, Catarina Rosado, Fábia Rafaella Silva Alves, André Rolim Baby and Yohandra Reyes Torres
Cosmetics 2025, 12(5), 182; https://doi.org/10.3390/cosmetics12050182 - 26 Aug 2025
Abstract
This paper presents a literature review on the potential of jaboticaba (Myrciaria cauliflora) peel extracts for application in multifunctional dermocosmetic formulations, particularly as natural antioxidants and photoprotective agents. Utilizing the Methodi Ordinatio methodology, of a total of 1226, 90 scientific articles
[...] Read more.
This paper presents a literature review on the potential of jaboticaba (Myrciaria cauliflora) peel extracts for application in multifunctional dermocosmetic formulations, particularly as natural antioxidants and photoprotective agents. Utilizing the Methodi Ordinatio methodology, of a total of 1226, 90 scientific articles were selected from six major databases and analyzed through bibliometric mapping (VOSviewer) and qualitative data processing (MAXQDA). The results highlight research concentration in three key areas: (1) extraction methodologies for bioactive compounds, (2) identification and quantification techniques, and (3) biological activities (antioxidant and photoprotective effects). The most frequent compounds reported were anthocyanins (cyanidin-3-glucoside and delphinidin-3-glucoside), quercetin-derived flavonoids (rutin and myricetin), and phenolic acids (ellagic, gallic, and ferulic acids), which exhibit synergistic effects with conventional UV filters. Ultrasound-assisted extraction (UAE) using ethanol and emerging green solvents, like glycerol and deep eutectic solvents (DESs), was identified as an effective, sustainable alternative. Despite increasing evidence supporting the dermocosmetic potential of jaboticaba peel, studies remain scarce, with only one identified investigation using it in a topical formulation. This review provides a structured scientific foundation to encourage research aimed at developing multifunctional, eco-friendly, plant-based cosmetics aligned with the principles of the circular economy.
Full article
(This article belongs to the Section Cosmetic Formulations)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Effects of ε-Viniferin and ε-Viniferin-Enriched Extract from Vitis labruscana B. ‘Campbell Early’ Cell Cultures on Wound Healing and Epidermal Barrier Restoration in Human Skin Cells
by
Daeun Kim, Jimin Lim, Kyuri Lee, Gisol Kim, Jaeho Pyee, Minkyoung You and Jaesung Hwang
Cosmetics 2025, 12(5), 181; https://doi.org/10.3390/cosmetics12050181 - 25 Aug 2025
Abstract
Skin wound healing and barrier restoration are complex, tightly regulated processes critical for maintaining skin integrity, particularly in aged or compromised skin. This study investigated the wound healing efficacy and epidermal barrier-restoring effects of ε-Viniferin, a bioactive resveratrol dimer, and Vino Chocolate™, a
[...] Read more.
Skin wound healing and barrier restoration are complex, tightly regulated processes critical for maintaining skin integrity, particularly in aged or compromised skin. This study investigated the wound healing efficacy and epidermal barrier-restoring effects of ε-Viniferin, a bioactive resveratrol dimer, and Vino Chocolate™, a grape flower-derived extract from Vitis labruscana ‘Campbell Early’ cell cultures enriched with ε-Viniferin. An HPLC analysis confirmed a high concentration of ε-Viniferin (547.58 ppm) in the cell culture-derived extract. In vitro assays conducted on HaCaT keratinocytes and HDFn fibroblasts demonstrated that the treatment with ε-Viniferin and Vino Chocolate™ significantly enhanced fibroblast migration. ELISA analyses showed that both treatments induced a dose-dependent increase in pro-collagen type I (COL1A1), with ε-Viniferin at 1 ppm demonstrating superior efficacy compared to TGF-β1. Additionally, these compounds notably suppressed the expression of matrix metalloproteinases MMP-1 and MMP-3, displaying effects comparable to or greater than retinoic acid. The Western blot analysis further revealed an increased filaggrin expression in keratinocytes, suggesting an improved epidermal barrier function. Collectively, these results indicate that ε-Viniferin and Vino Chocolate™ effectively promote extracellular matrix remodeling, modulate inflammatory responses, and enhance epidermal barrier integrity. These findings highlight their potential as multifunctional bioactive agents for cosmeceutical applications and emphasize the advantages of plant cell culture technology as a sustainable, innovative platform for advanced skincare ingredient development.
Full article
(This article belongs to the Section Cosmetic Dermatology)
►▼
Show Figures

Figure 1
Open AccessArticle
Unlocking Pomegranate’s Potential: Ultrasonication-Enriched Oil in Nanobeads for Innovative Cosmetic Hydrogels
by
Ameni Ben Abdennebi, Iness Bettaieb Rebey, Rym Essid, Majdi Hammami, Hamza Gadhoumi, Raghda Yazidi, Emna Chaabani, Saber Khammessi, Salma Nait Mohamed, Walid Yeddes and Moufida Saidani-Tounsi
Cosmetics 2025, 12(5), 180; https://doi.org/10.3390/cosmetics12050180 - 25 Aug 2025
Abstract
Pomegranate (Punica granatum L.), is renowned for its bioactive compounds, offering significant potential in cosmetic applications due to its antioxidant, anti-inflammatory, and antimicrobial properties. This study presents a sustainably sourced cosmetic ingredient developed by enriching pomegranate seed oil with peel powder using
[...] Read more.
Pomegranate (Punica granatum L.), is renowned for its bioactive compounds, offering significant potential in cosmetic applications due to its antioxidant, anti-inflammatory, and antimicrobial properties. This study presents a sustainably sourced cosmetic ingredient developed by enriching pomegranate seed oil with peel powder using optimized ultrasonication, followed by encapsulation in alginate nanobeads and integration into a minimalist hydrogel formulation. A Box–Behnken experimental design was employed to optimize ultrasonication parameters (15 min, 90% power, 202 mg/mL powder-to-oil ratio), yielding an enriched PSO with significantly enhanced total phenolic content (TPC: 69.23 ± 1.66 mg GAE/g), total flavonoid content (TFC: 61.09 ± 1.66 mg QE/g), and robust DPPH antioxidant activity (78.63 ± 3.81%). The enriched oil exhibited enhanced oxidative stability (peroxide value: 5.75 ± 0.30 meq O2/kg vs. 50.95 ± 0.07 meq O2/kg for neutral oil), improved fatty acid profile, and significant anti-inflammatory (IC50 = 897.25 µg/mL for NO inhibition) and antibacterial activities. Alginate nanobeads (432.46 ± 12.59 nm, zeta potential: −30.74 ± 3.20 mV) ensured bioactivity preservation, while the hydrogel maintained physicochemical and microbial stability over 60 days under accelerated conditions (40 ± 2 °C, 75 ± 5% RH). This multifunctional formulation, integrating sustainable extraction, advanced encapsulation, and a minimalist delivery system, represents a highly promising natural ingredient for anti-aging and antioxidant cosmetic applications.
Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
►▼
Show Figures

Figure 1
Open AccessReview
Neurocosmetics and Aromatherapy Through Neurocutaneous Receptors and Their Functional Implications in Cosmetics
by
María Judith Sánchez-Peña, Odessa Magallón-Chávez and Juan Antonio Rivas-Loaiza
Cosmetics 2025, 12(5), 179; https://doi.org/10.3390/cosmetics12050179 - 25 Aug 2025
Abstract
There is little scientific evidence for many of the medical benefits attributed to aromatherapy and neurocosmetics; however, they have been shown to be useful in the management of symptoms such as pain, nausea, general well-being, anxiety, depression, stress, and insomnia through various mechanisms,
[...] Read more.
There is little scientific evidence for many of the medical benefits attributed to aromatherapy and neurocosmetics; however, they have been shown to be useful in the management of symptoms such as pain, nausea, general well-being, anxiety, depression, stress, and insomnia through various mechanisms, including the olfactory pathway and activation of TRPV and CBD receptors. This review therefore aims to compile the most relevant literature on active ingredients proven effective in neurocosmetics and aromatherapy, as well as the mechanisms responsible for their function, in order to highlight how they can be synergistically integrated into a new generation of multifunctional formulations forming the basis of neuro-functional skin care.
Full article
(This article belongs to the Special Issue New Perspectives in Cosmetics and Dermatology: Mechanisms and Therapies)
►▼
Show Figures

Figure 1
Open AccessArticle
Effect of SMART DNA Therapy Retix.C Application on Skin Microbiome
by
Dorota Sobolewska-Sztychny, Karolina Wódz and Aleksandra Lesiak
Cosmetics 2025, 12(5), 178; https://doi.org/10.3390/cosmetics12050178 - 22 Aug 2025
Abstract
Background: The skin microbiome plays a key role in maintaining skin health, and its composition can be influenced by cosmetic treatments. This study aimed to investigate the effects of SMART DNA Therapy treatment on facial skin microbiome composition, with specific focus on changes
[...] Read more.
Background: The skin microbiome plays a key role in maintaining skin health, and its composition can be influenced by cosmetic treatments. This study aimed to investigate the effects of SMART DNA Therapy treatment on facial skin microbiome composition, with specific focus on changes in commensal and pathogenic bacterial populations following multi-component anti-aging intervention. Methods: This clinical study included 10 Caucasian female participants aged 28–50 years (Clinical trial registration number: 0406/2023). Each participant received three Retix.C SMART DNA THERAPY treatments at 14-day intervals over 6 weeks. The protocol included three phases: chemical peeling with ferulic acid, peptide microinjections for DNA repair, and home-care products with antioxidants. Bacterial samples were collected from forehead and cheek skin before treatment and 2 weeks after the final treatment. Samples were analyzed using bacterial culture and PCR methods. Results: After treatment, the skin microbiome showed beneficial changes with increased numbers of helpful bacteria and elimination of harmful bacteria: complete removal of Cutibacterium acnes and Staphylococcus aureus was observed, Staphylococcus epidermidis and other beneficial bacteria increased on both forehead and cheek areas. Overall bacterial diversity decreased, and participants exhibited more similar microbiome patterns after treatment. Conclusions: SMART DNA Therapy treatment successfully modified the skin microbiome by increasing protective bacteria and eliminating pathogenic species. The treatment may support skin health through microbiome modulation and the potential antioxidant effects of its active ingredients, although these were not directly assessed in this study.
Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
►▼
Show Figures

Figure 1
Open AccessArticle
Clinical and Instrumental Evaluation of the Anti-Aging Effectiveness of a Cream Based on Hyaluronic Acid and a Cream Based on Hyaluronic Acid and Vitamin C: A Prospective, Multicenter, 8-Week, Parallel-Group Randomized Study on 91 Subjects
by
Corinna Rigoni, Alessandra M. Cantù, Maria Carmela Annunziata, Chiara Bordin, Sandra Farina, Patrizia Forgione, Caterina Foti, Sandra Lorenzi, Francesca Negosanti, Marisa Praticò, Aurora Tedeschi, Federica Tovecci, Lucia Villa, Colombina Vincenzi, Francesca Colombo, Stefano Alfano, Massimo Milani and Elena Rossi
Cosmetics 2025, 12(4), 177; https://doi.org/10.3390/cosmetics12040177 - 20 Aug 2025
Abstract
Introduction: Skin aging is a multifaceted process influenced by both intrinsic and extrinsic factors, resulting in visible changes such as wrinkles, loss of elasticity, uneven skin tone, and hyperpigmentation. Hyaluronic acid (HA) is widely recognized for its hydrating and structural support properties,
[...] Read more.
Introduction: Skin aging is a multifaceted process influenced by both intrinsic and extrinsic factors, resulting in visible changes such as wrinkles, loss of elasticity, uneven skin tone, and hyperpigmentation. Hyaluronic acid (HA) is widely recognized for its hydrating and structural support properties, while Vitamin C is known for its antioxidant and depigmenting effects. This study investigated the anti-aging efficacy of two topical formulations containing Jalubalance® technology—HA delivered in Opuntia oil—with or without 1% Vitamin C. Background/Objectives: We conducted an 8-week, multicenter, randomized trial involving 91 women aged 30–50 years with mild-to-moderate photoaging. Participants were assigned to apply either HA-only cream (Group A) or a HA + Vitamin C cream (Group B) twice daily. The primary outcome was the percentage of subjects who achieved an improvement of at least one point in the hyperpigmentation score from baseline to week 8. Additionally, the study aimed to evaluate and compare the clinical and instrumental effects of both treatments, with a particular focus on improvements in wrinkles, elasticity, hydration, and pigmentation. Results: Both groups showed significant improvements across all measured parameters, including Glogau scores, wrinkle reduction, and skin elasticity. Instrumental analysis confirmed increased hydration and elasticity. Group B showed a significantly greater reduction in hyperpigmentation (−45%) compared to Group A (−31%, p < 0.05). At week 8, a ≥1-point reduction in hyperpigmentation score was observed in 56% of subjects in Group B and 30% in Group A (absolute difference: 26%; 95% CI: 5–43%; p < 0.05), highlighting the added benefit of Vitamin C on this parameter. Participant satisfaction was high, especially for the moisturization and brightening effects of both products. Conclusions: The topical application of Jalubalance-based creams effectively reduced signs of aging. The inclusion of Vitamin C provided enhanced benefits in reducing hyperpigmentation, suggesting its utility in personalized dermatological approaches for patients with pigmentation concerns.
Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
►▼
Show Figures

Figure 1
Open AccessArticle
Cosmetic Upgrade of EGF: Genetically Modified Probiotic-Derived Cell-Free Supernatants Containing Human EGF Protein Exhibit Diverse Biological Activities
by
Jun Young Ahn, Seungwoo Kim, Jaewon Ha, Yoon Jin Roh, Yongku Ryu, Myung Jun Chung, Kui Young Park and Byung Chull An
Cosmetics 2025, 12(4), 176; https://doi.org/10.3390/cosmetics12040176 - 19 Aug 2025
Abstract
Although epidermal growth factor (EGF) has potential wide applications in the cosmetic industry, it still has limitations, such as a costly purification process and low stability in the surrounding environment. To overcome these limitations, we developed genetically modified Pediococcus pentosaceus CBT SL4, which
[...] Read more.
Although epidermal growth factor (EGF) has potential wide applications in the cosmetic industry, it still has limitations, such as a costly purification process and low stability in the surrounding environment. To overcome these limitations, we developed genetically modified Pediococcus pentosaceus CBT SL4, which can secrete EGF protein in growth media, thereby producing probiotic-derived PP-EGF culture medium supernatant (PP-EGF-SUP). Even at low EGF concentrations, PP-EGF-SUP exhibited EGF activities, such as cell scratch wound healing, tyrosinase inhibition, and improvements in anti-wrinkle factors, similar to or stronger than those of recombinant human EGF (rhEGF), which was used as a positive control. PP-EGF-SUP exhibited strong additional biological activities, such as antioxidant, anti-inflammatory, and anti-microbial activities, even though rhEGF did not have such properties. PP-EGF-SUP could be easily transformed to PP-EGF-SUP dried powder (PP-EGF-DP) using the freeze-drying method, and it could also be well resolved in water up to 20 mg/mL; furthermore, it still maintained its bioactivity after the manufacturing process. To determine melasma improvement efficacy, a human application test was performed using melasma ampoules containing 1% or 5% PP-EGF-DP formulations for four weeks. When comparing the melasma values before and after treatment, it was found that the light melasma value statistically decreased by 3.38% and 3.79% and that the dark melasma value statistically decreased by 1.74% and 2.93% in the test groups applying the 1% and 5% PP-EGF-DP melasma ampoules, respectively. In addition, the melasma area also decreased by 21.21% and 29.1%, while the control group showed no statistical difference. During the study period, no significant adverse skin reactions were observed due to the application of the PP-EGF-DP melasma ampoule. In conclusion, PP-EGF-DP may offer unique advantages in the cosmetic ingredient market, such as safety (as a probiotic derivative), stability (postbiotics protect EGF activity), and diverse bioactivities (activity potentiation and postbiotic-derived biological activities).
Full article
(This article belongs to the Section Cosmetic Technology)
►▼
Show Figures

Figure 1
Open AccessReview
Assessment of Endocrine-Disrupting Properties in Cosmetic Ingredients: Focus on UV Filters and Alternative Testing Methods
by
Adriana Solange Maddaleno, Laia Guardia-Escote, Maria Pilar Vinardell, Elisabet Teixidó and Montserrat Mitjans
Cosmetics 2025, 12(4), 175; https://doi.org/10.3390/cosmetics12040175 - 16 Aug 2025
Abstract
Endocrine-disrupting chemicals are substances capable of interfering with hormonal systems, potentially leading to adverse developmental, reproductive, neurological, and immune effects in both humans and wildlife. Various experimental models are currently available to assess the endocrine-disrupting potential of substances. However, in the context of
[...] Read more.
Endocrine-disrupting chemicals are substances capable of interfering with hormonal systems, potentially leading to adverse developmental, reproductive, neurological, and immune effects in both humans and wildlife. Various experimental models are currently available to assess the endocrine-disrupting potential of substances. However, in the context of cosmetic ingredients, the ban on animal testing for safety and efficacy evaluations in Europe and other regions necessitates the use of in vitro or in silico approaches. Concerns have been raised regarding the possible endocrine-disrupting properties of certain cosmetic compounds, prompting the development of a priority substance list that includes several ultraviolet (UV) filters. This review provides a comprehensive overview of the main methodologies employed to evaluate endocrine-disrupting effects, with a particular focus on different endocrine organs. It also compiles and analyzes literature data related to commonly used UV filters such as benzophenones, avobenzone, homosalate, octocrylene, octinoxate, and 4-methylbenzylidene camphor. A major limitation identified is the lack of validated in vitro methods for assessing disruptions in specific endocrine organs, such as the thyroid and pancreas. This gap hinders accurate interpretation of experimental results and highlights the urgent need for further research to clarify the safety profiles of UV filters and other cosmetic ingredients.
Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
►▼
Show Figures

Figure 1
Open AccessArticle
Bioassay-Guided Isolation of Chemical Constituents from Lycopodiastrum casuarinoides and Targeted Evaluation of Their Potential Efficacy in Cosmetics
by
Jian-Ye Zhu, Zeng-Yue Ge, Qi-Bin Yang, Cai-Fu Jiang, Lei Wu, Xin-Yuan Jiang and Lin-Fu Liang
Cosmetics 2025, 12(4), 174; https://doi.org/10.3390/cosmetics12040174 - 16 Aug 2025
Abstract
Natural tyrosinase inhibitors are currently a hot research topic due to their potential application in cosmetic and medicinal products. For the plant Lycopodiastrum casuarinoides, the chemical constituents with a tyrosinase inhibitory effect have not been investigated yet. Bioassay-guided isolation was conducted on
[...] Read more.
Natural tyrosinase inhibitors are currently a hot research topic due to their potential application in cosmetic and medicinal products. For the plant Lycopodiastrum casuarinoides, the chemical constituents with a tyrosinase inhibitory effect have not been investigated yet. Bioassay-guided isolation was conducted on the aboveground parts, resulting in the isolation of 10 compounds (1–10). Their chemical structures were confirmed by their spectral data and comparison with literature data. It might be worth pointing out that compounds 3–9 were isolated from the genus Lycopodiastrum for the first time. The bioassay revealed that compounds 6 and 7 displayed moderate mushroom tyrosinase inhibitory activity (IC50 = 1.90 and 2.43 mM, respectively), which was close to the positive control kojic acid (IC50 = 0.17 mM). Moreover, the in silico experiments disclosed that Lys180, His178 and other amino residues played key roles in the binding modes between compounds 6 and 7 and mushroom tyrosinase (PDB: 2Y9X). These findings suggested potential for further investigation on this species as a source of cosmetic ingredients.
Full article
(This article belongs to the Special Issue Fine Chemicals from Natural Sources with Potential Application in the Cosmetic/Pharmaceutical Industry—Volume 2)
►▼
Show Figures

Figure 1
Open AccessReview
In Vitro Skin Models for Skin Sensitisation: Challenges and Future Directions
by
Ignacio Losada-Fernández, Ane San Martín, Sergio Moreno-Nombela, Leticia Suárez-Cabrera, Leticia Valencia, Paloma Pérez-Aciego and Diego Velasco
Cosmetics 2025, 12(4), 173; https://doi.org/10.3390/cosmetics12040173 - 12 Aug 2025
Abstract
Allergic contact dermatitis is one of the most common adverse events associated with cosmetic use. Accordingly, assessment of skin sensitisation hazard is required for safety evaluation of cosmetic ingredients. The transition to the use of alternative methods for testing has made skin sensitisation
[...] Read more.
Allergic contact dermatitis is one of the most common adverse events associated with cosmetic use. Accordingly, assessment of skin sensitisation hazard is required for safety evaluation of cosmetic ingredients. The transition to the use of alternative methods for testing has made skin sensitisation an intense field in the past decades. The first alternative methods have been in place for almost a decade, but none as stand-alone replacement for the reference murine Local Lymph Node Assay (LLNA). While strategies to combine data from several methods are being evaluated and refined, individual methods face technical limitations. These include issues related to their applicability to highly lipophilic substances and the lack of reliable potency estimation, which remain important obstacles to their widespread adoption as replacement for animal methods. The unique characteristics of in vitro skin models represented an attractive alternative, potentially overcoming these limitations and offering a more physiologically relevant environment for the assessment of the response in keratinocytes and dendritic cells. In this review, we recapitulate how reconstructed human skin models have been used as platforms for skin sensitisation testing, including the latest approaches using organ-on-a-chip and microfluidic technologies, aimed to develop next-generation organotypic skin models with increased complexity and monitoring capabilities.
Full article
(This article belongs to the Special Issue In Vitro Skin Models for Skin Function Assessment: Applications in Cosmetics and Dermocosmetics)
►▼
Show Figures

Figure 1
Open AccessReview
Enzymes DNA Repair in Skin Photoprotection: Strategies Counteracting Skin Cancer Development and Photoaging Strategies
by
Ewelina Musielak and Violetta Krajka-Kuźniak
Cosmetics 2025, 12(4), 172; https://doi.org/10.3390/cosmetics12040172 - 12 Aug 2025
Abstract
Ultraviolet radiation (UVR) is a major contributor to skin aging and carcinogenesis, primarily through the induction of DNA damage. While conventional sunscreens provide passive protection by blocking UVR, active photoprotection using DNA repair enzymes offers a strategy to reverse UV-induced DNA lesions at
[...] Read more.
Ultraviolet radiation (UVR) is a major contributor to skin aging and carcinogenesis, primarily through the induction of DNA damage. While conventional sunscreens provide passive protection by blocking UVR, active photoprotection using DNA repair enzymes offers a strategy to reverse UV-induced DNA lesions at the molecular level. Enzymes such as photolyase, T4 endonuclease V, and 8-oxoguanine glycosylase address distinct types of DNA damage through light-dependent and -independent mechanisms, complementing the skin’s endogenous repair systems. Advances in nanocarrier technologies and encapsulation methods have improved the stability and delivery of these enzymes in topical formulations. Emerging evidence from clinical studies indicates their potential in reducing actinic keratoses, pigmentation disorders, and photoaging signs, although challenges in regulatory approval, long-term efficacy validation, and formulation optimization remain. This review provides a comprehensive synthesis of the mechanistic, clinical, and formulation aspects of enzyme-based photoprotection, outlines regulatory and ethical considerations, and highlights future directions, including CRISPR-based repair and personalized photoprotection strategies, establishing enzyme-assisted sunscreens as a next-generation approach to comprehensive skin care.
Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
►▼
Show Figures

Figure 1
Open AccessReview
Microplastics in Cosmetics: Emerging Risks for Skin Health and the Environment
by
Ju Hee Han and Hei Sung Kim
Cosmetics 2025, 12(4), 171; https://doi.org/10.3390/cosmetics12040171 - 12 Aug 2025
Abstract
Microplastics, increasingly recognized as environmental pollutants, have raised concerns regarding their potential effects on human health. In cosmetics and personal care products, microplastics may pose a risk through skin absorption. This review explores the presence of microplastics in cosmetics, their potential exposure pathways,
[...] Read more.
Microplastics, increasingly recognized as environmental pollutants, have raised concerns regarding their potential effects on human health. In cosmetics and personal care products, microplastics may pose a risk through skin absorption. This review explores the presence of microplastics in cosmetics, their potential exposure pathways, and their dermatological implications. Evidence suggests that microplastics can penetrate the skin barrier, induce oxidative stress, promote inflammation, and contribute to premature aging. Despite growing regulatory efforts, global inconsistencies hinder comprehensive policy implementation. Rising environmental and health concerns have also fueled interest in sustainable alternatives such as biodegradable polymers and eco-friendly packaging. Further research is necessary to clarify long-term health effects and guide regulatory strategies.
Full article
(This article belongs to the Section Cosmetic Dermatology)
►▼
Show Figures

Figure 1
Open AccessArticle
Comparative Effects of Microwave and Ultrasonic Pretreatments on the Antioxidant, Anti-Aging, and Moisturizing Activities of Yellow Silkworm Cocoon Extracts (Bombyx mori L., var. Nang Lai)
by
Sarocha Chareegun, Suvimol Somwongin, Jirasit Inthorn, Saranya Juntrapirom, Watchara Kanjanakawinkul and Wantida Chaiyana
Cosmetics 2025, 12(4), 170; https://doi.org/10.3390/cosmetics12040170 - 11 Aug 2025
Abstract
Background: Silkworm cocoons are rich in bioactive compounds beneficial for cosmetic applications. This study presented a novel approach by comparing microwave and ultrasonic pretreatments to enhance silk protein extraction efficiency. The aim was to evaluate the effects of pretreatment methods and extraction solvents
[...] Read more.
Background: Silkworm cocoons are rich in bioactive compounds beneficial for cosmetic applications. This study presented a novel approach by comparing microwave and ultrasonic pretreatments to enhance silk protein extraction efficiency. The aim was to evaluate the effects of pretreatment methods and extraction solvents on the bioactive components, physicochemical properties, and biological activities of silkworm cocoon extracts for cosmetic applications. Methods: Cocoons of Bombyx mori (Nang Lai) were pretreated using conventional soaking (12 h), microwave (3 min), or ultrasonication (30 min), and then subjected to aqueous or enzymatic extraction. The extracts were analyzed for protein, phenolic, and flavonoid content. Structural and thermal properties were characterized using infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. Antioxidant and anti-aging properties were assessed by measuring the inhibition of nitric oxide, 2,2-diphenyl-1-picrylhydrazyl (DPPH•), and collagenase. Skin moisturizing effects and irritation potential were tested. Results: Silkworm cocoons pretreated with microwave (ALM) and ultrasonication (ALS), followed by enzymatic extraction, had the highest yields (21.6 ± 0.5% and 21.7 ± 0.4%, respectively). Despite their slightly lower protein contents, these extracts showed elevated phenolic and flavonoid content. ALM and ALS demonstrated strong antioxidant activities, with DPPH• scavenging of 65.9 ± 0.2% and 65.2 ± 0.3%, collagenase inhibition of 60.3 ± 0.8% and 59.7 ± 1.7%, and nitric oxide inhibition of 13.5 ± 0.4% and 12.9 ± 0.2%, respectively. Skin moisturizing effects increased by 63.6 ± 2.1% for ALM and 61.2 ± 1.5% for ALS, compared to 1.3 ± 0.6% in the control. All extracts were found to be non-irritating for topical application, indicating their safety for skincare formulations. Conclusions: Microwave and ultrasonication pretreatments, in combination with enzymatic extraction, provide an effective, time-efficient, and sustainable method for producing silkworm cocoon extracts with promising cosmetic applications.
Full article
(This article belongs to the Section Cosmetic Formulations)
►▼
Show Figures

Figure 1
Open AccessArticle
Pomegranate Peels: A Promising Source of Biologically Active Compounds with Potential Application in Cosmetic Products
by
Yulian Tumbarski, Ivan Ivanov, Radka Vrancheva, Nadezhda Mazova and Krastena Nikolova
Cosmetics 2025, 12(4), 169; https://doi.org/10.3390/cosmetics12040169 - 11 Aug 2025
Abstract
As a rich source of biologically active compounds, pomegranate peel is a valuable by-product with applications in the food, pharmaceutical and cosmetic sectors. The present study aimed to investigate the phytochemical composition, antioxidant and antimicrobial activity, photoprotective activity and application in a cosmetic
[...] Read more.
As a rich source of biologically active compounds, pomegranate peel is a valuable by-product with applications in the food, pharmaceutical and cosmetic sectors. The present study aimed to investigate the phytochemical composition, antioxidant and antimicrobial activity, photoprotective activity and application in a cosmetic emulsion of extracts obtained from pomegranate peel by different solvents. The analysis of phenolic compounds was determined by high-performance liquid chromatography (HPLC); the total phenolic content (TPC) and the total flavonoid content (TFC) were evaluated using standard spectrophotometric methods; the antioxidant activity was assessed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging, ferric-reducing antioxidant power (FRAP) and 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays; antimicrobial screening was performed against twenty test microorganisms; the ultraviolet (UV) protection effect of extracts and cosmetic emulsion was assessed spectrophotometrically in the wavelength range of 290–320 nm. HPLC analysis revealed fourteen phenolic compounds, including four phenolic acids (ellagic, gallic, p-coumaric, and ferulic), two tannins (pedunculagin and punicalagin), six flavonoids (myricetin, hesperidin, quercetin, luteolin, kaempferol, and apigenin), and two quercetin glycosides (rutin and hyperoside). The four pomegranate peel extracts demonstrated high TPC, TFC and antioxidant potential (DMSO > 70% ethanolic > methanolic > aqueous), and significant antimicrobial activity. The four extracts showed a remarkable UV protection effect. When applied in a cosmetic emulsion, the ethanolic extract showed sun protection factor (SPF) values from 13.59 (0.5 mg/g) to 50.65 (5 mg/g). Based on the results obtained, we can conclude that pomegranate peel is a promising source of bioactive compounds, which can be successfully utilized by integration into various pharmaceutical and value-added skin health products.
Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Clinics and Practice, Cosmetics, JCM, Medicina, Dermato, LabMed, Psychology International
Advances in Psychodermatology
Topic Editors: Jacek C. Szepietowski, Andrzej JaworekDeadline: 30 November 2025
Topic in
Antioxidants, Biomedicines, IJMS, Life, Oxygen, Cosmetics, Nutraceuticals
Oxidative Stress and Inflammation, 3rd Edition
Topic Editors: Maria Letizia Manca, Amparo Nacher, Matteo Perra, Ines Castangia, Mohamad AllawDeadline: 31 July 2026

Conferences
Special Issues
Special Issue in
Cosmetics
Innovative Vesicular Systems and Natural Extracts for Targeted Drug Delivery, Cosmetics, and Skin Therapeutics
Guest Editor: Ines CastangiaDeadline: 31 August 2025
Special Issue in
Cosmetics
Cosmetic Dermatologic Surgery
Guest Editors: Mihaela Pertea, Anca ChiriacDeadline: 31 August 2025
Special Issue in
Cosmetics
Recent Advance in Hair Science and Hair Care Technologies: 2nd Edition
Guest Editor: Kenzo KoikeDeadline: 31 August 2025
Special Issue in
Cosmetics
The Function of Extracellular Matrix for Skin Health and Beauty
Guest Editor: Maria Aparecida Silva PinhalDeadline: 30 September 2025
Topical Collections
Topical Collection in
Cosmetics
Editorial Board Members' Collection Series: "Sustainability in Materials and Processes in Cosmetic Science"
Collection Editors: Pierfrancesco Morganti, Alina Sionkowska
Topical Collection in
Cosmetics
Editorial Board Members' Collection Series: "Novel Delivery Systems for Dermocosmetic Applications"
Collection Editors: Elisabetta Esposito, Debora Santonocito