In Vitro Skin Models for Skin Sensitisation: Challenges and Future Directions
Abstract
1. Introduction
2. Skin Sensitisation, the Adverse Outcome Pathway and Alternative Test Methods
2.1. Skin Sensitisation
2.2. The Adverse Outcome Pathway and Alternative Methods
3. Regulatory Landscape and Advancements in Skin Sensitization Testing for Cosmetics
4. In Vitro Skin Models for Skin Sensitisation Testing
4.1. In Vitro Skin Models: Unique Tools for Dermatology Applications
4.2. RHE-Based Approaches to Evaluate Keratinocyte Response to Sensitisers (KE2)
4.2.1. Markers for the Keratinocyte Response
4.2.2. The RHE Methods for Keratinocyte Response
4.2.3. Performance of EpiSensA and SENS-IS
4.2.4. EpiSensA and SENS-IS in the NAM Battery for Skin Sensitisation
4.3. Immunocompetent Skin Models for KE3
5. Emerging Technologies to Improve Predictability in Skin Sensitisation
5.1. Skin-on-a-Chip (SoC)
5.2. Integration of Omics Approaches for Mechanistic and Predictive Insight
5.3. In Silico Methods
5.4. Future Directions and Integration Pathways
6. Conclusions
Funding
Conflicts of Interest
Abbreviations
RHE | Reconstructed Human Epidermis |
LLNA | Local Lymph Node Assay |
ACD | Allergic Contact Dermatitis |
GPMT | Guinea Pig Maximization Test |
3Rs | Replacement, Reduction, and Refinement |
NAMs | New Approach Methods |
OECD | Organisation for Economic Co-operation and Development |
AOP | Adverse Outcome Pathway |
KEs | Key Events |
3D | Three-dimensional |
APC | Antigen Presenting Cells |
DCs | Dendritic Cells |
LCs | Langerhans Cells |
MIE | Molecular Initiating Event |
ADRA | Amino acid Derivative Reactivity Assay |
DPRA | Direct Peptide Reactivity Assay |
kDPRA | kinetics Direct Peptide Reactivity Assay |
IL | Interleukin |
ARE | Antioxidant Response Element |
Keap1 | Kelch-like ECH-associated protein 1 |
HMOX1 | Heme oxygenase1 |
h-CLAT | Human Cell Line Activation Test |
GARD | Genomic Allergen Rapid Detection |
MHC | Major Histocompatibility Complex |
CLP | Classification, Labelling and Packaging |
REACH | Registration, Evaluation, Authorisation and Restriction of Chemicals |
DAs | Defined Approaches |
IATA | Integrated Approaches to Testing and Assessment |
ITS | Integrated Testing Strategy |
GHS | Globally Harmonized System |
PoD | Point of Departure |
QRA | Quantitative Risk Assessment |
RHS | Reconstructed Human Skin |
MTT | Methyl Thiazole Tetrazolium |
DNCB | Dinitrochlorobenzene |
EE | Epidermal Equivalent |
SoC | Skin-on-a-chip |
TEER | Trans-epithelial electrical resistance |
QSAR | Quantitative Structure-Activity Relationship |
Appendix A
EE Potency Assay | RHE-IL-18 | SensCeeTox | Episens A | Sens-IS | |
---|---|---|---|---|---|
Test developer | VUMC (The Netherlands) | Università degli Studi di Mano (Italy) | CeeTox (USA) | Kao Corporation (Japan) | ImmunoSearch (France) |
RHE models used | EpiCS® (CellSystems) SkinEthic™ (L’Oréal) | In-house RHE (VUMC-EE), EpiCS® (CellSystems), EpiDerm™ (MatTek), SkinEthic™ (L’oreal) | SkinEthic™ (L’Oréal); EpiDerm™ (MatTek) | LabCyte EPI-MODEL 24 (J-Tec) | EpiSkin™ (L’oreal) SkinEthic™ (L’oreal) |
Pre-submission (TSAR ID) * | to ECVAM in 2011 (TM2011-12) | To EVCAM in 2012 (TM2012-05) | to ECVAM in 2011 (TM2011-02) | to JaCVAM in 2018 (TM2018-01) | to ECVAM in 2011 (TM2011-11) |
Formal validation | NO | NO | NO | Peer-review completed in 2023 | Peer-review completed in 2024 |
OEDC adoption | NO | NO | NO | Test Guideline 442D (june 2024) Test No 442D, 2024 | NO |
Exposure time | 24 h | 24 h | 24 h | 6 h | 15 min (6 h incubation) |
Read out | 1. Cytotoxicity (MTT) | 1. IL-18 release by keratinocytes 2. Cytotoxicity (MTT) | 1. Glutathione (GSH) Depletion. 2. Gene expression of 7 genes controlled by the Nrf2/Keap1/ARE or AhR/ARNT/XRE signaling pathways: NADPH-quinone oxidoreductase 1 (NQO1) Aldoketoreductase 1C2 (AKR1C2) Interleukin 8 (IL-8) Cytochrome P450 1A1 (CYP1A1) Aldehyde dehydrogenase 3A1 (ALDH3A) Heme-oxygenase 1 (HMOX1) Glutamate cysteine ligase catalytic subunit C (GCLC). 3. Cytotoxicity (LDH) | 1. Gene Expression Analysis activating transcription factor 3 (ATF3); glutamate-cysteine ligase, modifier subunit (GCLM); DnaJ (Hsp40) homolog, subfamily B, member 4 (DNAJB4); and interleukin-8 (IL-8) 2. Cytotoxicity | 1. Gene Expression Analysis of 64 genes biomarkers in 3 groups: skin irritation (23), antioxidant pathways: ARE genes (17) SENS-IS genes (21) and housekeeping (3) Which vehicles are used in Episens A assay |
Hazard prediction | NO | Several prediction models based on thresholds for IL-18 secretion and viability | Proprietary algorithm with data from GSH depletion, viability and marker gene expression | Positive if any marker gene expressed above individual thresholds values | Positive if expression of 7 or more marker genes in REDOX or SENS-IS panels above threshold value |
Potency prediction Approach | Concentration for 50% reduction in viability (EC50) interpolated in a regression curve of reference substances | Concentration for 50% reduction in viability (EC50) or stimulation of IL-18 secretion (SI2) interpolated in a regression curve of reference substances. | Proprietary algorithm with data from GSH depletion, viability and gene expression (In Vitro Toxicity Index) | Cut-off value of the lowest positive concentration determines GHS potency categories | Lowest positive concentration determines potency according to LLNA categories |
References | [101,102,203] | [104,105,106,204,205,206] | [109,207] | [112,113,114,126,127,208,209,210] | [118,122,125,128,129,130,133,134,137,138,211] |
Immune Cells Incorporated | Differentiation Conditions | Skin Equivalent | Immune Cell Incorporation | Exposure to Sensitisers | Read-Out | Ref |
---|---|---|---|---|---|---|
CD34-derived Langerhans cells | CD34+ hematopoietic progenitor cells differentiated to LCs after 6 days in the presence of 200 ng/mL GM-CSF and 2.5 ng/mL TNF-a. | RHE-LCs | a) Co-seeding CD34-derived Langerhans cells with keratinocytes onto the Episkin™ support. b) CD34+ hematopoietic progenitor cells, not exposed to GM-CSF and TNF-a, co-seeded with keratinocytes and melanocytes onto dermal equivalents. | No | Immunohistology staining, migration of CD1a+, Lag+ cells | [147] |
CD34-derived Langerhans cells | Differentiated into DCs for 7 days in a medium with 2000 U/mL GM-CSF, 20 U/mL TNF-a, 20 ng/mL SCF. | RHE-LCs | CD34-derived LCs and keratinocytes were co-seeded onto the Episkin™ support. | 24 h topical application or solar simulated radiation. Cytokines: TNF-a and IL-1b. Sensitisers: dinitrofluorobenzene (DNFB), oxazolone, p-phenylenediamine (pPD), NiSO4, eugenol, benzocaine. Irritants: sodium lauryl sulphate, benzalkonium chloride, eugenol. | Immunohistology staining: loss of dendricity. IL-1b, CD86 mRNA expression by RT-PCR | [212] |
Monocyte derived DCs (MoDCs) | MoDCs were derived from peripheral blood CD14+ cells cultured for 6 days in the presence of, 250 U/mL IL-4 and 50 ng/mL GM-CSF. | RHS-DCs | Layer of agarose–fibronectin gel containing immature MoDCs placed between a bottom fibroblast containing layer and a top keratinocyte layer | 24 h topical application sensitisers: dinitrochlorobenzene (DNCB). Irritant: sodium dodecyl sulphate (SDS). | CD86 and HLA-DR expression by flow cytometry. IL-1α, IL-6 and IL-8 secretion by ELISA. | [152] |
Monocytes | CD14+ cells differentiated into dendritic cells when incorporated into this 3D skin model | RHS-DCs | For the RHS construct, keratinocytes and freshly isolated CD14+ cells were seeded on a fibrin-based dermal compartment populated by fibroblasts. | 24 h topical application f Sensitisers: Formaldehyde and Manganese (II) Chloride Tetrahydrate (MnCl2·4H2O). Irritant: sodium dodecyl sulphate (SDS) | Immunohistology staining: Migration of CD1a+, Langerin+ cells. | [213] |
DCs | Commercial normal human dendritic cells | RHS-DCs | RHS constructs were generated by preparing a collagen vitrigel membrane (VG-KDF-Skin) populated with fibroblasts, followed by normal human dendritic cells in collagen and then keratinocytes seeded on top | 1 h topical application Sensitisers: Cobalt chloride (CoCl2), 2,4-dinitrofluorobenzene (DNFB), Formaldehyde (HCHO) and glutaraldehyde (GA), m-amino-phenol (m-AP), cinnamaldehyde (CA), DNCB, α-hexyl cinnamic aldehyde (HCA), isoeugenol (IE). Non-sensitisers: dimethyl sulfoxide (DMSO), isopropanol (IP), lactic acid (LA), sodium dodecyl sulphate (SDS), Tween 80 | IL-1α and IL-4 release by ELISA | [153] |
MUTZ-3-LCs | cells were differentiated into MUTZ-3-LCs for 7 days in the presence of 100 ng/mL GM-CSF, 10 ng/mL TGF-b and 2.5 ng/mL TNF-a. | RHS-LCs | For RHS generation keratinocytes and MUTZ-3-LCs were seeded on top of a dermal equivalent based on fibroblasts seeded onto a collagen matrix. | No | Immunohistology staining, Langerin+ cells. | [214] |
MUTZ-3-LCs | MUTZ-3-LCs were derived in the presence of 100 ng/mL GM-CSF, 10 ng/mL, TGF-b, and 2.5 ng/mL TNF-a for 7 days. | RHS-LCs | full-thickness skin equivalent was made by co-culture MUTZ-3--LC with keratinocytes onto fibroblast-populated collagen gels. | 16 h topical application: sensitisers: NiSO4, resorcinol | Immunohistology staining, migration of CD1a+, Langerin+ cells. IL-1b, CCR7 mRNA expression by RT-PCR. | [155] |
MUTZ-3-LCs | MUTZ-3 cells were differentiated into MUTZ-3-LCs for 7 days by treatment with 100 ng/mL GM-CSF, 10 ng/mL TGF-b1 and 2.5 ng/mL TNF-a | RHS-LCs | SE containing MUTZ-3-LC was achieved by co-seeding CFSE labelled MUTZ-3-LC with Keratinocytes onto fibroblast-populated collagen gels. | 16 h Topical exposure Sensitisers: nickel sulphate, resorcinol, cinnamaldehyde Irritants: Triton X-100, SDS, Tween 80 | Immunohistology staining and flow cytometry: migration of CD1a+, Langerin+ cells. CD68 mRNA expression by RT-PCR | [156] |
MUTZ-3-LCs | Not indicated | Co-culture MUTZ-3-LCs with RHEs | Dermal equivalent with a lattice of collagen and fibroblasts overlaid by a stratified epidermis. RealSkin was used either as a stand-alone assay or co-cultured with MUTZ-3-LCs | 48 h topical exposure: Sensitisers: isoeugenol, and a stron p-phenylenediamine (PPD). Irritant: salicylic acid | Release of 27 cytokines panel using multiplex bead-based immunoassay. Transwell chemotactic assay to CCL19. | [215] |
MUTZ-3-LCs and MoLCsMUTZ-3-LCs | MUTZ-3 cells were differentiated into MUTZ-3-LCs for 10 days by treatment with 10 ng/mL TGF-b1, 100 ng/mL GM-CSF, 2.5 ng/mL TNF-a. MoLCs were obtained after 7 days of monocyte cultivation with 100 ng/mlGM-CSF, 20 ng/mL interleukin IL-4 and 20 ng/mL TGF-b1 MUTZ-3 cells were differentiated into MUTZ-3-LCs for 7 days by treatment with 100 ng/mL GM-CSF, 10 ng/mL TGF-b1 and 2.5 ng/mL TNF-a | RHS-LCs | Full-thickness skin equivalents prepared by seeding normal human keratinocytes and MUTZ-LCs or MoLCs, respectively, onto the dermal compartment populated with fibroblast on collagen I gel. | 24 h topical application: Sensitisers: 2,4-dinitrochlorobenzene (DNCB), isoeugenol. Irritant: sodium dodecyl sulphate (SDS)16 h Topical exposure: Sensitisers: cinnamaldehyde, resorcinol or nickel (II) sulphate hexahydrate (NiSO4) | Immunohistology staining and flow cytometry: migration CD1a+, Langerin+ cells. IL-6-, IL-8- and IL-18 releases quantified by ELISA ATF3, CD83, CXCR4, IL-1b, PD-L1 mRNA expression by RT-PCR | [216] |
MUTZ-3-LCsMUTZ-3-LCs and MoLCs | MUTZ-3 cells were differentiated into MUTZ-3-LCs for 7 days by treatment with 100 ng/mL GM-CSF, 10 ng/mL TGF-b1 and 2.5 ng/mL TNF-a. | RHS-LCs RHS-LCs/and MoLCs | RHS-LCs were constructed by preparing a fibroblast populated collagen I hydrogel and coculture Keratinocytes and CFSE-labelled MUTZ-LCs on top of the hydrogel. | 24 h topical application: Sensitisers: TiO2, CaO3Ti, C12H28O4Ti, TiALH, nickel sulphate. | Immunohistology staining CD1a+, Langerin+ cells. CXCL12 vs. CCL5-dependent migration of MUTZ-3—LCs. Increase in CD83/CD86 expression by flow cytometry. CXCL8 release quantified by ELISA. IL-1b, CCR7, IL-10 mRNA expression by RT-PCR | [217] |
THP-1 MUTZ-3-LCs | THP-1 in RPMI 10% FBS. (Non-differentiated) | Co-culture of THP-1 with RHE | THP-1 cells were seeded in the basolateral compartment underneath the RHE models (OS-REp, SkinEthic™ RHE). | 24 h topical application. Sensitisers: eugenol, coumarin Irritant: Lactic acid. | Increase in CD86, CD54, CD40 and HLA-DR expression by flow cytometry | [218] |
THP1-DCsTHP-1 | THP1 cells were differentiated to DCs for 5 days by treatment with 1500 IU/mL rhGM-CSF and 1500 IU/mL rhIL-4. THP-1 in RPMI 10% FBS. | RHS-DCs | RHS-DCs were constructed by seeding Keratinocytes with THP-1-derived iDCs onto dermis models based on a solid and porous collagen matrix and primary human foreskin fibroblasts. | 24 h topical application: Sensitisers: 1-chloro-2,4-dinitrobenzene (DNCB), nickel sulphate (NiSO4). | Increase in CD86, CD54, expression by flow cytometry IkBa degradation and phosphorylation of p38 MAPK by Western blot. IL-6, IL-8, IL-1b, TNFa and protein secretion by ELISA mRNA expression by RT-PCR | [219] |
THP1-DCs and MUTZ-3-LCs | THP-1 cells were differentiated to DCs for 5 days by treatment with 1500 IU/mL rhGM-CSF and 1500 IU/mL rhIL-4. MUTZ-3 cells were differentiated to LCs for 9 days by treatment with 1000 U/mL rhGM-CSF, 400 U/mL TGF-b and 100 U/mL TNF-a. | RHS-DCs/LCs | RHS-DCs were constructed by seeding Keratinocytes with MUTZ-3_LCs and THP-1-DCs onto the dermis models. After that freshly detached keratinocytes were seeded on top of the MUTZ-3-LCs +THP1-DCs models. RHS-DCs were constructed by seeding Keratinocytes with THP-1-DCs onto dermis models based on a solid and porous collagen matrix and primary human foreskin fibroblasts. | 6–24 h topical application Sensitisers: DNCB, NiSO4 | Immunohistology staining, migration CD1a+ cells. IkBa degradation, and phosphorylation of p38 MAPK by Western blot CD86, CD83, CD54, CXCR4, CCR7, IL-6, IL-8, TNFa, IL-1a IL-1b and IL-12p40 mRNA expression by qPCR. Increase in CD86, CD54, expression by flow cytometry IkBa degradation and phosphorylation of p38 MAPK by Western blot. mRNA expression by RT-PCR IL-6, IL-8, IL-1b, TNFa and protein secretion by ELISA | [220] |
References
- Corsini, E.; Engin, A.B.; Neagu, M.; Galbiati, V.; Nikitovic, D.; Tzanakakis, G.; Tsatsakis, A.M. Chemical-induced contact allergy: From mechanistic understanding to risk prevention. Arch. Toxicol. 2018, 92, 3031–3050. [Google Scholar] [CrossRef]
- Kaplan, D.H.; Igyártó, B.Z.; Gaspari, A.A. Early events in the induction of allergic contact dermatitis. Nat. Rev. Immunol. 2012, 12, 114. [Google Scholar] [CrossRef]
- Rustemeyer, T. Immunological mechanisms in allergic contact dermatitis. Curr. Treat. Options Allergy 2022, 9, 67–75. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Yamaguchi, Y.; Peeva, E. Role of innate immunity in allergic contact dermatitis: An update. Int. J. Mol. Sci. 2023, 24, 12975. [Google Scholar] [CrossRef]
- Alinaghi, F.; Bennike, N.H.; Egeberg, A.; Thyssen, J.P.; Johansen, J.D. Prevalence of contact allergy in the general population: A systematic review and meta-analysis. Contact Dermat. 2019, 80, 77–85. [Google Scholar] [CrossRef]
- Park, M.; Zippin, J. Allergic contact dermatitis to cosmetics. Dermatol. Clin. 2014, 32, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Diepgen, T.L.; Ofenloch, R.F.; Bruze, M.; Bertuccio, P.; Cazzaniga, S.; Coenraads, P.-J.; Elsner, P.; Goncalo, M.; Svensson, Å.; Naldi, L. Prevalence of contact allergy in the general population in different european regions. Br. J. Dermatol. 2016, 174, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Alani, J.I.; Davis, M.D.P.; Yiannias, J.A. Allergy to cosmetics: A literature review. Dermatitis 2013, 24, 283–290. [Google Scholar] [CrossRef]
- Uter, W.; Werfel, T.; Lepoittevin, J.-P.; White, I.R. Contact allergy—Emerging allergens and public health Impact. Int. J. Environ. Res. Public Health 2020, 17, 2404. [Google Scholar] [CrossRef]
- Martin, S.F. The role of the innate immune system in allergic contact dermatitis. Allergol. Select. 2017, 1, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Uter, W.; Werfel, T.; White, I.R.; Johansen, J.D. Contact Allergy: A review of current problems from a clinical perspective. Int. J. Environ. Res. Public Health 2018, 15, 1108. [Google Scholar] [CrossRef]
- de Groot, A.C. Contact Allergy to Cosmetics: Causative ingredients. Contact Dermat. 1987, 17, 26–34. [Google Scholar] [CrossRef]
- Meigs, L.; Smirnova, L.; Rovida, C.; Leist, M.; Hartung, T. Animal testing and its alternatives—The most important omics is economics. ALTEX 2018, 35, 275–305. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Circabc—Access to Public Documents. Available online: https://circabc.europa.eu/ (accessed on 8 July 2025).
- Basketter, D.; Ball, N.; Cagen, S.; Carrillo, J.-C.; Certa, H.; Eigler, D.; Garcia, C.; Esch, H.; Graham, C.; Haux, C.; et al. Application of a weight of evidence approach to assessing discordant sensitisation datasets: Implications for REACH. Regul. Toxicol. Pharmacol. 2009, 55, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Aeby, P.; Ashikaga, T.; Bessou-Touya, S.; Schepky, A.; Gerberick, F.; Kern, P.; Marrec-Fairley, M.; Maxwell, G.; Ovigne, J.-M.; Sakaguchi, H.; et al. Identifying and characterizing chemical skin sensitizers without animal testing: Colipa’s research and method development program. Toxicol. Vitr. 2010, 24, 1465–1473. [Google Scholar] [CrossRef]
- Worth, A.P.; Balls, M. The principles of validation and the ecvam validation process. Altern. Lab. Anim. 2004, 32 (Suppl. 1B), 623–629. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, G.; MacKay, C.; Cubberley, R.; Davies, M.; Gellatly, N.; Glavin, S.; Gouin, T.; Jacquoilleot, S.; Moore, C.; Pendlington, R.; et al. Applying the skin sensitisation adverse outcome pathway (AOP) to quantitative risk assessment. Toxicol. Vitr. 2014, 28, 8–12. [Google Scholar] [CrossRef]
- OECD. The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins; No. 168; OECD Series on Testing and Assessment; OECD Publishing: Paris, France, 2014. [Google Scholar] [CrossRef]
- OECD. Test No. 442D: In Vitro Skin Sensitisation: Assays Addressing the Adverse Outcome Pathway Key Event on Keratinocyte Activation; OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2024. [Google Scholar] [CrossRef]
- Risueño, I.; Valencia, L.; Jorcano, J.L.; Velasco, D. Skin-on-a-Chip models: General overview and future perspectives. APL Bioeng. 2021, 5, 030901. [Google Scholar] [CrossRef]
- Footner, E.; Firipis, K.; Liu, E.; Baker, C.; Foley, P.; Kapsa, R.M.I.; Pirogova, E.; O’Connell, C.; Quigley, A. Layer-by-layer analysis of in vitro skin models. ACS Biomater. Sci. Eng. 2023, 9, 5933–5952. [Google Scholar] [CrossRef]
- Kashem, S.W.; Haniffa, M.; Kaplan, D.H. Antigen-presenting cells in the skin. Annu. Rev. Immunol. 2017, 35, 469–499. [Google Scholar] [CrossRef]
- Goodwin, B.F.; Roberts, D.W. Structure-activity relationships in allergic contact dermatitis. Food Chem. Toxicol. 1986, 24, 795–798. [Google Scholar] [CrossRef]
- Lepoittevin, J.-P. Metabolism versus chemical transformation or pro- versus prehaptens? Contact Dermat. 2006, 54, 73–74. [Google Scholar] [CrossRef] [PubMed]
- Aptula, A.O.; Roberts, D.W.; Pease, C.K. Haptens, prohaptens and prehaptens, or electrophiles and proelectrophiles. Contact Dermat. 2007, 56, 54–56. [Google Scholar] [CrossRef]
- Ankley, G.T.; Bennett, R.S.; Erickson, R.J.; Hoff, D.J.; Hornung, M.W.; Johnson, R.D.; Mount, D.R.; Nichols, J.W.; Russom, C.L.; Schmieder, P.K.; et al. Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environ. Toxicol. Chem. 2010, 29, 730–741. [Google Scholar] [CrossRef]
- OECD. Test No. 442C: In chemico Skin Sensitisation: Assays Addressing the Adverse Outcome Pathway Key Event on Covalent Binding to Proteins; OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2023. [Google Scholar] [CrossRef]
- Weber, F.C.; Esser, P.R.; Müller, T.; Ganesan, J.; Pellegatti, P.; Simon, M.M.; Zeiser, R.; Idzko, M.; Jakob, T.; Martin, S.F. Lack of the purinergic receptor p2x7 results in resistance to contact hypersensitivity. J. Exp. Med. 2010, 207, 2609–2619. [Google Scholar] [CrossRef] [PubMed]
- OECD. In Vitro Skin Sensitisation: Assays Addressing the Adverse Outcome Pathway Key Event on Keratinocyte Activation; OECD Publishing: Paris, France, 2024. [Google Scholar]
- OECD. Test No. 442E: In Vitro Skin Sensitisation: Assays Addressing the Key Event on Activation of Dendritic Cells on the Adverse Outcome Pathway for Skin Sensitisation; OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2024. [Google Scholar] [CrossRef]
- OECD. Test No. 429: Skin Sensitisation: Local Lymph Node Assay; OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2010. [Google Scholar] [CrossRef]
- Bauch, C.; Kolle, S.N.; Ramirez, T.; Eltze, T.; Fabian, E.; Mehling, A.; Teubner, W.; van Ravenzwaay, B.; Landsiedel, R. Putting the Parts Together: Combining in vitro methods to test for skin sensitizing potentials. Regul. Toxicol. Pharmacol. 2012, 63, 489–504. [Google Scholar] [CrossRef]
- OECD. Test No. 497: Defined Approaches on Skin Sensitisation; OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2023. [Google Scholar] [CrossRef]
- OECD. Guidance Document on Good In Vitro Method Practices (GIVIMP); OECD Series on Testing and Assessment, No. 286; OECD Publishing: Paris, France, 2018. [Google Scholar] [CrossRef]
- Urbisch, D.; Honarvar, N.; Kolle, S.N.; Mehling, A.; Ramirez, T.; Teubner, W.; Landsiedel, R. peptide reactivity associated with skin sensitization: The QSAR toolbox and TIMES compared to the DPRA. Toxicol. Vitr. 2016, 34, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, H.; Ryan, C.; Ovigne, J.-M.; Schroeder, K.R.; Ashikaga, T. Predicting skin sensitization potential and inter-laboratory reproducibility of a human cell line activation test (h-CLAT) in the european cosmetics association (COLIPA) ring trials. Toxicol. Vitr. 2010, 24, 1810–1820. [Google Scholar] [CrossRef]
- Buzzella, A.; Mazzini, G.; Vicini, R.; Angelinetta, C.; Pastoris, O. A preliminary study of an alternative method for evaluating skin sensitizing potential of chemicals. Int. J. Cosmet. Sci. 2019, 41, 257–264. [Google Scholar] [CrossRef]
- OECD. Guidance Document on the Validation and International Acceptance of New or Updated Test Methods for Hazard Assessment; OECD Series on Testing and Assessment, No. 34; OECD Publishing: Paris, France, 2005; Available online: https://www.oecd.org/en/publications/guidance-document-on-the-validation-and-international-acceptance-of-new-or-updated-test-methods-for-hazard-assessment_e1f1244b-en.html (accessed on 21 November 2024).
- Patlewicz, G.; Casati, S.; Basketter, D.A.; Asturiol, D.; Roberts, D.W.; Lepoittevin, J.-P.; Worth, A.P.; Aschberger, K. Can currently available non-animal methods detect pre and pro-haptens relevant for skin sensitization? Regul. Toxicol. Pharmacol. 2016, 82, 147–155. [Google Scholar] [CrossRef]
- Chipinda, I.; Ruwona, T.B.; Templeton, S.P.; Siegel, P.D. Use of the human monocytic leukemia thp-1 cell line and co-incubation with microsomes to identify and differentiate hapten and prohapten sensitizers. Toxicology 2011, 280, 135–143. [Google Scholar] [CrossRef]
- Géniès, C.; Jacques-Jamin, C.; Duplan, H.; Rothe, H.; Ellison, C.; Cubberley, R.; Schepky, A.; Lange, D.; Klaric, M.; Hewitt, N.J.; et al. Comparison of the metabolism of 10 cosmetics-relevant chemicals in EpiSkinTM S9 subcellular fractions and in vitro human skin explants. J. Appl. Toxicol. 2020, 40, 313–326. [Google Scholar] [CrossRef]
- Kazem, S.; Linssen, E.C.; Gibbs, S. skin metabolism phase I and phase II enzymes in native and reconstructed human skin: A short review. Drug Discov. Today 2019, 24, 1899–1910. [Google Scholar] [CrossRef]
- Patel, S.K.; Vikram, A.; Pathania, D.; Chugh, R.; Gaur, P.; Prajapati, G.; Kotian, S.Y.; Satyanarayana, G.N.V.; Yadav, A.K.; Upadhyay, A.K.; et al. Allergic potential & molecular mechanism of skin sensitization of cinnamaldehyde under environmental UVb exposure. Chemosphere 2024, 368, 143508. [Google Scholar] [CrossRef]
- Lee, S.; Greenstein, T.; Shi, L.; Maguire, T.; Schloss, R.; Yarmush, M. Tri-culture system for pro-hapten sensitizer identification and potency classification. Technology 2018, 6, 67–74. [Google Scholar] [CrossRef]
- Daniel, A.B.; Strickland, J.; Allen, D.; Casati, S.; Zuang, V.; Barroso, J.; Whelan, M.; Régimbald-Krnel, M.J.; Kojima, H.; Nishikawa, A.; et al. International regulatory requirements for skin sensitization testing. Regul. Toxicol. Pharmacol. 2018, 95, 52–65. [Google Scholar] [CrossRef]
- Ferreira, M.; Matos, A.; Couras, A.; Marto, J.; Ribeiro, H. Overview of cosmetic regulatory frameworks around the world. Cosmetics 2022, 9, 72. [Google Scholar] [CrossRef]
- European Parliament and Council of the European Union. Regulation (EC) No 1272/2008 on classification, labelling and packaging of substances and mixtures (CLP regulation). Off. J. Eur. Union 2008, L353, 1–1355. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32008R1272 (accessed on 9 July 2025).
- European Commission. Commission Regulation (EU) 2017/706 amending Annex VII to regulation (EC) no. 1907/2006 (REACH) as regards skin sensitisation and repealing commission regulation (EU) 2016/1688. Off. J. Eur. Union 2017, L104, 1–5. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32017R0706 (accessed on 9 July 2025).
- Council of the European Communities. Council Directive 76/768/EEC of 27 July 1976 on the approximation of the laws of the member states relating to cosmetic products. Off. J. Eur. Union 1976, L262, 169–200. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31976L0768 (accessed on 9 July 2025).
- European Parliament and Council of the European Union. Regulation (EC) No 1907/2006 concerning the registration, evaluation, authorisation and restriction of chemicals (REACH). Off. J. Eur. Union 2006, L396, 1–849. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32006R1907 (accessed on 9 July 2025).
- European Parliament. Regulation (EC) No. 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products. Off. J. Eur. Union 2009, L396, 1–1355. Available online: http://data.europa.eu/eli/reg/2009/1223/oj (accessed on 28 July 2025).
- Knight, J.; Rovida, C.; Kreiling, R.; Zhu, C.; Knudsen, M.; Hartung, T. Continuing animal tests on cosmetic ingredients for REACH in the EU. ALTEX 2021, 38, 653–668. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 406: Skin Sensitisation; OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 1992. [Google Scholar] [CrossRef]
- Gerberick, G.F.; Ryan, C.A.; Dearman, R.J.; Kimber, I. Local lymph node assay (LLNA) for detection of sensitization capacity of chemicals. Methods 2007, 41, 54–60. [Google Scholar] [CrossRef]
- Chayawan; Selvestrel, G.; Baderna, D.; Toma, C.; Caballero Alfonso, A.Y.; Gamba, A.; Benfenati, E. Skin sensitization quantitative QSAR models based on mechanistic structural alerts. Toxicology 2022, 468, 153111. [Google Scholar] [CrossRef]
- Kleinstreuer, N.C.; Hoffmann, S.; Alépée, N.; Allen, D.; Ashikaga, T.; Casey, W.; Clouet, E.; Cluzel, M.; Desprez, B.; Gellatly, N.; et al. Non-animal methods to predict skin sensitization (II): An assessment of defined approaches. Crit. Rev. Toxicol. 2018, 48, 359–374. [Google Scholar] [CrossRef] [PubMed]
- Assaf Vandecasteele, H.; Gautier, F.; Tourneix, F.; van Vliet, E.; Bury, D.; Alépée, N. Next generation risk assessment for skin sensitisation: A case study with propyl paraben. Regul. Toxicol. Pharmacol. 2021, 123, 104936. [Google Scholar] [CrossRef] [PubMed]
- OECD. Guidance Document on the Reporting of Defined Approaches to be Used Within Integrated Approaches to Testing and Assessment; OECD Series on Testing and Assessment, No. 255; OECD: Paris, France, 2017. [Google Scholar] [CrossRef]
- Takenouchi, O.; Fukui, S.; Okamoto, K.; Kurotani, S.; Imai, N.; Fujishiro, M.; Kyotani, D.; Kato, Y.; Kasahara, T.; Fujita, M.; et al. Test battery with the human cell line activation test, direct peptide reactivity assay and derek based on a 139 chemical data set for predicting skin sensitizing potential and potency of chemicals. J. Appl. Toxicol. 2015, 35, 1318–1332. [Google Scholar] [CrossRef]
- Natsch, A.; Haupt, T.; Wareing, B.; Landsiedel, R.; Kolle, S.N. Predictivity of the kinetic direct peptide reactivity assay (kDPRA) for sensitizer potency assessment and GHS subclassification. ALTEX 2020, 37, 652–664. [Google Scholar] [CrossRef]
- Api, A.M.; Basketter, D.A.; Cadby, P.A.; Cano, M.-F.; Ellis, G.; Gerberick, G.F.; Griem, P.; McNamee, P.M.; Ryan, C.A.; Safford, R. Dermal sensitization quantitative risk assessment (QRA) for fragrance ingredients. Regul. Toxicol. Pharmacol. 2008, 52, 3–23. [Google Scholar] [CrossRef]
- Reynolds, J.; Gilmour, N.; Baltazar, M.T.; Reynolds, G.; Windebank, S.; Maxwell, G. Decision making in next generation risk assessment for skin allergy: Using historical clinical experience to benchmark risk. Regul. Toxicol. Pharmacol. 2022, 134, 105219. [Google Scholar] [CrossRef] [PubMed]
- Gilmour, N.; Kern, P.S.; Alépée, N.; Boislève, F.; Bury, D.; Clouet, E.; Hirota, M.; Hoffmann, S.; Kühnl, J.; Lalko, J.F.; et al. Development of a next generation risk assessment framework for the evaluation of skin sensitisation of cosmetic ingredients. Regul. Toxicol. Pharmacol. 2020, 116, 104721. [Google Scholar] [CrossRef]
- Natsch, A. Integrated skin sensitization assessment based on OECD methods (III): Adding human data to the assessment. ALTEX 2023, 40, 571–583. [Google Scholar] [CrossRef] [PubMed]
- Zeller, K.S.; Forreryd, A.; Lindberg, T.; Gradin, R.; Chawade, A.; Lindstedt, M. The GARD platform for potency assessment of skin sensitizing chemicals. ALTEX 2017, 34, 539–559. [Google Scholar] [CrossRef] [PubMed]
- Gradin, R.; Forreryd, A.; Mattson, U.; Jerre, A.; Johansson, H. Quantitative assessment of sensitizing potency using a dose-response adaptation of GARDskin. Sci. Rep. 2021, 11, 18904. [Google Scholar] [CrossRef]
- Strickland, J.; Zang, Q.; Paris, M.; Lehmann, D.M.; Allen, D.; Choksi, N.; Matheson, J.; Jacobs, A.; Casey, W.; Kleinstreuer, N. Multivariate models for prediction of human skin sensitization hazard. J. Appl. Toxicol. 2017, 37, 347–360. [Google Scholar] [CrossRef]
- Giménez-Arnau, E. Chemical compounds responsible for skin allergy to complex mixtures: How to identify them? Cosmetics 2019, 6, 71. [Google Scholar] [CrossRef]
- Brohem, C.A.; da Silva Cardeal, L.B.; Tiago, M.; Soengas, M.S.; de Moraes Barros, S.B.; Maria-Engler, S.S. Artificial skin in perspective: Concepts and applications. Pigment Cell Melanoma Res. 2011, 24, 35–50. [Google Scholar] [CrossRef]
- Ponec, M.; Boelsma, E.; Weerheim, A.; Mulder, A.; Bouwstra, J.; Mommaas, M. Lipid and ultrastructural characterization of reconstructed skin models. Int. J. Pharm. 2000, 203, 211–225. [Google Scholar] [CrossRef]
- Ponec, M.; Boelsma, E.; Gibbs, S.; Mommaas, M. Characterization of reconstructed skin models. Skin Pharmacol. Appl. Skin Physiol. 2004, 15, 4–17. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, L.; Hao, H.; Yan, M.; Zhu, Z. Applications of engineered skin tissue for cosmetic component and toxicology detection. Cell Transplant. 2024, 33, 9636897241235464. [Google Scholar] [CrossRef]
- Roguet, R.; Régnier, M.; Cohen, C.; Dossou, K.G.; Rougier, A. The use of in vitro reconstituted human skin in dermotoxicity testing. Toxicol. Vitr. 1994, 8, 635–639. [Google Scholar] [CrossRef]
- Gay, R.; Swiderek, M.; Nelson, D.; Ernesti, A. The living skin equivalent as a model in vitro for ranking the toxic potential of dermal irritants. Toxicol. Vitr. 1992, 6, 303–315. [Google Scholar] [CrossRef]
- Ponec, M.; Kempenaar, J. Use of human skin recombinants as an in vitro model for testing the irritation potential of cutaneous irritants. Skin Pharmacol. 1995, 8, 49–59. [Google Scholar] [CrossRef]
- Bernard, F.X.; Barrault, C.; Deguercy, A.; De Wever, B.; Rosdy, M. Development of a highly sensitive in vitro phototoxicity assay using the Skinethic reconstructed human epidermis. Cell Biol. Toxicol. 2000, 16, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Roguet, R.; Cohen, C.; Robles, C.; Courtellemont, P.; Tolle, M.; Guillot, J.P.; Pouradier Duteil, X. An interlaboratory study of the reproducibility and relevance of Episkin, a reconstructed human epidermis, in the assessment of cosmetics irritancy. Toxicol. Vitr. 1998, 12, 295–304. [Google Scholar] [CrossRef]
- Picarles, V.; Chibout, S.; Kolopp, M.; Medina, J.; Burtin, P.; Ebelin, M.E.; Osborne, S.; Mayer, F.K.; Spake, A.; Rosdy, M.; et al. Predictivity of an in vitro model for acute and chronic skin irritation (Skinethic) applied to the testing of topical vehicles. Cell Biol. Toxicol. 1999, 15, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Monteiro-Riviere, N.A.; Inman, A.O.; Snider, T.H.; Blank, J.A.; Hobson, D.W. Comparison of an in vitro skin model to normal human skin for dermatological research. Microsc. Res. Tech. 1997, 37, 172–179. [Google Scholar] [CrossRef]
- Netzlaff, F.; Lehr, C.-M.; Wertz, P.W.; Schaefer, U.F. The human epidermis models Episkin, Skinethic and Epiderm: An evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. Eur. J. Pharm. Biopharm. 2005, 60, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Bouwstra, J.A.; Helder, R.W.J.; El Ghalbzouri, A. Human skin equivalents: Impaired barrier function in relation to the lipid and protein properties of the stratum corneum. Adv. Drug Deliv. Rev. 2021, 175, 113802. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 431: In Vitro Skin Corrosion: Reconstructed Human Epidermis (RHE) Test Method; OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- OECD. Test No. 439: In Vitro Skin Irritation: Reconstructed Human Epidermis Test Methods; OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- OECD. Test No. 498: In Vitro Phototoxicity—Reconstructed Human Epidermis Phototoxicity Test Method; OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2023. [Google Scholar] [CrossRef]
- Enk, A.H.; Katz, S.I. Early molecular events in the induction phase of contact sensitivity. Proc. Natl. Acad. Sci. USA 1992, 89, 1398–1402. [Google Scholar] [CrossRef] [PubMed]
- Müller, G.; Knop, J.; Enk, A.H. Is cytokine expression responsible for differences between allergens and irritants? Am. J. Contact Dermat. 1996, 7, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Corsini, E.; Limiroli, E.; Marinovich, M.; Cohen, C.; Roguet, R.; Galli, C.L. selective induction of interleukin-12 in reconstructed human epidermis by chemical allergens. Altern. Lab. Anim. 1999, 27, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Coquette, A.; Berna, N.; Vandenbosch, A.; Rosdy, M.; Poumay, Y. Differential expression and release of cytokines by an in vitro reconstructed human epidermis following exposure to skin irritant and sensitizing chemicals. Toxicol. Vitr. 1999, 13, 867–877. [Google Scholar] [CrossRef]
- Gerberick, G.F.; Sikorski, E.E. In vitro and in vivo testing techniques for allergic contact dermatitis. Am. J. Contact. Dermat. 1998, 9, 111–118. [Google Scholar]
- Ryan, C.A.; Hulette, B.C.; Gerberick, G.F. Approaches for the development of cell-based in vitro methods for contact sensitization. Toxicol. Vitr. 2001, 15, 43–55. [Google Scholar] [CrossRef]
- Dinkova-Kostova, A.T.; Kostov, R.V.; Canning, P. Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants. Arch. Biochem. Biophys. 2017, 617, 84–93. [Google Scholar] [CrossRef]
- Natsch, A.; Emter, R. Skin sensitizers induce antioxidant response element dependent genes: Application to the in vitro testing of the sensitization potential of chemicals. Toxicol. Sci. 2008, 102, 110–119. [Google Scholar] [CrossRef]
- Emter, R.; Ellis, G.; Natsch, A. Performance of a novel keratinocyte-based reporter cell line to screen skin sensitizers in vitro. Toxicol. Appl. Pharmacol. 2010, 245, 281–290. [Google Scholar] [CrossRef]
- Ryan, C.A.; Gildea, L.A.; Hulette, B.C.; Dearman, R.J.; Kimber, I.; Gerberick, G.F. Gene expression changes in peripheral blood-derived dendritic cells following exposure to a contact allergen. Toxicol. Lett. 2004, 150, 301–316. [Google Scholar] [CrossRef]
- Gildea, L.A.; Ryan, C.A.; Foertsch, L.M.; Kennedy, J.M.; Dearman, R.J.; Kimber, I.; Gerberick, G.F. Identification of gene expression changes induced by chemical allergens in dendritic cells: Opportunities for skin sensitization testing. J. Investig. Dermatol. 2006, 126, 1813–1822. [Google Scholar] [CrossRef]
- Van Der Veen, J.W.; Soeteman-Hernández, L.G.; Ezendam, J.; Stierum, R.; Kuper, F.C.; Van Loveren, H. Anchoring molecular mechanisms to the adverse outcome pathway for skin sensitization: Analysis of existing data. Crit. Rev. Toxicol. 2014, 44, 590–599. [Google Scholar] [CrossRef]
- Vandebriel, R.J.; Pennings, J.L.A.; Baken, K.A.; Pronk, T.E.; Boorsma, A.; Gottschalk, R.; Van Loveren, H. Keratinocyte gene expression profiles discriminate sensitizing and irritating compounds. Toxicol. Sci. 2010, 117, 81–89. [Google Scholar] [CrossRef]
- Antonopoulos, C.; Cumberbatch, M.; Mee, J.B.; Dearman, R.J.; Wei, X.-Q.; Liew, F.Y.; Kimber, I.; Groves, R.W. IL-18 is a key proximal mediator of contact hypersensitivity and allergen-induced langerhans cell migration in murine epidermis. J. Leukoc. Biol. 2008, 83, 361–367. [Google Scholar] [CrossRef]
- Roggen, E.L. Application of the acquired knowledge and implementation of the Sens-IT-IV toolbox for identification and classification of skin and respiratory sensitizers. Toxicol. Vitr. 2013, 27, 1122–1126. [Google Scholar] [CrossRef] [PubMed]
- Teunis, M.A.T.; Spiekstra, S.W.; Smits, M.; Adriaens, E.; Eltze, T.; Galbiati, V.; Krul, C.; Landsiedel, R.; Pieters, R.; Reinders, J.; et al. International ring trial of the epidermal equivalent sensitizer potency assay: Reproducibility and predictive-capacity. ALTEX 2014, 31, 251–268. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, G.G.; Spiekstra, S.W.; Sampat-Sardjoepersad, S.C.; Reinders, J.; Scheper, R.J.; Gibbs, S. A potential in vitro epidermal equivalent assay to determine sensitizer potency. Toxicol. Vitr. 2011, 25, 347–357. [Google Scholar] [CrossRef]
- Corsini, E.; Galbiati, V.; Mitjans, M.; Galli, C.L.; Marinovich, M. NCTC 2544 and IL-18 production: A tool for the identification of contact allergens. Toxicol. Vitr. 2013, 27, 1127–1134. [Google Scholar] [CrossRef]
- Gibbs, S.; Corsini, E.; Spiekstra, S.W.; Galbiati, V.; Fuchs, H.W.; DeGeorge, G.; Troese, M.; Hayden, P.; Deng, W.; Roggen, E. An epidermal equivalent assay for identification and ranking potency of contact sensitizers. Toxicol. Appl. Pharmacol. 2013, 272, 529–541. [Google Scholar] [CrossRef]
- Galbiati, V.; Papale, A.; Marinovich, M.; Gibbs, S.; Roggen, E.; Corsini, E. Development of an in vitro method to estimate the sensitization induction level of contact allergens. Toxicol. Lett. 2017, 271, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Andres, E. A new prediction model for distinguishing skin sensitisers based on il-18 release from reconstructed epidermis: Enhancing the assessment of a key event in the skin sensitisation adverse outcome pathway. J. Dermat. Cosmetol. 2020, 4, 123–137. [Google Scholar] [CrossRef]
- Jacobs, M.N.; Hoffmann, S.; Hollnagel, H.M.; Kern, P.; Kolle, S.N.; Natsch, A.; Landsiedel, R. Avoiding a reproducibility crisis in regulatory toxicology-on the fundamental role of ring trials. Arch. Toxicol. 2024, 98, 2047–2063. [Google Scholar] [CrossRef]
- Basketter, D.A.; Kan-King-Yu, D.; Dierkes, P.; Jowsey, I.R. Does irritation potency contribute to the skin sensitization potency of contact allergens? Cutan. Ocul. Toxicol. 2007, 26, 279–286. [Google Scholar] [CrossRef]
- McKim Jr, J.M.; Keller III, D.J.; Gorski, J.R. An in Vitro Method for Detecting Chemical Sensitization Using Human reconstructed skin models and its applicability to cosmetic, pharmaceutical, and medical device safety testing. Cutan. Ocul. Toxicol. 2012, 31, 292–305. [Google Scholar] [CrossRef]
- McKim, J.M.; Keller, D.J.; Gorski, J.R. A new in vitro method for identifying chemical sensitizers combining peptide binding with ARE/EpRE-mediated gene expression in human skin cells. Cutan. Ocul. Toxicol. 2010, 29, 171–192. [Google Scholar] [CrossRef]
- Clippinger, A.J.; Keller, D.; McKim, J.M.; Witters, H. Inter-laboratory validation of an in vitro method to classify skin sensitizers. In Proceedings of the PETA Science Consortium. Society of Toxicology 53rd Annual Meeting, Phoenix, AZ, USA, 23–27 March 2014; Available online: https://www.thepsci.eu/wp-content/uploads/2014/03/SenCeeTox-Poster.pdf (accessed on 8 July 2025).
- Saito, K.; Nukada, Y.; Takenouchi, O.; Miyazawa, M.; Sakaguchi, H.; Nishiyama, N. Development of a new in vitro skin sensitization assay (Epidermal Sensitization Assay; EpiSensA) using reconstructed human epidermis. Toxicol. Vitr. 2013, 27, 2213–2224. [Google Scholar] [CrossRef]
- Saito, K.; Takenouchi, O.; Nukada, Y.; Miyazawa, M.; Sakaguchi, H. An in vitro skin sensitization assay termed episensa for broad sets of chemicals including lipophilic chemicals and pre/pro-haptens. Toxicol. Vitr. 2017, 40, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Mizumachi, H.; Suzuki, S.; Sakuma, M.; Natsui, M.; Imai, N.; Miyazawa, M. Reconstructed human epidermis-based testing strategy of skin sensitization potential and potency classification using epidermal sensitization assay and in silico data. J. Appl. Toxicol. 2024, 44, 415–427. [Google Scholar] [CrossRef] [PubMed]
- EURL ECVAM (European Commission, Joint Research Centre). Epidermal Sensitisation Assay (EpiSensA) Standard Operating Procedure; Tracking System for Alternative Methods Towards Regulatory Acceptance (TSAR), Test Method TM2018-01; European Commission, Joint Research Centre: Ispra, Italy, 2018; Available online: https://tsar.jrc.ec.europa.eu/test-method/tm2018-01-0 (accessed on 8 July 2025).
- JaCVAM (Japanese Center for the Validation of Alternative Methods). Epidermal Sensitisation Assay (EpiSensA) Validation Study Report; National Institute of Health Sciences: Kawasaki, Japan, 2022; Available online: https://www.jacvam.jp/files/list/05/EpiSensA_Validation%20report.pdf (accessed on 8 July 2025).
- OECD. Epidermal Sensitisation Assay (EpiSensA) Peer Review Report; Series on Testing and Assessment; OECD Publishing: Paris, France, 2023; Available online: https://www.oecd.org/chemicalsafety/testing/ (accessed on 28 July 2025).
- Cottrez, F.; Boitel, E.; Auriault, C.; Aeby, P.; Groux, H. Genes specifically modulated in sensitized skins allow the detection of sensitizers in a reconstructed human skin model. development of the SENS-IS assay. Toxicol. Vitr. 2015, 29, 787–802. [Google Scholar] [CrossRef] [PubMed]
- OECD. Draft Validation Report of the SENS-IS Assay; Organisation for Economic Co-operation and Development: Paris, France, 2024. [Google Scholar]
- EURL ECVAM (European Commission, Joint Research Centre). SENS-IS: Skin Sensitisation Assay; TSAR Test Method TM2011-11; European Commission, Joint Research Centre: Ispra, Italy, 2011; Available online: https://tsar.jrc.ec.europa.eu/test-method/tm2011-11 (accessed on 9 July 2025).
- OECD. Draft Test Guideline for the Toxicogenomic Analysis on 3D Reconstituted Human Epidermis for Measuring Skin Sensitisation Potency—The SENS-IS Assay; OECD Guidelines for the Testing of Chemicals (Draft Proposal); OECD Publishing: Paris, France, 2024; Available online: https://www.oecd.org/content/dam/oecd/en/events/public-consultations/2024/7/draft-test-guidelines-sens-is-assay.pdf (accessed on 28 July 2025).
- Hoffmann, S.; Kleinstreuer, N.; Alépée, N.; Allen, D.; Api, A.M.; Ashikaga, T.; Clouet, E.; Cluzel, M.; Desprez, B.; Gellatly, N.; et al. Non-animal methods to predict skin sensitization (I): The Cosmetics Europe Database. Crit. Rev. Toxicol. 2018, 48, 344–358. [Google Scholar] [CrossRef]
- Hoffmann, S.; Alépée, N.; Gilmour, N.; Kern, P.S.; van Vliet, E.; Boislève, F.; Bury, D.; Cloudet, E.; Klaric, M.; Kühnl, J.; et al. Expansion of the cosmetics europe skin sensitisation database with new substances and PPRA data. Regul. Toxicol. Pharmacol. 2022, 131, 105169. [Google Scholar] [CrossRef]
- Desprez, B.; Dent, M.; Keller, D.; Klaric, M.; Ouédraogo, G.; Cubberley, R.; Duplan, H.; Eilstein, J.; Ellison, C.; Grégoire, S.; et al. A Strategy for systemic toxicity assessment based on non-animal approaches: The cosmetics europe long range science strategy programme. Toxicol. Vitr. 2018, 50, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Reisinger, K.; Hoffmann, S.; Alépée, N.; Ashikaga, T.; Barroso, J.; Elcombe, C.; Gellatly, N.; Galbiati, V.; Gibbs, S.; Groux, H.; et al. Systematic evaluation of non-animal test methods for skin sensitisation safety assessment. Toxicol. Vitr. 2015, 29, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Mizumachi, H.; LeBaron, M.J.; Settivari, R.S.; Miyazawa, M.; Marty, M.S.; Sakaguchi, H. Characterization of dermal sensitization potential for industrial or agricultural chemicals with EpiSensA. J. Appl. Toxicol. 2021, 41, 915–927. [Google Scholar] [CrossRef] [PubMed]
- Kimber, I. The activity of methacrylate esters in skin sensitisation test methods ii. a review of complementary and additional analyses. Regul. Toxicol. Pharmacol. 2021, 119, 104821. [Google Scholar] [CrossRef]
- Petry, T.; Bosch, A.; Koraïchi-Emeriau, F.; Eigler, D.; Germain, P.; Seidel, S. assessment of the skin sensitisation hazard of functional polysiloxanes and silanes in the SENS-IS assay. Regul. Toxicol. Pharmacol. 2018, 98, 209–214. [Google Scholar] [CrossRef]
- Puginier, M.; Roso, A.; Groux, H.; Gerbeix, C.; Cottrez, F. strategy to avoid skin sensitization: Application to botanical cosmetic ingredients. Cosmetics 2022, 9, 40. [Google Scholar] [CrossRef]
- Kolle, S.N.; Flach, M.; Kleber, M.; Basketter, D.A.; Wareing, B.; Mehling, A.; Hareng, L.; Watzek, N.; Bade, S.; Funk-Weyer, D.; et al. plant extracts, polymers and new approach methods: Practical experience with skin sensitization assessment. Regul. Toxicol. Pharmacol. 2023, 138, 105330. [Google Scholar] [CrossRef]
- Cottrez, F.; Boitel, E.; Berrada-Gomez, M.-P.; Dalhuchyts, H.; Bidan, C.; Rattier, S.; Ferret, P.-J.; Groux, H. In vitro measurement of skin sensitization hazard of mixtures and finished products: Results obtained with the SENS-IS assays. Toxicol. Vitr. 2020, 62, 104644. [Google Scholar] [CrossRef]
- Reinke, E.N.; Corsini, E.; Ono, A.; Fukuyama, T.; Ashikaga, T.; Gerberick, G.F. Peer Review Report of the EpiSensA skin sensitization assay. In Proceedings of the SOT 2023 Annual Meeting, Nashville, TN, USA, 19–23 March 2023; Available online: https://ntp.niehs.nih.gov/sites/default/files/iccvam/meetings/sot23/sot2023-reinke-poster.pdf (accessed on 28 July 2025).
- Cottrez, F.; Boitel, E.; Ourlin, J.-C.; Peiffer, J.-L.; Fabre, I.; Henaoui, I.-S.; Mari, B.; Vallauri, A.; Paquet, A.; Barbry, P.; et al. SENS-IS, a 3D reconstituted epidermis based model for quantifying chemical sensitization potency: Reproducibility and predictivity results from an inter-laboratory study. Toxicol. Vitr. 2016, 32, 248–260. [Google Scholar] [CrossRef]
- Na, M.; O’Brien, D.; Lavelle, M.; Lee, I.; Gerberick, G.F.; Api, A.M. weight of evidence approach for skin sensitization potency categorization of fragrance ingredients. Dermatitis 2022, 33, 161–175. [Google Scholar] [CrossRef]
- Basketter, D.; Ashikaga, T.; Casati, S.; Hubesch, B.; Jaworska, J.; de Knecht, J.; Landsiedel, R.; Manou, I.; Mehling, A.; Petersohn, D.; et al. Alternatives for skin sensitisation: Hazard identification and potency categorisation: Report from an EPAA/CEFIC LRI/Cosmetics Europe Cross Sector Workshop, ECHA Helsinki, April 23rd and 24th 2015. Regul. Toxicol. Pharmacol. 2015, 73, 660–666. [Google Scholar] [CrossRef]
- Suzuki, S.; Mizumachi, H.; Miyazawa, M. Skin sensitization potency prediction based on read-across (Rax) incorporating RhE-based testing strategy (RTSv1)-defined approach: RTSv1-based RAx. J. Appl. Toxicol. 2025, 45, 620–635. [Google Scholar] [CrossRef] [PubMed]
- Clouet, E.; Kerdine-Römer, S.; Ferret, P.-J. Comparison and validation of an in vitro skin sensitization strategy using a data set of 33 chemical references. Toxicol. Vitr. 2017, 45, 374–385. [Google Scholar] [CrossRef] [PubMed]
- Bergal, M.; Puginier, M.; Gerbeix, C.; Groux, H.; Roso, A.; Cottrez, F.; Milius, A. In vitro testing strategy for assessing the skin sensitizing potential of “difficult to test” cosmetic ingredients. Toxicol. Vitr. 2020, 65, 104781. [Google Scholar] [CrossRef]
- Gautier, F.; Tourneix, F.; Assaf Vandecasteele, H.; van Vliet, E.; Bury, D.; Alépée, N. Read-across can increase confidence in the next generation risk assessment for skin sensitisation: A case study with resorcinol. Regul. Toxicol. Pharmacol. 2020, 117, 104755. [Google Scholar] [CrossRef]
- Gilmour, N.; Alépée, N.; Hoffmann, S.; Kern, P.; Vliet, E.V.; Bury, D.; Miyazawa, M.; Nishida, H.; Europe, C. Applying a next generation risk assessment framework for skin sensitisation to inconsistent new approach methodology information. ALTEX 2023, 40, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Cottrez, F.; Boitel, E.; Sahli, E.; Groux, H. Validation of a new 3D epidermis model for the Sens-IS assay to evaluate skin sensitization potency of chemicals. Toxicol. Vitr. 2025, 106, 106039. [Google Scholar] [CrossRef]
- Dickson, M.A.; Hahn, W.C.; Ino, Y.; Ronfard, V.; Wu, J.Y.; Weinberg, R.A.; Louis, D.N.; Li, F.P.; Rheinwald, J.G. Human keratinocytes that express hTERT and also bypass a p16(ink4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol. Cell Biol. 2000, 20, 1436–1447. [Google Scholar] [CrossRef]
- Smits, J.P.H.; Niehues, H.; Rikken, G.; van Vlijmen-Willems, I.M.J.J.; van de Zande, G.W.H.J.F.; Zeeuwen, P.L.J.M.; Schalkwijk, J.; van den Bogaard, E.H. immortalized N/TERT keratinocytes as an alternative cell source in 3D human epidermal models. Sci. Rep. 2017, 7, 11838. [Google Scholar] [CrossRef]
- Alloul-Ramdhani, M.; Tensen, C.P.; El Ghalbzouri, A. performance of the N/TERT epidermal model for skin sensitizer identification via Nrf2-Keap1-ARE pathway activation. Toxicol. Vitr. 2014, 28, 982–989. [Google Scholar] [CrossRef]
- El Ghalbzouri, A.; Siamari, R.; Willemze, R.; Ponec, M. Leiden reconstructed human epidermal model as a tool for the evaluation of the skin corrosion and irritation potential according to the ECVAM guidelines. Toxicol. Vitr. 2008, 22, 1311–1320. [Google Scholar] [CrossRef]
- Brandmair, K.; Dising, D.; Finkelmeier, D.; Schepky, A.; Kuehnl, J.; Ebmeyer, J.; Burger-Kentischer, A. A novel three-dimensional Nrf2 reporter epidermis model for skin sensitization assessment. Toxicology 2024, 503, 153743. [Google Scholar] [CrossRef]
- Régnier, M.; Staquet, M.J.; Schmitt, D.; Schmidt, R. Integration of langerhans cells into a pigmented reconstructed human epidermis. J. Investig. Dermatol. 1997, 109, 510–512. [Google Scholar] [CrossRef] [PubMed]
- LeClaire, J.; de Silva, O. Industry experience with alternative methods. Toxicol. Lett. 1998, 102–103, 575–579. [Google Scholar] [CrossRef]
- Lukas, M.; Stössel, H.; Hefel, L.; Imamura, S.; Fritsch, P.; Sepp, N.T.; Schuler, G.; Romani, N. Human Cutaneous dendritic cells migrate through dermal lymphatic vessels in a skin organ culture model. J. Investig. Dermatol. 1996, 106, 1293–1299. [Google Scholar] [CrossRef] [PubMed]
- Facy, V.; Flouret, V.; Régnier, M.; Schmidt, R. Langerhans cells integrated into human reconstructed epidermis respond to known sensitizers and ultraviolet exposure. J. Investig. Dermatol. 2004, 122, 552–553. [Google Scholar] [CrossRef] [PubMed]
- Pichowski, J.S.; Cumberbatch, M.; Dearman, R.J.; Basketter, D.A.; Kimber, I. Allergen-induced changes in interleukin 1 beta (IL-1 beta) mRNA expression by human blood-derived dendritic cells: Inter-individual differences and relevance for sensitization testing. J. Appl. Toxicol. 2001, 21, 115–121. [Google Scholar] [CrossRef]
- Chau, D.Y.S.; Johnson, C.; MacNeil, S.; Haycock, J.W.; Ghaemmaghami, A.M. The development of a 3D immunocompetent model of human skin. Biofabrication 2013, 5, 035011. [Google Scholar] [CrossRef]
- Uchino, T.; Takezawa, T.; Ikarashi, Y.; Nishimura, T. development of an alternative test for skin sensitization using a three-dimensional human skin model consisting of dendritic cells, keratinocytes and fibroblasts. AATEX 2011, 16, 1–8. [Google Scholar] [CrossRef]
- Xu, H.; DiIulio, N.A.; Fairchild, R.L. T cell populations primed by hapten sensitization in contact sensitivity are distinguished by polarized patterns of cytokine production: Interferon gamma-producing (Tc1) effector CD8+ T cells and interleukin (Il) 4/Il-10-producing (Th2) negative regulatory CD4+ T Cells. J. Exp. Med. 1996, 183, 1001–1012. [Google Scholar] [CrossRef] [PubMed]
- Ouwehand, K.; Spiekstra, S.W.; Waaijman, T.; Scheper, R.J.; de Gruijl, T.D.; Gibbs, S. Technical advance: Langerhans cells derived from a human cell line in a full-thickness skin equivalent undergo allergen-induced maturation and migration. J. Leukoc. Biol. 2011, 90, 1027–1033. [Google Scholar] [CrossRef] [PubMed]
- Kosten, I.J.; Spiekstra, S.W.; de Gruijl, T.D.; Gibbs, S. MUTZ-3 derived Langerhans cells in human skin equivalents show differential migration and phenotypic plasticity after allergen or irritant exposure. Toxicol. Appl. Pharmacol. 2015, 287, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Zoio, P.; Oliva, A. Skin-on-a-Chip Technology: Microengineering physiologically relevant in vitro skin models. Pharmaceutics 2022, 14, 682. [Google Scholar] [CrossRef]
- Fernandez-Carro, E.; Angenent, M.; Gracia-Cazaña, T.; Gilaberte, Y.; Alcaine, C.; Ciriza, J. Modeling an optimal 3D skin-on-chip within microfluidic devices for pharmacological studies. Pharmaceutics 2022, 14, 1417. [Google Scholar] [CrossRef]
- Jones, C.F.E.; Di Cio, S.; Connelly, J.T.; Gautrot, J.E. Design of an integrated microvascularized human skin-on-a-chip tissue equivalent model. Front. Bioeng. Biotechnol. 2022, 10, 915702. [Google Scholar] [CrossRef]
- Hindle, S.A.; Bachas Brook, H.; Chrysanthou, A.; Chambers, E.S.; Caley, M.P.; Connelly, J.T. Replicating dynamic immune responses at single-cell resolution within a microfluidic human skin equivalent. Adv. Sci. 2025, 12, e2415717. [Google Scholar] [CrossRef]
- Govey-Scotland, J.; Johnstone, L.; Myant, C.; Friddin, M.S. Towards skin-on-a-chip for screening the dermal absorption of cosmetics. Lab Chip 2023, 23, 5068–5080. [Google Scholar] [CrossRef]
- Ramadan, Q.; Ting, F.C.W. In Vitro micro-physiological immune-competent model of the human skin. Lab Chip 2016, 16, 1899–1908. [Google Scholar] [CrossRef]
- Michielon, E.; Boninsegna, M.; Waaijman, T.; Fassini, D.; Spiekstra, S.W.; Cramer, J.; Gaudriault, P.; Kodolányi, J.; de Gruijl, T.D.; Homs-Corbera, A.; et al. Environmentally controlled microfluidic system enabling immune cell flow and activation in an endothelialised Skin-On-Chip. Adv. Healthc. Mater. 2024, 13, e2400750. [Google Scholar] [CrossRef]
- Moon, S.; Kim, D.H.; Shin, J.U. In vitro models mimicking immune response in the skin. Yonsei Med. J. 2021, 62, 969–980. [Google Scholar] [CrossRef]
- Rhee, S.; Xia, C.; Chandra, A.; Hamon, M.; Lee, G.; Yang, C.; Guo, Z.; Sun, B. Full-thickness perfused skin-on-a-chip with in vivo-like drug response for drug and cosmetics testing. Bioengineering 2024, 11, 1055. [Google Scholar] [CrossRef]
- Yarmush, M.L.; Freedman, R.; Bufalo, A.D.; Teissier, S.; Meunier, J.-R. Immune System Modeling Devices and Methods. U.S. Patent Application US9535056B2, 3 January 2017. [Google Scholar]
- Zhang, Q.; Sito, L.; Mao, M.; He, J.; Zhang, Y.S.; Zhao, X. Current advances in skin-on-a-chip models for drug testing. Microphysiol. Syst. 2018, 2, 4. [Google Scholar] [CrossRef]
- Chong, L.H.; Li, H.; Wetzel, I.; Cho, H.; Toh, Y.-C. A Liver-immune coculture array for predicting systemic drug-induced skin sensitization. Lab. Chip. 2018, 18, 3239–3250. [Google Scholar] [CrossRef]
- Tao, T.-P.; Brandmair, K.; Gerlach, S.; Przibilla, J.; Schepky, A.; Marx, U.; Hewitt, N.J.; Maschmeyer, I.; Kühnl, J. application of a skin and liver chip2 microphysiological model to investigate the route-dependent toxicokinetics and toxicodynamics of consumer-relevant doses of genistein. J. Appl. Toxicol. 2024, 44, 287–300. [Google Scholar] [CrossRef]
- Ren, X.; Getschman, A.E.; Hwang, S.; Volkman, B.F.; Klonisch, T.; Levin, D.; Zhao, M.; Santos, S.; Liu, S.; Cheng, J.; et al. investigations on t cell transmigration in a human skin-on-chip (SoC) model. Lab Chip 2021, 21, 1527–1539. [Google Scholar] [CrossRef]
- Quan, Q.; Weng, D.; Li, X.; An, Q.; Yang, Y.; Yu, B.; Ma, Y.; Wang, J. Aanalysis of drug efficacy for inflammatory skin on an organ-chip system. Front. Bioeng. Biotechnol. 2022, 10, 939629. [Google Scholar] [CrossRef]
- Sasaki, N.; Tsuchiya, K.; Kobayashi, H. Photolithography-free skin-on-a-chip for parallel permeation assays. Sens. Mater. 2019, 31, 107–115. [Google Scholar] [CrossRef]
- Linder, A.; Portmann, K.; Schlotheuber, L.J.; Streuli, A.; Glänzer, W.S.; Eyer, K.; Lüchtefeld, I. Microfluidic approach to resolve simultaneous and sequential cytokine secretion of individual polyfunctional Cells. JoVE 2024, 205, e66492. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.W.; Malick, H.; Kim, S.J.; Grattoni, A. Advances in skin-on-a-chip technologies for dermatological disease modeling. J. Investig. Dermatol. 2024, 144, 1707–1715. [Google Scholar] [CrossRef] [PubMed]
- Kalhori, D.; Rakhshani, F.; Ma, Y.; Yakavets, I.; Kheiri, S.; Zeyons, O.; Kolle, S.N.; Deisenroth, T.; Qu, L.; Chen, Z.; et al. spheroid-based skin-on-a-chip platform for the evaluation of the toxicity of small molecules and nanoparticles. Lab. Chip. 2025, 25, 4038–4047. [Google Scholar] [CrossRef]
- Sriram, G.; Alberti, M.; Dancik, Y.; Wu, B.; Wu, R.; Feng, Z.; Ramasamy, S.; Bigliardi, P.L.; Bigliardi-Qi, M.; Wang, Z. Full-Thickness human skin-on-chip with enhanced epidermal morphogenesis and barrier function. Mater. Today 2018, 21, 326–340. [Google Scholar] [CrossRef]
- Wufuer, M.; Lee, G.; Hur, W.; Jeon, B.; Kim, B.J.; Choi, T.H.; Lee, S. Skin-on-a-chip model simulating inflammation, edema and drug-based treatment. Sci. Rep. 2016, 6, 37471. [Google Scholar] [CrossRef]
- Innovative Science and Technology Approaches for New Drugs (ISTAND) Pilot Program. Available online: https://www.fda.gov/drugs/drug-development-tool-ddt-qualification-programs/innovative-science-and-technology-approaches-new-drugs-istand-pilot-program (accessed on 28 July 2025).
- Han, J.J. FDA modernization act 2.0 allows for alternatives to animal testing. Artif. Organs 2023, 47, 449–450. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.R.; Oelgeschlaeger, M.; Burgdorf, T.; van Meer, P.; Theunissen, P.; Kienhuis, A.S.; Piersma, A.H.; Vandebriel, R.J. Applicability of organ-on-chip systems in toxicology and pharmacology. Crit. Rev. Toxicol. 2021, 51, 540–554. [Google Scholar] [CrossRef] [PubMed]
- Heringa, M.B.; Park, M.V.D.Z.; Kienhuis, A.S.; Vandebriel, R.J. The value of organs-on-chip for regulatory safety assessment. ALTEX 2020, 37, 208–222. [Google Scholar] [CrossRef]
- Euroocs. Available online: https://euroocs.eu (accessed on 28 July 2025).
- Tissue Chip for Drug Screening. National Center for Advancing Translational Sciences. Available online: https://ncats.nih.gov/research/research-activities/tissue-chip (accessed on 28 July 2025).
- Ta, G.H.; Weng, C.-F.; Leong, M.K. In silico prediction of skin sensitization: Quo Vadis? Front. Pharmacol. 2021, 12, 655771. [Google Scholar] [CrossRef]
- Summerfield, V.L. Characterisation of Keratinocyte-Derived Epidermal Signals in the Initiation of Contact Hypersensitivity to Chemicals. Doctoral Thesis, University College London, London, UK, 2015. Available online: https://discovery.ucl.ac.uk/id/eprint/1465818/ (accessed on 28 July 2025).
- Frisoli, M.L.; Ko, W.-C.C.; Martinez, N.; Afshari, K.; Wang, Y.; Garber, M.; Harris, J.E. Single-Cell RNA sequencing reveals molecular signatures that distinguish allergic from irritant contact dermatitis. J. Investig. Dermatol. 2025, 145, 1117–1126.e14. [Google Scholar] [CrossRef] [PubMed]
- Qiao, W.; Xie, T.; Lu, J.; Jia, T.; Kaku, K. Identification of potential hub genes associated with atopic dermatitis-like recombinant human epidermal model using integrated transcriptomic and proteomic analysis. Biomol. Biomed. 2024, 24, 89–100. [Google Scholar] [CrossRef]
- Elbayed, K.; Berl, V.; Debeuckelaere, C.; Moussallieh, F.-M.; Piotto, M.; Namer, I.-J.; Lepoittevin, J.-P. HR-MAS NMR spectroscopy of reconstructed human epidermis: Potential for the in situ investigation of the chemical interactions between skin allergens and nucleophilic amino acids. Chem. Res. Toxicol. 2013, 26, 136–145. [Google Scholar] [CrossRef]
- Moussallieh, F.-M.; Moss, E.; Elbayed, K.; Lereaux, G.; Tourneix, F.; Lepoittevin, J.-P. Modifications induced by chemical skin allergens on the metabolome of reconstructed human epidermis: A pilot high-resolution magic angle spinning nuclear magnetic resonance study. Contact Dermat. 2020, 82, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Mizumachi, H.; Watanabe, M.; Ikezumi, M.; Kajiwara, M.; Yasuda, M.; Mizuno, M.; Imai, N.; Sakuma, M.; Shibata, M.; Watanabe, S.-I.; et al. The inter-laboratory validation study of EpisensA for predicting skin sensitization potential. J. Appl. Toxicol. 2024, 44, 510–525. [Google Scholar] [CrossRef]
- Wang, H.; Huang, Z.; Lou, S.; Li, W.; Liu, G.; Tang, Y. In silico prediction of skin sensitization for compounds via flexible evidence combination based on machine learning and dempster–shafer theory. Chem. Res. Toxicol. 2024, 37, 894–909. [Google Scholar] [CrossRef]
- Wilm, A.; Kühnl, J.; Kirchmair, J. Computational approaches for skin sensitization prediction. Crit. Rev. Toxicol. 2018, 48, 738–760. [Google Scholar] [CrossRef]
- de Souza, I.R.; Iulini, M.; Galbiati, V.; Silva, E.Z.M.; Sivek, T.W.; Rodrigues, A.C.; Gradia, D.F.; Pestana, C.B.; Leme, D.M.; Corsini, E. An integrated in silico-in vitro investigation to assess the skin sensitization potential of 4-Octylphenol. Toxicology 2023, 493, 153548. [Google Scholar] [CrossRef]
- Wang, S.-S.; Wang, C.-C.; Tung, C.-W. SkinSensPred as a promising in silico tool for integrated testing strategy on skin sensitization. Int. J. Environ. Res. Public Health 2022, 19, 12856. [Google Scholar] [CrossRef] [PubMed]
- Kan, H.-L.; Wang, S.-S.; Liao, C.-L.; Tsai, W.-R.; Wang, C.-C.; Tung, C.-W. An integrated testing strategy and online tool for assessing skin sensitization of agrochemical formulations. Toxics 2024, 12, 936. [Google Scholar] [CrossRef]
- Asai, T.; Umeshita, K.; Sakurai, M.; Sakane, S. development of an in silico evaluation system that quantitatively predicts skin sensitization using OECD guideline No. 497 ITSv2 Defined Approach for Skin Sensitization Classification. Food Chem. Toxicol. 2024, 185, 114444. [Google Scholar] [CrossRef]
- Wilm, A.; Stork, C.; Bauer, C.; Schepky, A.; Kühnl, J.; Kirchmair, J. Skin Doctor: Machine learning models for skin sensitization prediction that provide estimates and indicators of prediction reliability. Int. J. Mol. Sci. 2019, 20, 4833. [Google Scholar] [CrossRef] [PubMed]
- Tieghi, R.S.; Moreira-Filho, J.T.; Martin, H.-J.; Wellnitz, J.; Otoch, M.C.; Rath, M.; Tropsha, A.; Muratov, E.N.; Kleinstreuer, N. A novel machine learning model and a web portal for predicting the human skin sensitization effects of chemical agents. Toxics 2024, 12, 803. [Google Scholar] [CrossRef]
- Partnership for the Assessment of Risks from Chemicals PARC Project. Available online: https://cordis.europa.eu/project/id/101057014 (accessed on 28 July 2025).
- ONTOX Project. Available online: https://ontox-project.eu/ (accessed on 28 July 2025).
- Rogiers, V.; Benfenati, E.; Bernauer, U.; Bodin, L.; Carmichael, P.; Chaudhry, Q.; Coenraads, P.J.; Cronin, M.T.D.; Dent, M.; Dusinska, M.; et al. The way forward for assessing the human health safety of cosmetics in the EU—Workshop Proceedings. Toxicology 2020, 436, 152421. [Google Scholar] [CrossRef]
- Basketter, D.; Safford, B. Skin sensitization quantitative risk assessment: A review of underlying assumptions. Regul. Toxicol. Pharmacol. 2016, 74, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Teunis, M.; Corsini, E.; Smits, M.; Madsen, C.B.; Eltze, T.; Ezendam, J.; Galbiati, V.; Gremmer, E.; Krul, C.; Landin, A.; et al. transfer of a two-tiered keratinocyte assay: IL-18 production by NCTC2544 to determine the skin sensitizing capacity and epidermal equivalent assay to determine sensitizer potency. Toxicol. Vitr. 2013, 27, 1135–1150. [Google Scholar] [CrossRef]
- Corsini, E.; Gibbs, S.; Roggen, E.; Kimber, I.; Basketter, D.A. skin sensitization tests: The LLNA and the rhe Il-18 potency assay. Methods Mol. Biol. 2021, 2240, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Andres, E.; Barry, M.; Hundt, A.; Dini, C.; Corsini, E.; Gibbs, S.; Roggen, E.L.; Ferret, P.-J. Preliminary Performance Data of the RHE/IL-18 Assay Performed on SkinEthicTM RHE for the Identification of Contact Sensitizers. Int. J. Cosmet. Sci. 2017, 39, 121–132. [Google Scholar] [CrossRef]
- Galbiati, V.; Gibbs, S.; Roggen, E.; Corsini, E. Development of an in vitro method to estimate the sensitization induction level of contact allergens. Curr. Protoc. Toxicol. 2018, 75, 20.15.1–20.15.20. [Google Scholar] [CrossRef]
- Mehling, A.; Adriaens, E.; Casati, S.; Hubesch, B.; Irizar, A.; Klaric, M.; Letasiova, S.; Manou, I.; Müller, B.P.; Roggen, E.; et al. In Vitro RHE Skin Sensitisation Assays: Applicability to Challenging Substances. Regul. Toxicol. Pharmacol. 2019, 108, 104473. [Google Scholar] [CrossRef]
- Mizumachi, H.; Sakuma, M.; Ikezumi, M.; Saito, K.; Takeyoshi, M.; Imai, N.; Okutomi, H.; Umetsu, A.; Motohashi, H.; Watanabe, M.; et al. Transferability and within- and between-laboratory reproducibilities of EpisensA for predicting skin sensitization potential in vitro: A Ring Study in Three Laboratories. J. Appl. Toxicol. 2018, 38, 1233–1243. [Google Scholar] [CrossRef]
- Pellevoisin, C.; Guntur, K.; Romero, C.; Markus, J.; Servi, B.; Meloni, M.; Landry, T.; Letasiova, S.; Klausner, M. Prevalidation of Epi2SensA, an Assay Using Gene Expression with the EpiDerm RhE Model to Predict Skin Sensitization in Vitro. Toxicol. Lett. 2024, 399 (Suppl. 2), S161. [Google Scholar] [CrossRef]
- Kasahara, T.; Yamamoto, Y.; Nakashima, N.; Imamura, M.; Mizumachi, H.; Suzuki, S.; Aiba, S.; Kimura, Y.; Ashikaga, T.; Kojima, H.; et al. Borderline range determined using data from validation study of alternative methods for skin sensitization: ADRA, IL-8 Luc Assay, and EpiSensA. J. Appl. Toxicol. 2025, 45, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Pellevoisin, C.; Cottrez, F.; Johansson, J.; Pedersen, E.; Coleman, K.; Groux, H. Pre-validation of sens-is assay for in vitro skin sensitization of medical devices. Toxicol. Vitr. 2021, 71, 105068. [Google Scholar] [CrossRef]
- Facy, V.; Flouret, V.; Régnier, M.; Schmidt, R. reactivity of Langerhans cells in human reconstructed epidermis to known allergens and uv radiation. Toxicol. Vitr. 2005, 19, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Gaviria Agudelo, C. Modelling Human Skin: Organotypic Cultures for Applications in Toxicology, Immunity, and Cancer. Ph.D. Thesis, University of Groningen, Groningen, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Laubach, V.; Zöller, N.; Rossberg, M.; Görg, K.; Kippenberger, S.; Bereiter-Hahn, J.; Kaufmann, R.; Bernd, A. integration of langerhans-like cells into a human skin equivalent. Arch. Dermatol. Res. 2011, 303, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Dong, D.X.; Jindal, R.; Maguire, T.; Mitra, B.; Schloss, R.; Yarmush, M. predicting full thickness skin sensitization using a support vector machine. Toxicol. Vitr. 2014, 28, 1413–1423. [Google Scholar] [CrossRef] [PubMed]
- Bock, S.; Said, A.; Müller, G.; Schäfer-Korting, M.; Zoschke, C.; Weindl, G. Characterization of reconstructed human skin containing Langerhans cells to monitor molecular events in skin sensitization. Toxicol. Vitr. 2018, 46, 77–85. [Google Scholar] [CrossRef]
- Rodrigues Neves, C.; Gibbs, S. Progress on reconstructed human skin models for allergy research and identifying contact sensitizers. In Three Dimensional Human Organotypic Models for Biomedical Research; Bagnoli, F., Rappuoli, R., Eds.; Current Topics in Microbiology and Immunology; Springer International Publishing: Cham, Germany, 2021; pp. 103–129. ISBN 978-3-030-62452-1. [Google Scholar]
- Schellenberger, M.T.; Bock, U.; Hennen, J.; Groeber-Becker, F.; Walles, H.; Blömeke, B. A coculture system composed of thp-1 cells and 3d reconstructed human epidermis to assess activation of dendritic cells by sensitizing chemicals after topical exposure. Toxicol. Vitr. 2019, 57, 62–66. [Google Scholar] [CrossRef]
- Hölken, J.M.; Friedrich, K.; Merkel, M.; Blasius, N.; Engels, U.; Buhl, T.; Mewes, K.R.; Vierkotten, L.; Teusch, N.E. A human 3D immune competent full-thickness skin model mimicking dermal dendritic cell activation. Front. Immunol. 2023, 14, 1276151. [Google Scholar] [CrossRef]
- Hölken, J.M.; Wurz, A.-L.; Friedrich, K.; Böttcher, P.; Asskali, D.; Stark, H.; Breitkreutz, J.; Buhl, T.; Vierkotten, L.; Mewes, K.R.; et al. incorporating immune cell surrogates into a full-thickness tissue equivalent of human skin to characterize dendritic cell activation. Sci. Rep. 2024, 14, 30158. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Losada-Fernández, I.; San Martín, A.; Moreno-Nombela, S.; Suárez-Cabrera, L.; Valencia, L.; Pérez-Aciego, P.; Velasco, D. In Vitro Skin Models for Skin Sensitisation: Challenges and Future Directions. Cosmetics 2025, 12, 173. https://doi.org/10.3390/cosmetics12040173
Losada-Fernández I, San Martín A, Moreno-Nombela S, Suárez-Cabrera L, Valencia L, Pérez-Aciego P, Velasco D. In Vitro Skin Models for Skin Sensitisation: Challenges and Future Directions. Cosmetics. 2025; 12(4):173. https://doi.org/10.3390/cosmetics12040173
Chicago/Turabian StyleLosada-Fernández, Ignacio, Ane San Martín, Sergio Moreno-Nombela, Leticia Suárez-Cabrera, Leticia Valencia, Paloma Pérez-Aciego, and Diego Velasco. 2025. "In Vitro Skin Models for Skin Sensitisation: Challenges and Future Directions" Cosmetics 12, no. 4: 173. https://doi.org/10.3390/cosmetics12040173
APA StyleLosada-Fernández, I., San Martín, A., Moreno-Nombela, S., Suárez-Cabrera, L., Valencia, L., Pérez-Aciego, P., & Velasco, D. (2025). In Vitro Skin Models for Skin Sensitisation: Challenges and Future Directions. Cosmetics, 12(4), 173. https://doi.org/10.3390/cosmetics12040173