Open AccessArticle
System for Monitoring Motion, Technical, and Environmental Parameters in Railway Traffic Using a Sensor Network
by
Piotr Chrostowski, Krzysztof Karwowski, Roksana Licow, Michał Michna, Marek Szafrański, Andrzej Wilk, Leszek Jarzębowicz, Jacek Skibicki, Sławomir Judek, Sławomir Grulkowski, Tadeusz Widerski, Karol Daliga, Natalia Karkosińska-Brzozowska, Paweł Bawolski and Kamila Szwaczkiewicz
Viewed by 606
Abstract
Rail transportation is one of the most environmentally friendly systems; however, it generates noise and vibrations in the vicinity of railway lines. Therefore, the operation of railways requires appropriate measurements to analyze interactions between rolling stock and railway infrastructure during service. This paper
[...] Read more.
Rail transportation is one of the most environmentally friendly systems; however, it generates noise and vibrations in the vicinity of railway lines. Therefore, the operation of railways requires appropriate measurements to analyze interactions between rolling stock and railway infrastructure during service. This paper presents a novel railway monitoring system based on the Industrial Internet of Things (IIoT) sensor network concept, enabling the integration of functionalities such as synchronized motion, technical, and environmental measurements. The system features a flexible configuration regarding the number of monitored parameters and scalability in terms of the number of tracks being observed. Selected field studies are presented, leading to the optimal configuration of the measurement system, along with a discussion of key research findings. Signal analysis enables a comprehensive assessment of the impact of rail transport on the environment, particularly by identifying sources of environmental pollution such as vibrations and noise generated by rail vehicles. In this study, 932 units of passing trains (wagons, locomotives, and multiple unit sections) were identified. The average deviation of the distances between recorded axles (relative to the catalog data) was approximately 3.9 cm, with a maximum of 20 cm.
Full article
►▼
Show Figures