Reconstruction of Building LIDAR Point Cloud Based on Geometric Primitive Constrained Optimization
Abstract
1. Introduction
- A reconstruction method for the building LIDAR point cloud based on geometric primitive constrained optimization is proposed, which takes into account both the reconstruction accuracy and the complex and time-consuming modeling process;
- A geometric primitive generation method for the building LIDAR point cloud is designed for the constraint optimization;
- A geometric primitive-based calculation method of the optimal energy equation is designed for the reconstruction method;
- A view-dependent incremental joint optimization strategy is designed to improve the calculation efficiency.
2. Related Work
2.1. Common Methods for 3D Reconstruction of Objects/Scenes
2.2. Methods for Building a Point Cloud
3. Method
3.1. Initial Model Reconstruction
3.1.1. Data Preprocessing
3.1.2. Mesh Reconstruction of Point Cloud Data
3.2. Model Optimization
3.2.1. Geometric Primitive Generation
3.2.2. Construction of the Optimal Energy Equation
3.2.3. Optimization Calculation
- (1)
- Optimization of Linear Junction Areas
- (2)
- Optimization of surface junction area
4. Experimental Verification
4.1. Original Point Cloud Data and Simplification Result
4.2. Generation of Geometric Primitive
4.3. Model Optimization Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, J.; Stoter, J.; Peters, R.; Nan, L. City3D: Large-Scale Building Reconstruction from Airborne LIDAR Point Clouds. Remote Sens. 2022, 14, 2254. [Google Scholar] [CrossRef]
- Barnes, D.; Gadd, M.; Murcutt, P.; Newman, P.; Posner, I. The Oxford Radar RobotCar Dataset: A Radar Extension to the Oxford RobotCar Dataset. arXiv 2019, arXiv:1909.01300. [Google Scholar]
- Li, Z.; Jie, S. RANSAC-based Multi Primitive Building Reconstruction from 3D Point Clouds. ISPRS J. Photogramm. Remote Sens. 2022, 185, 247–260. [Google Scholar] [CrossRef]
- Sun, C.; Miao, L.; Wang, M.; Shi, J.; Ding, J. Research on Point Cloud Hole Filling and 3D Reconstruction in Reflective Area. Sci. Rep. 2023, 13, 18524. [Google Scholar] [CrossRef]
- Zabin, A.; González, V.A.; Zou, Y.; Amor, R. Applications of Machine Learning to BIM: A Systematic Literature Review. Adv. Eng. Inform. 2022, 51, 101474. [Google Scholar] [CrossRef]
- Pan, X.; Lin, Q.; Ye, S.; Li, L.; Guo, L.; Harmon, B. Deep Learning Based Approaches from Semantic Point Clouds to Semantic BIM Models for Heritage Digital Twin. Herit. Sci. 2024, 12, 65. [Google Scholar] [CrossRef]
- Liu, T.; Geng, S.; Fu, Y.; Lei, Z.; Huo, Y.; Zhang, X.; Wang, F.; Han, B.; Sha, M.; Wu, Z. Triplane generator-based NeRF-GAN framework for single-view ship reconstruction. Int. J. Digit. Earth 2025, 18, 2496406. [Google Scholar] [CrossRef]
- Liu, T.; Shen, R.; Lei, Z.; Huo, Y.; Zhao, J.; Xu, X. Wind resistance aerial path planning for efficient reconstruction of offshore ship. Int. J. Digit. Earth 2022, 15, 1881–1904. [Google Scholar] [CrossRef]
- Shen, W.; Li, J.; Chen, Y.; Deng, L.; Peng, G. Research on Building Contour Extraction and Regularization Algorithm Based on LIDAR Data. J. Remote Sens. 2008, 12, 692–698. [Google Scholar]
- Yang, L.; Sheng, Y.; Wang, B. LIDAR Data Reduction Assisted by Optical Image for 3D Building Reconstruction. Optik 2014, 125, 6282–6286. [Google Scholar] [CrossRef]
- Li, L.; Song, N.; Sun, F.; Liu, X.; Wang, R.; Yao, J.; Cao, S. Point2Roof: End-to-end 3D Building Roof Modeling from Airborne LIDAR Point Clouds. ISPRS J. Photogramm. Remote Sens. 2022, 193, 17–28. [Google Scholar] [CrossRef]
- Bourki, A.; de La Gorce, M.; Marlet, R.; Komodakis, N. Patchwork Stereo: Scalable, Structure-Aware 3D Reconstruction in Man-Made Environments. In Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; pp. 292–301. [Google Scholar]
- Lan, Z.; Yew, Z.J.; Lee, G.H. Robust Point Cloud Based Reconstruction of Large-Scale Outdoor Scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9690–9698. [Google Scholar]
- Nan, L.; Wonka, P. Polyfit: Polygonal Surface Reconstruction from Point Clouds. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2353–2361. [Google Scholar]
- Nan, L.; Xie, K.; Sharf, A. A Search-Classify Approach for Cluttered Indoor Scene Understanding. ACM Trans. Graph. (TOG) 2012, 31, 1–10. [Google Scholar] [CrossRef]
- Shao, T.; Xu, W.; Zhou, K.; Wang, J.; Li, D.; Guo, B. An Interactive Approach to Semantic Modeling of Indoor Scenes with an RGBD Camera. ACM Trans. Graph. (TOG) 2012, 31, 136:1–136:11. [Google Scholar] [CrossRef]
- Verdie, Y.; Lafarge, F.; Alliez, P. Lod Generation for Urban Scenes. ACM Trans. Graph. (TOG) 2015, 34, 30. [Google Scholar] [CrossRef]
- Xu, K.; Zheng, H.; Zhang, H.; Cohen-Or, D.; Liu, L.; Xiong, Y. Photo-Inspired Model-Driven 3D Object Modeling. ACM Trans. Graph. (TOG) 2011, 30, 1–10. [Google Scholar]
- Shen, C.-H.; Fu, H.; Chen, K.; Hu, S.-M. Structure Recovery by Part Assembly. ACM Trans. Graph. (TOG) 2012, 31, 1–11. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, X.; Lin, D.; Lischinski, D.; Cohen-Or, D.; Huang, H. Sagnet: Structure-Aware Generative Network for 3D-Shape Modeling. ACM Trans. Graph. (TOG) 2019, 38, 1–14. [Google Scholar] [CrossRef]
- Dai, A.; Nießner, M. Scan2mesh: From Unstructured Range Scans to 3D Meshes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5574–5583. [Google Scholar]
- Erler, P.; Guerrero, P.; Ohrhallinger, S.; Mitra, N.J.; Wimmer, M. Points2surf Learning Implicit Surfaces From Point Clouds. In Proceedings of the 2020 European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 108–124. [Google Scholar]
- Sun, J.; Chen, X.; Wang, Q.; Li, Z.; Averbuch-Elor, H.; Zhou, X.; Snavely, N. Neural 3D Reconstruction in the Wild. In Proceedings of the ACM SIGGRAPH 2022 Conference Proceedings, Vancouver, BC, Canada, 7–11 August 2022. [Google Scholar]
- Monszpart, A.; Mellado, N.; Brostow, G.J.; Mitra, N.J. RAPter: Rebuilding Man-Made Scenes with Regular Arrangements of Planes. ACM Trans. Graph. (TOG) 2015, 34, 103:1–103:12. [Google Scholar] [CrossRef]
- Musialski, P.; Wonka, P.; Aliaga, D.G.; Wimmer, M.; Van Gool, L.; Purgathofer, W. A Survey of Urban Reconstruction. Comput. Graph. Forum 2013, 32, 146–177. [Google Scholar] [CrossRef]
- Zheng, Q.; Sharf, A.; Wan, G.; Li, Y.; Mitra, N.J.; Cohen-Or, D.; Chen, B. Non-Local Scan Consolidation for 3D Urban Scenes. ACM Trans. Graph. (TOG) 2010, 29, 94:1–94:9. [Google Scholar] [CrossRef]
- Nan, L.; Sharf, A.; Zhang, H.; Cohen-Or, D.; Chen, B. Smartboxes for Interactive Urban Reconstruction. ACM Trans. Graph. (TOG) 2010, 29, 93:1–93:10. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Q.; Sharf, A.; Cohen-Or, D.; Chen, B.; Mitra, N.J. 2D-3D Fusion for Layer Decomposition of Urban Facades. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 882–889. [Google Scholar]
- Arikan, M.; Schwärzler, M.; Flöry, S.; Wimmer, M.; Maierhofer, S. O-Snap: Optimization-Based Snapping for Modeling Architecture. ACM Trans. Graph. (TOG) 2013, 32, 6:1–6:15. [Google Scholar] [CrossRef]
- Lafarge, F.; Alliez, P. Surface Reconstruction Through Point Set Structuring. Comput. Graph. Forum 2013, 32 Pt 2, 225–234. [Google Scholar] [CrossRef]
- Lin, H.; Gao, J.; Zhou, Y.; Lu, G.; Ye, M.; Zhang, C.; Liu, L.; Yang, R. Semantic Decomposition and Reconstruction of Residential Scenes from LIDAR Data. ACM Trans. Graph. (TOG) 2013, 32, 66:1–66:10. [Google Scholar] [CrossRef]
- Li, M.; Wonka, P.; Nan, L. Manhattan-World Urban Reconstruction from Point Clouds. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 54–69. [Google Scholar]
- Zhang, L.; Li, Z.; Li, A.; Liu, F. Large-Scale Urban Point Cloud Labeling and Reconstruction. ISPRS J. Photogramm. Remote Sens. 2018, 138, 86–100. [Google Scholar] [CrossRef]
- Li, M.; Rottensteiner, F.; Heipke, C. Modelling of Buildings from Aerial LIDAR Point Clouds Using TINs and Label Maps. ISPRS J. Photogramm. Remote Sens. 2019, 154, 127–138. [Google Scholar] [CrossRef]
- Albano, R. Investigation on Roof Segmentation for 3D Building Reconstruction from Aerial LIDAR Point Clouds. Appl. Sci. 2019, 9, 4674. [Google Scholar] [CrossRef]
- Dong, W.; Park, J.; Yang, Y.; Kaess, M. GPU Accelerated Robust Scene Reconstruction. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019. [Google Scholar]
- Wang, R.; Peethambaran, J.; Chen, D. LIDAR Point Clouds to 3-D Urban Models: A Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 606–627. [Google Scholar] [CrossRef]
- Jiang, R. Building Model Reconstruction Based on the Technology of 3D Laser Scanning. Bull. Surv. Mapp. 2013, S1, 80–83+120. [Google Scholar]
- Rusu, R.B.; Cousins, S.B. 3D is here: Point Cloud Library (PCL). In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1–4. [Google Scholar]
- Li, B.J.; Li, Q.Q.; Shi, W.Z.; Wu, F.F. Feature Extraction and Modeling of Urban Building from Vehicle-Borne Laser Scanning Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 35, 934–939. [Google Scholar]
- Milioto, A.; Vizzo, I.; Behley, J.; Stachniss, C. Rangenet++: Fast and accurate LIDAR semantic segmentation. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 4213–4220. [Google Scholar]
- Kuo, C.-C.; Yau, H.-T. A Delaunay-based Region-growing Approach to Surface Reconstruction from Unorganized Points. Comput.-Aided Des. 2005, 37, 825–835. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, C.; Zhai, D.; Li, W.; Li, J. Toward Better Boundary Preserved Supervoxel Segmentation for 3D Point Clouds. ISPRS J. Photogramm. Remote Sens. 2018, 143, 39–47. [Google Scholar] [CrossRef]
- Liu, T.; Zhao, D.; Pan, M. An Approach to 3D Model Fusion in GIS Systems and Its Application in A Future ECDIS. Comput. Geosci. 2016, 89, 12–20. [Google Scholar] [CrossRef]
- Laine, S.; Karras, T. High-Performance Software Rasterization on GPUs. In Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics, Vancouver, BC, Canada, 5–7 August 2011; pp. 79–88. [Google Scholar]
- Kazhdan, M.M.; Hugues, H. Screened poisson surface reconstruction. ACM Trans. Graph. 2013, 32, 29:1–29:13. [Google Scholar] [CrossRef]
Dataset | Time in Seconds ↓ | |||
---|---|---|---|---|
Points2Surf | PolyFit | SPR | Ours | |
Point cloud 1 | 93.16 | 1.84 | 7.16 | 7.63 |
Point cloud 2 | 72.84 | 3.54 | 4.39 | 4.51 |
Point cloud 3 | 102.47 | 3.38 | 7.57 | 7.99 |
Point cloud 4 | 78.37 | 6.87 | 6.60 | 7.01 |
Criterion | Points2Surf | PolyFit | SPR | Ours |
---|---|---|---|---|
Visual quality | ✗ | ✗ | ✓ | ✓ |
Surface smoothness | ✗ | ✓ | ✓ | ✓ |
Detail preservation | ✗ | ✗ | ✗ | ✓ |
Structural integrity | ✓ | ✗ | ✓ | ✓ |
Editability | ✗ | ✗ | ✗ | ✓ |
Dataset | Chamfer Distance () ↓ | |||
---|---|---|---|---|
Point2Surf | PolyFit | SPR | Ours | |
Point cloud 1 | 4.17 | 128.17 | 41.32 | 1.04 |
Point cloud 2 | 17.54 | 88.81 | 130.56 | 5.03 |
Point cloud 3 | 39.39 | 237.69 | 128.50 | 0.72 |
Point cloud 4 | 1.80 | 40.94 | 183.90 | 6.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Liu, T.; Shen, R.; Lei, Z. Reconstruction of Building LIDAR Point Cloud Based on Geometric Primitive Constrained Optimization. Appl. Sci. 2025, 15, 11286. https://doi.org/10.3390/app152011286
Li H, Liu T, Shen R, Lei Z. Reconstruction of Building LIDAR Point Cloud Based on Geometric Primitive Constrained Optimization. Applied Sciences. 2025; 15(20):11286. https://doi.org/10.3390/app152011286
Chicago/Turabian StyleLi, Haoyu, Tao Liu, Ruiqi Shen, and Zhengling Lei. 2025. "Reconstruction of Building LIDAR Point Cloud Based on Geometric Primitive Constrained Optimization" Applied Sciences 15, no. 20: 11286. https://doi.org/10.3390/app152011286
APA StyleLi, H., Liu, T., Shen, R., & Lei, Z. (2025). Reconstruction of Building LIDAR Point Cloud Based on Geometric Primitive Constrained Optimization. Applied Sciences, 15(20), 11286. https://doi.org/10.3390/app152011286